
aiogram Documentation
Release 3.23.0

aiogram Team

Dec 07, 2025

CONTENTS

1 Features 3
1.1 Simple usage . 4
1.2 Usage without dispatcher . 5

2 Contents 7
2.1 Installation . 7

2.1.1 From PyPI . 7
2.1.2 From Arch Linux Repository . 7
2.1.3 From GitHub . 7

2.2 Migration FAQ (2.x -> 3.0) . 7
2.2.1 Dependencies . 8
2.2.2 Dispatcher . 8
2.2.3 Filtering events . 8
2.2.4 Bot API . 9
2.2.5 Middlewares . 9
2.2.6 Keyboard Markup . 9
2.2.7 Callbacks data . 9
2.2.8 Finite State machine . 9
2.2.9 Sending Files . 10
2.2.10 Webhook . 10
2.2.11 Telegram API Server . 10
2.2.12 Telegram objects transformation (to dict, to json, from json) 10
2.2.13 ChatMember tools . 11

2.3 Bot API . 12
2.3.1 Bot . 12
2.3.2 Client session . 14
2.3.3 Types . 19
2.3.4 Methods . 396
2.3.5 Enums . 603
2.3.6 How to download file? . 621
2.3.7 How to upload file? . 623
2.3.8 Global defaults . 625

2.4 Handling events . 627
2.4.1 Router . 627
2.4.2 Dispatcher . 633
2.4.3 Dependency injection . 636
2.4.4 Filtering events . 639
2.4.5 Long-polling . 652
2.4.6 Finite State Machine . 653
2.4.7 Middlewares . 686

i

2.4.8 Errors . 689
2.4.9 Flags . 691
2.4.10 Webhook . 693
2.4.11 Class based handlers . 702

2.5 Utils . 707
2.5.1 Keyboard builder . 707
2.5.2 Translation . 711
2.5.3 Chat action sender . 716
2.5.4 WebApp . 718
2.5.5 Callback answer . 721
2.5.6 Formatting . 724
2.5.7 Media group builder . 731
2.5.8 Deep Linking . 735
2.5.9 Telegram object serialization . 737

2.6 Changelog . 739
2.6.1 3.23.0 (2025-12-07) . 739
2.6.2 3.22.0 (2025-08-17) . 739
2.6.3 3.21.0 (2025-07-05) . 741
2.6.4 3.20.0 (2025-04-14) . 743
2.6.5 3.19.0 (2025-03-19) . 746
2.6.6 3.18.0 (2025-02-16) . 747
2.6.7 3.17.0 (2025-01-02) . 748
2.6.8 3.16.0 (2024-12-21) . 748
2.6.9 3.15.0 (2024-11-17) . 749
2.6.10 3.14.0 (2024-11-02) . 750
2.6.11 3.13.1 (2024-09-18) . 751
2.6.12 3.13.0 (2024-09-08) . 752
2.6.13 3.12.0 (2024-08-16) . 752
2.6.14 3.11.0 (2024-08-09) . 753
2.6.15 3.10.0 (2024-07-07) . 753
2.6.16 3.9.0 (2024-07-06) . 754
2.6.17 3.8.0 (2024-06-19) . 755
2.6.18 3.7.0 (2024-05-31) . 756
2.6.19 3.6.0 (2024-05-06) . 756
2.6.20 3.5.0 (2024-04-23) . 757
2.6.21 3.4.1 (2024-02-17) . 758
2.6.22 3.4.0 (2024-02-16) . 758
2.6.23 3.3.0 (2023-12-31) . 759
2.6.24 3.2.0 (2023-11-24) . 759
2.6.25 3.1.1 (2023-09-25) . 760
2.6.26 3.1.0 (2023-09-22) . 760
2.6.27 3.0.0 (2023-09-01) . 761
2.6.28 3.0.0rc2 (2023-08-18) . 761
2.6.29 3.0.0rc1 (2023-08-06) . 762
2.6.30 3.0.0b9 (2023-07-30) . 763
2.6.31 3.0.0b8 (2023-07-17) . 763
2.6.32 3.0.0b7 (2023-02-18) . 766
2.6.33 3.0.0b6 (2022-11-18) . 768
2.6.34 3.0.0b5 (2022-10-02) . 769
2.6.35 3.0.0b4 (2022-08-14) . 770
2.6.36 3.0.0b3 (2022-04-19) . 771
2.6.37 3.0.0b2 (2022-02-19) . 771
2.6.38 3.0.0b1 (2021-12-12) . 772
2.6.39 3.0.0a18 (2021-11-10) . 773

ii

2.6.40 3.0.0a17 (2021-09-24) . 774
2.6.41 3.0.0a16 (2021-09-22) . 774
2.6.42 3.0.0a15 (2021-09-10) . 774
2.6.43 3.0.0a14 (2021-08-17) . 775
2.6.44 2.14.3 (2021-07-21) . 775
2.6.45 2.14.2 (2021-07-26) . 775
2.6.46 2.14 (2021-07-27) . 776
2.6.47 2.13 (2021-04-28) . 776
2.6.48 2.12.1 (2021-03-22) . 776
2.6.49 2.12 (2021-03-14) . 777
2.6.50 2.11.2 (2021-11-10) . 777
2.6.51 2.11.1 (2021-11-10) . 777
2.6.52 2.11 (2021-11-08) . 778
2.6.53 2.10.1 (2021-09-14) . 778
2.6.54 2.10 (2021-09-13) . 778
2.6.55 2.9.2 (2021-06-13) . 779
2.6.56 2.9 (2021-06-08) . 779
2.6.57 2.8 (2021-04-26) . 779
2.6.58 2.7 (2021-04-07) . 780
2.6.59 2.6.1 (2021-01-25) . 780
2.6.60 2.6 (2021-01-23) . 780
2.6.61 2.5.3 (2021-01-05) . 780
2.6.62 2.5.2 (2021-01-01) . 780
2.6.63 2.5.1 (2021-01-01) . 780
2.6.64 2.5 (2021-01-01) . 780
2.6.65 2.4 (2021-10-29) . 781
2.6.66 2.3 (2021-08-16) . 781
2.6.67 2.2 (2021-06-09) . 782
2.6.68 2.1 (2021-04-18) . 782
2.6.69 2.0.1 (2021-12-31) . 782
2.6.70 2.0 (2021-10-28) . 782
2.6.71 1.4 (2021-08-03) . 783
2.6.72 1.3.3 (2021-07-16) . 783
2.6.73 1.3.2 (2021-05-27) . 783
2.6.74 1.3.1 (2018-05-27) . 783
2.6.75 1.3 (2021-04-22) . 783
2.6.76 1.2.3 (2018-04-14) . 784
2.6.77 1.2.2 (2018-04-08) . 784
2.6.78 1.2.1 (2018-03-25) . 784
2.6.79 1.2 (2018-02-23) . 784
2.6.80 1.1 (2018-01-27) . 784
2.6.81 1.0.4 (2018-01-10) . 785
2.6.82 1.0.3 (2018-01-07) . 785
2.6.83 1.0.2 (2017-11-29) . 785
2.6.84 1.0.1 (2017-11-21) . 785
2.6.85 1.0 (2017-11-19) . 785
2.6.86 0.4.1 (2017-08-03) . 786
2.6.87 0.4 (2017-08-05) . 786
2.6.88 0.3.4 (2017-08-04) . 786
2.6.89 0.3.3 (2017-07-05) . 786
2.6.90 0.3.2 (2017-07-04) . 786
2.6.91 0.3.1 (2017-07-04) . 786
2.6.92 0.2b1 (2017-06-00) . 786
2.6.93 0.1 (2017-06-03) . 786

iii

2.7 Contributing . 786
2.7.1 Developing . 786
2.7.2 Star on GitHub . 789
2.7.3 Guides . 789
2.7.4 Take answers . 789
2.7.5 Funding . 789

Python Module Index 791

Index 797

iv

aiogram Documentation, Release 3.23.0

aiogram is a modern and fully asynchronous framework for Telegram Bot API written in Python 3.10+ using asyncio
and aiohttp.

Make your bots faster and more powerful!

Documentation:

• English

• Ukrainian

CONTENTS 1

https://opensource.org/licenses/MIT
https://pypi.python.org/pypi/aiogram
https://pypi.python.org/pypi/aiogram
https://pypi.python.org/pypi/aiogram
https://pypi.python.org/pypi/aiogram
https://core.telegram.org/bots/api
https://github.com/aiogram/aiogram/actions
https://app.codecov.io/gh/aiogram/aiogram
https://core.telegram.org/bots/api
https://docs.python.org/3/library/asyncio.html
https://github.com/aio-libs/aiohttp
https://docs.aiogram.dev/en/dev-3.x/
https://docs.aiogram.dev/uk_UA/dev-3.x/

aiogram Documentation, Release 3.23.0

2 CONTENTS

CHAPTER

ONE

FEATURES

• Asynchronous (asyncio docs, PEP 492)

• Has type hints (PEP 484) and can be used with mypy

• Supports PyPy

• Supports Telegram Bot API 9.2 and gets fast updates to the latest versions of the Bot API

• Telegram Bot API integration code was autogenerated and can be easily re-generated when API gets updated

• Updates router (Blueprints)

• Has Finite State Machine

• Uses powerful magic filters

• Middlewares (incoming updates and API calls)

• Provides Replies into Webhook

• Integrated I18n/L10n support with GNU Gettext (or Fluent)

. Warning

It is strongly advised that you have prior experience working with asyncio before beginning to use aiogram.

If you have any questions, you can visit our community chats on Telegram:

• @aiogram

• @aiogramua

• @aiogram_uz

• @aiogram_kz

• @aiogram_ru

• @aiogram_fa

• @aiogram_it

• @aiogram_br

3

https://docs.python.org/3/library/asyncio.html
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0484/
http://mypy-lang.org/
https://www.pypy.org/
https://core.telegram.org/bots/api
https://github.com/aiogram/tg-codegen
https://docs.aiogram.dev/en/latest/dispatcher/filters/magic_filters.html#magic-filters
https://core.telegram.org/bots/faq#how-can-i-make-requests-in-response-to-updates
https://docs.python.org/3/library/asyncio.html
https://t.me/aiogram
https://t.me/aiogramua
https://t.me/aiogram_uz
https://t.me/aiogram_kz
https://t.me/aiogram_ru
https://t.me/aiogram_fa
https://t.me/aiogram_it
https://t.me/aiogram_br

aiogram Documentation, Release 3.23.0

1.1 Simple usage

import asyncio
import logging
import sys
from os import getenv

from aiogram import Bot, Dispatcher, html
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import Message

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

All handlers should be attached to the Router (or Dispatcher)

dp = Dispatcher()

@dp.message(CommandStart())
async def command_start_handler(message: Message) -> None:

"""
This handler receives messages with `/start` command
"""
Most event objects have aliases for API methods that can be called in events'␣

→˓context
For example if you want to answer to incoming message you can use `message.answer(.

→˓..)` alias
and the target chat will be passed to :ref:`aiogram.methods.send_message.

→˓SendMessage`
method automatically or call API method directly via
Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
await message.answer(f"Hello, {html.bold(message.from_user.full_name)}!")

@dp.message()
async def echo_handler(message: Message) -> None:

"""
Handler will forward receive a message back to the sender

By default, message handler will handle all message types (like a text, photo,␣
→˓sticker etc.)
"""
try:

Send a copy of the received message
await message.send_copy(chat_id=message.chat.id)

except TypeError:
But not all the types is supported to be copied so need to handle it
await message.answer("Nice try!")

(continues on next page)

4 Chapter 1. Features

aiogram Documentation, Release 3.23.0

(continued from previous page)

async def main() -> None:
Initialize Bot instance with default bot properties which will be passed to all␣

→˓API calls
bot = Bot(token=TOKEN, default=DefaultBotProperties(parse_mode=ParseMode.HTML))

And the run events dispatching
await dp.start_polling(bot)

if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
asyncio.run(main())

1.2 Usage without dispatcher

Just only interact with Bot API, without handling events

import asyncio
from argparse import ArgumentParser

from aiogram import Bot
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode

def create_parser() -> ArgumentParser:
parser = ArgumentParser()
parser.add_argument("--token", help="Telegram Bot API Token")
parser.add_argument("--chat-id", type=int, help="Target chat id")
parser.add_argument("--message", "-m", help="Message text to sent", default="Hello,␣

→˓World!")

return parser

async def main() -> None:
parser = create_parser()
ns = parser.parse_args()

token = ns.token
chat_id = ns.chat_id
message = ns.message

async with Bot(
token=token,
default=DefaultBotProperties(

parse_mode=ParseMode.HTML,
),

) as bot:
(continues on next page)

1.2. Usage without dispatcher 5

aiogram Documentation, Release 3.23.0

(continued from previous page)

await bot.send_message(chat_id=chat_id, text=message)

if __name__ == "__main__":
asyncio.run(main())

6 Chapter 1. Features

CHAPTER

TWO

CONTENTS

2.1 Installation

2.1.1 From PyPI

pip install -U aiogram

2.1.2 From Arch Linux Repository

. Warning

Package in this repository may be outdated. Use PyPI package for the latest version.

pacman -S python-aiogram

Development build

2.1.3 From GitHub

pip install https://github.com/aiogram/aiogram/archive/refs/heads/dev-3.x.zip

2.2 Migration FAQ (2.x -> 3.0)

³ Danger

This guide is still in progress.

This version introduces numerous breaking changes and architectural improvements. It helps reduce the count of global
variables in your code, provides useful mechanisms to modularize your code, and enables the creation of shareable
modules via packages on PyPI. It also makes middlewares and filters more controllable, among other improvements.

On this page, you can read about the changes made in relation to the last stable 2.x version.

7

aiogram Documentation, Release 3.23.0

ò Note

This page more closely resembles a detailed changelog than a migration guide, but it will be updated in the future.

Feel free to contribute to this page, if you find something that is not mentioned here.

2.2.1 Dependencies

• The dependencies required for i18n are no longer part of the default package. If your application uses translation
functionality, be sure to add an optional dependency:

pip install aiogram[i18n]

2.2.2 Dispatcher

• The Dispatcher class no longer accepts a Bot instance in its initializer. Instead, the Bot instance should be
passed to the dispatcher only for starting polling or handling events from webhooks. This approach also allows
for the use of multiple bot instances simultaneously (“multibot”).

• Dispatcher now can be extended with another Dispatcher-like thing named Router. With routes, you can
easily modularize your code and potentially share these modules between projects. (Read more ».)

• Removed the _handler suffix from all event handler decorators and registering methods. (Read more »)

• The Executor has been entirely removed; you can now use the Dispatcher directly to start poll the API or
handle webhooks from it.

• The throttling method has been completely removed; you can now use middlewares to control the execution
context and implement any throttling mechanism you desire.

• Removed global context variables from the API types, Bot and Dispatcher object. From now on, if you want
to access the current bot instance within handlers or filters, you should accept the argument bot: Bot and use
it instead of Bot.get_current(). In middlewares, it can be accessed via data["bot"].

• To skip pending updates, you should now call the DeleteWebhook method directly, rather than passing
skip_updates=True to the start polling method.

• To feed updates to the Dispatcher, instead of method process_update(), you should use method
feed_update(). (Read more »)

2.2.3 Filtering events

• Keyword filters can no longer be used; use filters explicitly. (Read more »)

• Due to the removal of keyword filters, all previously enabled-by-default filters (such as state and content_type)
are now disabled. You must specify them explicitly if you wish to use them. For example instead of using @dp.
message_handler(content_types=ContentType.PHOTO) you should use @router.message(F.photo)

• Most common filters have been replaced with the “magic filter.” (Read more »)

• By default, the message handler now receives any content type. If you want a specific one, simply add the
appropriate filters (Magic or any other).

• The state filter is no longer enabled by default. This means that if you used state="*" in v2, you should not
pass any state filter in v3. Conversely, if the state was not specified in v2, you will now need to specify it in v3.

8 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/942

aiogram Documentation, Release 3.23.0

• Added the possibility to register global filters for each router, which helps to reduce code repetition and provides
an easier way to control the purpose of each router.

2.2.4 Bot API

• All API methods are now classes with validation, implemented via pydantic. These API calls are also available
as methods in the Bot class.

• More pre-defined Enums have been added and moved to the aiogram.enums sub-package. For example, the chat
type enum is now aiogram.enums.ChatType instead of aiogram.types.chat.ChatType.

• The HTTP client session has been separated into a container that can be reused across different Bot instances
within the application.

• API Exceptions are no longer classified by specific messages, as Telegram has no documented error codes.
However, all errors are classified by HTTP status codes, and for each method, only one type of error can be
associated with a given code. Therefore, in most cases, you should check only the error type (by status code)
without inspecting the error message.

2.2.5 Middlewares

• Middlewares can now control an execution context, e.g., using context managers. (Read more »)

• All contextual data is now shared end-to-end between middlewares, filters, and handlers. For example now you
can easily pass some data into context inside middleware and get it in the filters layer as the same way as in the
handlers via keyword arguments.

• Added a mechanism named flags that helps customize handler behavior in conjunction with middlewares. (Read
more »)

2.2.6 Keyboard Markup

• Now aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup and aiogram.types.
reply_keyboard_markup.ReplyKeyboardMarkup no longer have methods for extension, instead you
have to use markup builders aiogram.utils.keyboard.ReplyKeyboardBuilder and aiogram.utils.
keyboard.KeyboardBuilder respectively (Read more »)

2.2.7 Callbacks data

• The callback data factory is now strictly typed using pydantic models. (Read more »)

2.2.8 Finite State machine

• State filters will no longer be automatically added to all handlers; you will need to specify the state if you want
to use it.

• Added the possibility to change the FSM strategy. For example, if you want to control the state for each user
based on chat topics rather than the user in a chat, you can specify this in the Dispatcher.

• Now aiogram.fsm.state.State and aiogram.fsm.state.StateGroup don’t have helper methods like
.set(), .next(), etc. Instead, you should set states by passing them directly to aiogram.fsm.context.
FSMContext (Read more »)

2.2. Migration FAQ (2.x -> 3.0) 9

https://docs.pydantic.dev/
https://docs.pydantic.dev/

aiogram Documentation, Release 3.23.0

• The state proxy is deprecated; you should update the state data by calling state.set_data(...) and state.
get_data() respectively.

2.2.9 Sending Files

• From now on, you should wrap files in an InputFile object before sending them, instead of passing the IO object
directly to the API method. (Read more »)

2.2.10 Webhook

• The aiohttp web app configuration has been simplified.

• By default, the ability to upload files has been added when you make requests in response to updates (available
for webhook only).

2.2.11 Telegram API Server

• The server parameter has been moved from the Bot instance to api parameter of the BaseSession.

• The constant aiogram.bot.api.TELEGRAM_PRODUCTION has been moved to aiogram.client.telegram.
PRODUCTION.

2.2.12 Telegram objects transformation (to dict, to json, from json)

• Methods TelegramObject.to_object(), TelegramObject.to_json() and TelegramObject.
to_python() have been removed due to the use of pydantic models.

• TelegramObject.to_object() should be replaced by TelegramObject.model_validate() (Read more)

• TelegramObject.as_json() should be replaced by aiogram.utils.serialization.
deserialize_telegram_object_to_python()

• <TelegramObject>.to_python() should be replaced by json.dumps(deserialize_telegram_object_to_python(<TelegramObject>))

Here are some usage examples:

• Creating an object from a dictionary representation of an object

Version 2.x
message_dict = {"id": 42, ...}
message_obj = Message.to_object(message_dict)
print(message_obj)
id=42 name='n' ...
print(type(message_obj))
<class 'aiogram.types.message.Message'>

Version 3.x
message_dict = {"id": 42, ...}
message_obj = Message.model_validate(message_dict)
print(message_obj)
id=42 name='n' ...
print(type(message_obj))
<class 'aiogram.types.message.Message'>

10 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-make-requests-in-response-to-updates
https://docs.pydantic.dev/
https://docs.pydantic.dev/2.7/api/base_model/#pydantic.BaseModel.model_validate

aiogram Documentation, Release 3.23.0

• Creating a json representation of an object

Version 2.x
async def handler(message: Message) -> None:

message_json = message.as_json()
print(message_json)
{"id": 42, ...}
print(type(message_json))
<class 'str'>

Version 3.x
async def handler(message: Message) -> None:

message_json = json.dumps(deserialize_telegram_object_to_python(message))
print(message_json)
{"id": 42, ...}
print(type(message_json))
<class 'str'>

• Creating a dictionary representation of an object

async def handler(message: Message) -> None:
Version 2.x
message_dict = message.to_python()
print(message_dict)
{"id": 42, ...}
print(type(message_dict))
<class 'dict'>

async def handler(message: Message) -> None:
Version 3.x
message_dict = deserialize_telegram_object_to_python(message)
print(message_dict)
{"id": 42, ...}
print(type(message_dict))
<class 'dict'>

2.2.13 ChatMember tools

• Now aiogram.types.chat_member.ChatMember no longer contains tools to resolve an object with the ap-
propriate status.

Version 2.x
from aiogram.types import ChatMember

chat_member = ChatMember.resolve(**dict_data)

Version 3.x
from aiogram.utils.chat_member import ChatMemberAdapter

chat_member = ChatMemberAdapter.validate_python(dict_data)

• Now aiogram.types.chat_member.ChatMember and all its child classes no longer contain methods for

2.2. Migration FAQ (2.x -> 3.0) 11

aiogram Documentation, Release 3.23.0

checking for membership in certain logical groups. As a substitute, you can use pre-defined groups or create
such groups yourself and check their entry using the isinstance() function

Version 2.x

if chat_member.is_chat_admin():
print("ChatMember is chat admin")

if chat_member.is_chat_member():
print("ChatMember is in the chat")

Version 3.x

from aiogram.utils.chat_member import ADMINS, MEMBERS

if isinstance(chat_member, ADMINS):
print("ChatMember is chat admin")

if isinstance(chat_member, MEMBERS):
print("ChatMember is in the chat")

ò Note

You also can independently create group similar to ADMINS that fits the logic of your application.

E.g., you can create a PUNISHED group and include banned and restricted members there!

2.3 Bot API

aiogram now is fully support of Telegram Bot API

All methods and types is fully autogenerated from Telegram Bot API docs by parser with code-generator.

2.3.1 Bot

Bot instance can be created from aiogram.Bot (from aiogram import Bot) and you can’t use methods without
instance of bot with configured token.

This class has aliases for all methods and named in lower_camel_case.

For example sendMessage named send_message and has the same specification with all class-based methods.

. Warning

A full list of methods can be found in the appropriate section of the documentation

class aiogram.client.bot.Bot(token: str, session: BaseSession | None = None, default: DefaultBotProperties
| None = None, **kwargs: Any)

Bases: object

12 Chapter 2. Contents

https://core.telegram.org/bots/api

aiogram Documentation, Release 3.23.0

__init__(token: str, session: BaseSession | None = None, default: DefaultBotProperties | None = None,
**kwargs: Any)→ None

Bot class

Parameters

• token – Telegram Bot token Obtained from @BotFather

• session – HTTP Client session (For example AiohttpSession). If not specified it will be
automatically created.

• default – Default bot properties. If specified it will be propagated into the API methods
at runtime.

Raises
TokenValidationError – When token has invalid format this exception will be raised

property token: str

property id: int

Get bot ID from token

Returns

context(auto_close: bool = True)→ AsyncIterator[Bot]
Generate bot context

Parameters
auto_close – close session on exit

Returns

async me()→ User
Cached alias for getMe method

Returns

async download_file(file_path: str | Path, destination: BinaryIO | Path | str | None = None, timeout: int =
30, chunk_size: int = 65536, seek: bool = True)→ BinaryIO | None

Download file by file_path to destination.

If you want to automatically create destination (io.BytesIO) use default value of destination and handle
result of this method.

Parameters

• file_path – File path on Telegram server (You can get it from aiogram.types.File)

• destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO,
defaults to None

• timeout – Total timeout in seconds, defaults to 30

• chunk_size – File chunks size, defaults to 64 kb

• seek – Go to start of file when downloading is finished. Used only for destination with
typing.BinaryIO type, defaults to True

async download(file: str | Downloadable, destination: BinaryIO | Path | str | None = None, timeout: int =
30, chunk_size: int = 65536, seek: bool = True)→ BinaryIO | None

Download file by file_id or Downloadable object to destination.

If you want to automatically create destination (io.BytesIO) use default value of destination and handle
result of this method.

2.3. Bot API 13

https://t.me/BotFather

aiogram Documentation, Release 3.23.0

Parameters

• file – file_id or Downloadable object

• destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO,
defaults to None

• timeout – Total timeout in seconds, defaults to 30

• chunk_size – File chunks size, defaults to 64 kb

• seek – Go to start of file when downloading is finished. Used only for destination with
typing.BinaryIO type, defaults to True

2.3.2 Client session

Client sessions is used for interacting with API server.

Use Custom API server

For example, if you want to use self-hosted API server:

session = AiohttpSession(
api=TelegramAPIServer.from_base('http://localhost:8082')

)
bot = Bot(..., session=session)

class aiogram.client.telegram.TelegramAPIServer(base: str, file: str, is_local: bool = False,
wrap_local_file:
~aiogram.client.telegram.FilesPathWrapper =
<aiogram.client.telegram.BareFilesPathWrapper
object>)

Base config for API Endpoints

api_url(token: str, method: str)→ str
Generate URL for API methods

Parameters

• token – Bot token

• method – API method name (case insensitive)

Returns
URL

base: str

Base URL

file: str

Files URL

file_url(token: str, path: str | Path)→ str
Generate URL for downloading files

Parameters

• token – Bot token

14 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

• path – file path

Returns
URL

classmethod from_base(base: str, **kwargs: Any)→ TelegramAPIServer
Use this method to auto-generate TelegramAPIServer instance from base URL

Parameters
base – Base URL

Returns
instance of TelegramAPIServer

is_local: bool = False

Mark this server is in local mode.

wrap_local_file: FilesPathWrapper = <aiogram.client.telegram.BareFilesPathWrapper
object>

Callback to wrap files path in local mode

Base

Abstract session for all client sessions

class aiogram.client.session.base.BaseSession(api: ~aiogram.client.telegram.TelegramAPIServer =
TelegramAPIS-
erver(base='https://api.telegram.org/bot{token}/{method}',
file='https://api.telegram.org/file/bot{token}/{path}',
is_local=False,
wrap_local_file=<aiogram.client.telegram.BareFilesPathWrapper
object>), json_loads: ~collections.abc.Callable[[...],
~typing.Any] = <function loads>, json_dumps:
~collections.abc.Callable[[...], str] = <function
dumps>, timeout: float = 60.0)

This is base class for all HTTP sessions in aiogram.

If you want to create your own session, you must inherit from this class.

check_response(bot: Bot, method: TelegramMethod[TelegramType], status_code: int, content: str)→
Response[TelegramType]

Check response status

abstract async close()→ None
Close client session

abstract async make_request(bot: Bot, method: TelegramMethod[TelegramType], timeout: int | None =
None)→ TelegramType

Make request to Telegram Bot API

Parameters

• bot – Bot instance

• method – Method instance

• timeout – Request timeout

Returns

2.3. Bot API 15

https://core.telegram.org/bots/api#using-a-local-bot-api-server

aiogram Documentation, Release 3.23.0

Raises
TelegramApiError –

prepare_value(value: Any, bot: Bot, files: dict[str, Any], _dumps_json: bool = True)→ Any
Prepare value before send

abstract async stream_content(url: str, headers: dict[str, Any] | None = None, timeout: int = 30,
chunk_size: int = 65536, raise_for_status: bool = True)→
AsyncGenerator[bytes, None]

Stream reader

aiohttp

AiohttpSession represents a wrapper-class around ClientSession from aiohttp

Currently AiohttpSession is a default session used in aiogram.Bot

class aiogram.client.session.aiohttp.AiohttpSession(proxy: Iterable[str | tuple[str, BasicAuth]] | str |
tuple[str, BasicAuth] | None = None, limit: int =
100, **kwargs: Any)

Usage example

from aiogram import Bot
from aiogram.client.session.aiohttp import AiohttpSession

session = AiohttpSession()
bot = Bot('42:token', session=session)

Proxy requests in AiohttpSession

In order to use AiohttpSession with proxy connector you have to install aiohttp-socks

Binding session to bot:

from aiogram import Bot
from aiogram.client.session.aiohttp import AiohttpSession

session = AiohttpSession(proxy="protocol://host:port/")
bot = Bot(token="bot token", session=session)

ò Note

Only following protocols are supported: http(tunneling), socks4(a), socks5 as aiohttp_socks documentation claims.

16 Chapter 2. Contents

https://pypi.org/project/aiohttp/
https://pypi.org/project/aiohttp-socks
https://github.com/romis2012/aiohttp-socks/blob/master/README.md

aiogram Documentation, Release 3.23.0

Authorization

Proxy authorization credentials can be specified in proxy URL or come as an instance of aiohttp.BasicAuth con-
taining login and password.

Consider examples:

from aiohttp import BasicAuth
from aiogram.client.session.aiohttp import AiohttpSession

auth = BasicAuth(login="user", password="password")
session = AiohttpSession(proxy=("protocol://host:port", auth))

or simply include your basic auth credential in URL

session = AiohttpSession(proxy="protocol://user:password@host:port")

ò Note

Aiogram prefers BasicAuth over username and password in URL, so if proxy URL contains login and password
and BasicAuth object is passed at the same time aiogram will use login and password from BasicAuth instance.

Proxy chains

Since aiohttp-socks supports proxy chains, you’re able to use them in aiogram

Example of chain proxies:

from aiohttp import BasicAuth
from aiogram.client.session.aiohttp import AiohttpSession

auth = BasicAuth(login="user", password="password")
session = AiohttpSession(

proxy={
"protocol0://host0:port0",
"protocol1://user:password@host1:port1",
("protocol2://host2:port2", auth),

} # can be any iterable if not set
)

Client session middlewares

In some cases you may want to add some middlewares to the client session to customize the behavior of the client.

Some useful cases that is:

• Log the outgoing requests

• Customize the request parameters

• Handle rate limiting errors and retry the request

• others . . .

2.3. Bot API 17

https://pypi.org/project/aiohttp-socks/

aiogram Documentation, Release 3.23.0

So, you can do it using client session middlewares. A client session middleware is a function (or callable class) that
receives the request and the next middleware to call. The middleware can modify the request and then call the next
middleware to continue the request processing.

How to register client session middleware?

Register using register method

bot.session.middleware(RequestLogging(ignore_methods=[GetUpdates]))

Register using decorator

@bot.session.middleware()
async def my_middleware(

make_request: NextRequestMiddlewareType[TelegramType],
bot: "Bot",
method: TelegramMethod[TelegramType],

) -> Response[TelegramType]:
do something with request
return await make_request(bot, method)

Example

Class based session middleware

1 class RequestLogging(BaseRequestMiddleware):
2 def __init__(self, ignore_methods: list[type[TelegramMethod[Any]]] | None = None):
3 """
4 Middleware for logging outgoing requests
5

6 :param ignore_methods: methods to ignore in logging middleware
7 """
8 self.ignore_methods = ignore_methods or []
9

10 async def __call__(
11 self,
12 make_request: NextRequestMiddlewareType[TelegramType],
13 bot: "Bot",
14 method: TelegramMethod[TelegramType],
15) -> Response[TelegramType]:
16 if type(method) not in self.ignore_methods:
17 loggers.middlewares.info(
18 "Make request with method=%r by bot id=%d",
19 type(method).__name__,
20 bot.id,
21)
22 return await make_request(bot, method)

18 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

ò Note

this middleware is already implemented inside aiogram, so, if you want to use it you can just import it from
aiogram.client.session.middlewares.request_logging import RequestLogging

Function based session middleware

async def __call__(
self,
make_request: NextRequestMiddlewareType[TelegramType],
bot: "Bot",
method: TelegramMethod[TelegramType],

) -> Response[TelegramType]:
try:

do something with request
return await make_request(bot, method)

finally:
do something after request

2.3.3 Types

Here is list of all available API types:

Available types

AcceptedGiftTypes

class aiogram.types.accepted_gift_types.AcceptedGiftTypes(*, unlimited_gifts: bool, limited_gifts:
bool, unique_gifts: bool,
premium_subscription: bool,
**extra_data: Any)

This object describes the types of gifts that can be gifted to a user or a chat.

Source: https://core.telegram.org/bots/api#acceptedgifttypes

unlimited_gifts: bool

True, if unlimited regular gifts are accepted

limited_gifts: bool

True, if limited regular gifts are accepted

unique_gifts: bool

True, if unique gifts or gifts that can be upgraded to unique for free are accepted

premium_subscription: bool

True, if a Telegram Premium subscription is accepted

2.3. Bot API 19

https://core.telegram.org/bots/api#acceptedgifttypes

aiogram Documentation, Release 3.23.0

Animation

class aiogram.types.animation.Animation(*, file_id: str, file_unique_id: str, width: int, height: int,
duration: int, thumbnail: PhotoSize | None = None, file_name:
str | None = None, mime_type: str | None = None, file_size: int |
None = None, **extra_data: Any)

This object represents an animation file (GIF or H.264/MPEG-4 AVC video without sound).

Source: https://core.telegram.org/bots/api#animation

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

width: int

Video width as defined by the sender

height: int

Video height as defined by the sender

duration: int

Duration of the video in seconds as defined by the sender

thumbnail: PhotoSize | None

Optional. Animation thumbnail as defined by the sender

file_name: str | None

Optional. Original animation filename as defined by the sender

mime_type: str | None

Optional. MIME type of the file as defined by the sender

file_size: int | None

Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have
difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or
double-precision float type are safe for storing this value.

Audio

class aiogram.types.audio.Audio(*, file_id: str, file_unique_id: str, duration: int, performer: str | None =
None, title: str | None = None, file_name: str | None = None, mime_type:
str | None = None, file_size: int | None = None, thumbnail: PhotoSize |
None = None, **extra_data: Any)

This object represents an audio file to be treated as music by the Telegram clients.

Source: https://core.telegram.org/bots/api#audio

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

20 Chapter 2. Contents

https://core.telegram.org/bots/api#animation
https://core.telegram.org/bots/api#audio

aiogram Documentation, Release 3.23.0

duration: int

Duration of the audio in seconds as defined by the sender

performer: str | None

Optional. Performer of the audio as defined by the sender or by audio tags

title: str | None

Optional. Title of the audio as defined by the sender or by audio tags

file_name: str | None

Optional. Original filename as defined by the sender

mime_type: str | None

Optional. MIME type of the file as defined by the sender

file_size: int | None

Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have
difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or
double-precision float type are safe for storing this value.

thumbnail: PhotoSize | None

Optional. Thumbnail of the album cover to which the music file belongs

BackgroundFill

class aiogram.types.background_fill.BackgroundFill(**extra_data: Any)
This object describes the way a background is filled based on the selected colors. Currently, it can be one of

• aiogram.types.background_fill_solid.BackgroundFillSolid

• aiogram.types.background_fill_gradient.BackgroundFillGradient

• aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient

Source: https://core.telegram.org/bots/api#backgroundfill

BackgroundFillFreeformGradient

class aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient(*,
type:
Lit-
eral['freeform_gradient']
=
'freeform_gradient',
col-
ors:
list[int],
**ex-
tra_data:
Any)

The background is a freeform gradient that rotates after every message in the chat.

Source: https://core.telegram.org/bots/api#backgroundfillfreeformgradient

2.3. Bot API 21

https://core.telegram.org/bots/api#backgroundfill
https://core.telegram.org/bots/api#backgroundfillfreeformgradient

aiogram Documentation, Release 3.23.0

type: Literal['freeform_gradient']

Type of the background fill, always ‘freeform_gradient’

colors: list[int]

A list of the 3 or 4 base colors that are used to generate the freeform gradient in the RGB24 format

BackgroundFillGradient

class aiogram.types.background_fill_gradient.BackgroundFillGradient(*, type: Literal['gradient']
= 'gradient', top_color: int,
bottom_color: int,
rotation_angle: int,
**extra_data: Any)

The background is a gradient fill.

Source: https://core.telegram.org/bots/api#backgroundfillgradient

type: Literal['gradient']

Type of the background fill, always ‘gradient’

top_color: int

Top color of the gradient in the RGB24 format

bottom_color: int

Bottom color of the gradient in the RGB24 format

rotation_angle: int

Clockwise rotation angle of the background fill in degrees; 0-359

BackgroundFillSolid

class aiogram.types.background_fill_solid.BackgroundFillSolid(*, type: Literal['solid'] = 'solid',
color: int, **extra_data: Any)

The background is filled using the selected color.

Source: https://core.telegram.org/bots/api#backgroundfillsolid

type: Literal['solid']

Type of the background fill, always ‘solid’

color: int

The color of the background fill in the RGB24 format

BackgroundType

class aiogram.types.background_type.BackgroundType(**extra_data: Any)
This object describes the type of a background. Currently, it can be one of

• aiogram.types.background_type_fill.BackgroundTypeFill

• aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper

• aiogram.types.background_type_pattern.BackgroundTypePattern

• aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme

22 Chapter 2. Contents

https://core.telegram.org/bots/api#backgroundfillgradient
https://core.telegram.org/bots/api#backgroundfillsolid

aiogram Documentation, Release 3.23.0

Source: https://core.telegram.org/bots/api#backgroundtype

BackgroundTypeChatTheme

class aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme(*, type:
Literal['chat_theme'] =
'chat_theme',
theme_name: str,
**extra_data: Any)

The background is taken directly from a built-in chat theme.

Source: https://core.telegram.org/bots/api#backgroundtypechattheme

type: Literal['chat_theme']

Type of the background, always ‘chat_theme’

theme_name: str

Name of the chat theme, which is usually an emoji

BackgroundTypeFill

class aiogram.types.background_type_fill.BackgroundTypeFill(*, type: Literal['fill'] = 'fill', fill:
BackgroundFillSolid |
BackgroundFillGradient |
BackgroundFillFreeformGradient,
dark_theme_dimming: int,
**extra_data: Any)

The background is automatically filled based on the selected colors.

Source: https://core.telegram.org/bots/api#backgroundtypefill

type: Literal['fill']

Type of the background, always ‘fill’

fill: BackgroundFillUnion

The background fill

dark_theme_dimming: int

Dimming of the background in dark themes, as a percentage; 0-100

BackgroundTypePattern

class aiogram.types.background_type_pattern.BackgroundTypePattern(*, type: Literal['pattern'] =
'pattern', document:
Document, fill:
BackgroundFillSolid |
BackgroundFillGradient |
BackgroundFillFreeformGra-
dient, intensity: int,
is_inverted: bool | None =
None, is_moving: bool | None
= None, **extra_data: Any)

2.3. Bot API 23

https://core.telegram.org/bots/api#backgroundtype
https://core.telegram.org/bots/api#backgroundtypechattheme
https://core.telegram.org/bots/api#backgroundtypefill

aiogram Documentation, Release 3.23.0

The background is a .PNG or .TGV (gzipped subset of SVG with MIME type ‘application/x-tgwallpattern’)
pattern to be combined with the background fill chosen by the user.

Source: https://core.telegram.org/bots/api#backgroundtypepattern

type: Literal['pattern']

Type of the background, always ‘pattern’

document: Document

Document with the pattern

fill: BackgroundFillUnion

The background fill that is combined with the pattern

intensity: int

Intensity of the pattern when it is shown above the filled background; 0-100

is_inverted: bool | None

Optional. True, if the background fill must be applied only to the pattern itself. All other pixels are black
in this case. For dark themes only

is_moving: bool | None

Optional. True, if the background moves slightly when the device is tilted

BackgroundTypeWallpaper

class aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper(*, type:
Literal['wallpaper'] =
'wallpaper', document:
Document,
dark_theme_dimming:
int, is_blurred: bool |
None = None, is_moving:
bool | None = None,
**extra_data: Any)

The background is a wallpaper in the JPEG format.

Source: https://core.telegram.org/bots/api#backgroundtypewallpaper

type: Literal['wallpaper']

Type of the background, always ‘wallpaper’

document: Document

Document with the wallpaper

dark_theme_dimming: int

Dimming of the background in dark themes, as a percentage; 0-100

is_blurred: bool | None

Optional. True, if the wallpaper is downscaled to fit in a 450x450 square and then box-blurred with radius
12

is_moving: bool | None

Optional. True, if the background moves slightly when the device is tilted

24 Chapter 2. Contents

https://core.telegram.org/bots/api#backgroundtypepattern
https://core.telegram.org/bots/api#backgroundtypewallpaper

aiogram Documentation, Release 3.23.0

Birthdate

class aiogram.types.birthdate.Birthdate(*, day: int, month: int, year: int | None = None, **extra_data:
Any)

Describes the birthdate of a user.

Source: https://core.telegram.org/bots/api#birthdate

day: int

Day of the user’s birth; 1-31

month: int

Month of the user’s birth; 1-12

year: int | None

Optional. Year of the user’s birth

BotCommand

class aiogram.types.bot_command.BotCommand(*, command: str, description: str, **extra_data: Any)
This object represents a bot command.

Source: https://core.telegram.org/bots/api#botcommand

command: str

Text of the command; 1-32 characters. Can contain only lowercase English letters, digits and underscores.

description: str

Description of the command; 1-256 characters.

BotCommandScope

class aiogram.types.bot_command_scope.BotCommandScope(**extra_data: Any)
This object represents the scope to which bot commands are applied. Currently, the following 7 scopes are
supported:

• aiogram.types.bot_command_scope_default.BotCommandScopeDefault

• aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats

• aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats

• aiogram.types.bot_command_scope_all_chat_administrators.
BotCommandScopeAllChatAdministrators

• aiogram.types.bot_command_scope_chat.BotCommandScopeChat

• aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators

• aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember

Source: https://core.telegram.org/bots/api#botcommandscope

2.3. Bot API 25

https://core.telegram.org/bots/api#birthdate
https://core.telegram.org/bots/api#botcommand
https://core.telegram.org/bots/api#botcommandscope

aiogram Documentation, Release 3.23.0

BotCommandScopeAllChatAdministrators

class aiogram.types.bot_command_scope_all_chat_administrators.BotCommandScopeAllChatAdministrators(*,
type:
Lit-
eral[BotCommandScopeType.ALL_CHAT_ADMINISTRATORS]
=
Bot-
Com-
mand-
ScopeType.ALL_CHAT_ADMINISTRATORS,
**ex-
tra_data:
Any)

Represents the scope of bot commands, covering all group and supergroup chat administrators.

Source: https://core.telegram.org/bots/api#botcommandscopeallchatadministrators

type: Literal[BotCommandScopeType.ALL_CHAT_ADMINISTRATORS]

Scope type, must be all_chat_administrators

BotCommandScopeAllGroupChats

class aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats(*, type:
Lit-
eral[BotCommandScopeType.ALL_GROUP_CHATS]
= Bot-
Com-
mand-
ScopeType.ALL_GROUP_CHATS,
**ex-
tra_data:
Any)

Represents the scope of bot commands, covering all group and supergroup chats.

Source: https://core.telegram.org/bots/api#botcommandscopeallgroupchats

type: Literal[BotCommandScopeType.ALL_GROUP_CHATS]

Scope type, must be all_group_chats

BotCommandScopeAllPrivateChats

class aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats(*,
type:
Lit-
eral[BotCommandScopeType.ALL_PRIVATE_CHATS]
=
Bot-
Com-
mand-
ScopeType.ALL_PRIVATE_CHATS,
**ex-
tra_data:
Any)

26 Chapter 2. Contents

https://core.telegram.org/bots/api#botcommandscope
https://core.telegram.org/bots/api#botcommandscopeallchatadministrators
https://core.telegram.org/bots/api#botcommandscope
https://core.telegram.org/bots/api#botcommandscopeallgroupchats

aiogram Documentation, Release 3.23.0

Represents the scope of bot commands, covering all private chats.

Source: https://core.telegram.org/bots/api#botcommandscopeallprivatechats

type: Literal[BotCommandScopeType.ALL_PRIVATE_CHATS]

Scope type, must be all_private_chats

BotCommandScopeChat

class aiogram.types.bot_command_scope_chat.BotCommandScopeChat(*, type: Lit-
eral[BotCommandScopeType.CHAT]
= BotCommandScopeType.CHAT ,
chat_id: int | str, **extra_data:
Any)

Represents the scope of bot commands, covering a specific chat.

Source: https://core.telegram.org/bots/api#botcommandscopechat

type: Literal[BotCommandScopeType.CHAT]

Scope type, must be chat

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername). Channel direct messages chats and channel chats aren’t supported.

BotCommandScopeChatAdministrators

class aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators(*,
type:
Lit-
eral[BotCommandScopeType.CHAT_ADMINISTRATORS]
=
Bot-
Com-
mand-
ScopeType.CHAT_ADMINISTRATORS,
chat_id:
int
|
str,
**ex-
tra_data:
Any)

Represents the scope of bot commands, covering all administrators of a specific group or supergroup chat.

Source: https://core.telegram.org/bots/api#botcommandscopechatadministrators

type: Literal[BotCommandScopeType.CHAT_ADMINISTRATORS]

Scope type, must be chat_administrators

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername). Channel direct messages chats and channel chats aren’t supported.

2.3. Bot API 27

https://core.telegram.org/bots/api#botcommandscope
https://core.telegram.org/bots/api#botcommandscopeallprivatechats
https://core.telegram.org/bots/api#botcommandscope
https://core.telegram.org/bots/api#botcommandscopechat
https://core.telegram.org/bots/api#botcommandscope
https://core.telegram.org/bots/api#botcommandscopechatadministrators

aiogram Documentation, Release 3.23.0

BotCommandScopeChatMember

class aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember(*, type: Lit-
eral[BotCommandScopeType.CHAT_MEMBER]
= BotCommand-
ScopeType.CHAT_MEMBER,
chat_id: int | str,
user_id: int,
**extra_data:
Any)

Represents the scope of bot commands, covering a specific member of a group or supergroup chat.

Source: https://core.telegram.org/bots/api#botcommandscopechatmember

type: Literal[BotCommandScopeType.CHAT_MEMBER]

Scope type, must be chat_member

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername). Channel direct messages chats and channel chats aren’t supported.

user_id: int

Unique identifier of the target user

BotCommandScopeDefault

class aiogram.types.bot_command_scope_default.BotCommandScopeDefault(*, type: Lit-
eral[BotCommandScopeType.DEFAULT]
= BotCommand-
ScopeType.DEFAULT ,
**extra_data: Any)

Represents the default scope of bot commands. Default commands are used if no commands with a narrower
scope are specified for the user.

Source: https://core.telegram.org/bots/api#botcommandscopedefault

type: Literal[BotCommandScopeType.DEFAULT]

Scope type, must be default

BotDescription

class aiogram.types.bot_description.BotDescription(*, description: str, **extra_data: Any)
This object represents the bot’s description.

Source: https://core.telegram.org/bots/api#botdescription

description: str

The bot’s description

28 Chapter 2. Contents

https://core.telegram.org/bots/api#botcommandscope
https://core.telegram.org/bots/api#botcommandscopechatmember
https://core.telegram.org/bots/api#botcommandscope
https://core.telegram.org/bots/api#determining-list-of-commands
https://core.telegram.org/bots/api#determining-list-of-commands
https://core.telegram.org/bots/api#botcommandscopedefault
https://core.telegram.org/bots/api#botdescription

aiogram Documentation, Release 3.23.0

BotName

class aiogram.types.bot_name.BotName(*, name: str, **extra_data: Any)
This object represents the bot’s name.

Source: https://core.telegram.org/bots/api#botname

name: str

The bot’s name

BotShortDescription

class aiogram.types.bot_short_description.BotShortDescription(*, short_description: str,
**extra_data: Any)

This object represents the bot’s short description.

Source: https://core.telegram.org/bots/api#botshortdescription

short_description: str

The bot’s short description

BusinessBotRights

class aiogram.types.business_bot_rights.BusinessBotRights(*, can_reply: bool | None = None,
can_read_messages: bool | None =
None, can_delete_sent_messages: bool |
None = None, can_delete_all_messages:
bool | None = None, can_edit_name:
bool | None = None, can_edit_bio: bool |
None = None, can_edit_profile_photo:
bool | None = None, can_edit_username:
bool | None = None,
can_change_gift_settings: bool | None =
None, can_view_gifts_and_stars: bool |
None = None,
can_convert_gifts_to_stars: bool | None
= None,
can_transfer_and_upgrade_gifts: bool |
None = None, can_transfer_stars: bool |
None = None, can_manage_stories: bool
| None = None,
can_delete_outgoing_messages: bool |
None = None, **extra_data: Any)

Represents the rights of a business bot.

Source: https://core.telegram.org/bots/api#businessbotrights

can_reply: bool | None

Optional. True, if the bot can send and edit messages in the private chats that had incoming messages in
the last 24 hours

can_read_messages: bool | None

Optional. True, if the bot can mark incoming private messages as read

2.3. Bot API 29

https://core.telegram.org/bots/api#botname
https://core.telegram.org/bots/api#botshortdescription
https://core.telegram.org/bots/api#businessbotrights

aiogram Documentation, Release 3.23.0

can_delete_sent_messages: bool | None

Optional. True, if the bot can delete messages sent by the bot

can_delete_all_messages: bool | None

Optional. True, if the bot can delete all private messages in managed chats

can_edit_name: bool | None

Optional. True, if the bot can edit the first and last name of the business account

can_edit_bio: bool | None

Optional. True, if the bot can edit the bio of the business account

can_edit_profile_photo: bool | None

Optional. True, if the bot can edit the profile photo of the business account

can_edit_username: bool | None

Optional. True, if the bot can edit the username of the business account

can_change_gift_settings: bool | None

Optional. True, if the bot can change the privacy settings pertaining to gifts for the business account

can_view_gifts_and_stars: bool | None

Optional. True, if the bot can view gifts and the amount of Telegram Stars owned by the business account

can_convert_gifts_to_stars: bool | None

Optional. True, if the bot can convert regular gifts owned by the business account to Telegram Stars

can_transfer_and_upgrade_gifts: bool | None

Optional. True, if the bot can transfer and upgrade gifts owned by the business account

can_transfer_stars: bool | None

Optional. True, if the bot can transfer Telegram Stars received by the business account to its own account,
or use them to upgrade and transfer gifts

can_manage_stories: bool | None

Optional. True, if the bot can post, edit and delete stories on behalf of the business account

can_delete_outgoing_messages: bool | None

Optional. True, if the bot can delete messages sent by the bot

Deprecated since version API:9.1: https://core.telegram.org/bots/api-changelog#july-3-2025

BusinessConnection

class aiogram.types.business_connection.BusinessConnection(*, id: str, user: User, user_chat_id: int,
date: _datetime_serializer,
return_type=int, when_used=unless -
none)], is_enabled: bool, rights:
BusinessBotRights | None = None,
can_reply: bool | None = None,
**extra_data: Any)

Describes the connection of the bot with a business account.

Source: https://core.telegram.org/bots/api#businessconnection

id: str

Unique identifier of the business connection

30 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#july-3-2025
https://core.telegram.org/bots/api#businessconnection

aiogram Documentation, Release 3.23.0

user: User

Business account user that created the business connection

user_chat_id: int

Identifier of a private chat with the user who created the business connection. This number may have more
than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting
it. But it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing
this identifier.

date: DateTime

Date the connection was established in Unix time

is_enabled: bool

True, if the connection is active

rights: BusinessBotRights | None

Optional. Rights of the business bot

can_reply: bool | None

True, if the bot can act on behalf of the business account in chats that were active in the last 24 hours

Deprecated since version API:9.0: https://core.telegram.org/bots/api-changelog#april-11-2025

BusinessIntro

class aiogram.types.business_intro.BusinessIntro(*, title: str | None = None, message: str | None =
None, sticker: Sticker | None = None, **extra_data:
Any)

Contains information about the start page settings of a Telegram Business account.

Source: https://core.telegram.org/bots/api#businessintro

title: str | None

Optional. Title text of the business intro

message: str | None

Optional. Message text of the business intro

sticker: Sticker | None

Optional. Sticker of the business intro

BusinessLocation

class aiogram.types.business_location.BusinessLocation(*, address: str, location: Location | None =
None, **extra_data: Any)

Contains information about the location of a Telegram Business account.

Source: https://core.telegram.org/bots/api#businesslocation

address: str

Address of the business

location: Location | None

Optional. Location of the business

2.3. Bot API 31

https://core.telegram.org/bots/api-changelog#april-11-2025
https://core.telegram.org/bots/api#businessintro
https://core.telegram.org/bots/api#businesslocation

aiogram Documentation, Release 3.23.0

BusinessMessagesDeleted

class aiogram.types.business_messages_deleted.BusinessMessagesDeleted(*,
business_connection_id:
str, chat: Chat,
message_ids: list[int],
**extra_data: Any)

This object is received when messages are deleted from a connected business account.

Source: https://core.telegram.org/bots/api#businessmessagesdeleted

business_connection_id: str

Unique identifier of the business connection

chat: Chat

Information about a chat in the business account. The bot may not have access to the chat or the corre-
sponding user.

message_ids: list[int]

The list of identifiers of deleted messages in the chat of the business account

BusinessOpeningHours

class aiogram.types.business_opening_hours.BusinessOpeningHours(*, time_zone_name: str,
opening_hours:
list[BusinessOpeningHoursInterval],
**extra_data: Any)

Describes the opening hours of a business.

Source: https://core.telegram.org/bots/api#businessopeninghours

time_zone_name: str

Unique name of the time zone for which the opening hours are defined

opening_hours: list[BusinessOpeningHoursInterval]

List of time intervals describing business opening hours

BusinessOpeningHoursInterval

class aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval(*, open-
ing_minute:
int, clos-
ing_minute:
int, **ex-
tra_data:
Any)

Describes an interval of time during which a business is open.

Source: https://core.telegram.org/bots/api#businessopeninghoursinterval

opening_minute: int

The minute’s sequence number in a week, starting on Monday, marking the start of the time interval during
which the business is open; 0 - 7 * 24 * 60

32 Chapter 2. Contents

https://core.telegram.org/bots/api#businessmessagesdeleted
https://core.telegram.org/bots/api#businessopeninghours
https://core.telegram.org/bots/api#businessopeninghoursinterval

aiogram Documentation, Release 3.23.0

closing_minute: int

The minute’s sequence number in a week, starting on Monday, marking the end of the time interval during
which the business is open; 0 - 8 * 24 * 60

CallbackQuery

class aiogram.types.callback_query.CallbackQuery(*, id: str, from_user: User, chat_instance: str,
message: Message | InaccessibleMessage | None =
None, inline_message_id: str | None = None, data:
str | None = None, game_short_name: str | None =
None, **extra_data: Any)

This object represents an incoming callback query from a callback button in an inline keyboard. If the button that
originated the query was attached to a message sent by the bot, the field message will be present. If the button
was attached to a message sent via the bot (in inline mode), the field inline_message_id will be present. Exactly
one of the fields data or game_short_name will be present.

NOTE: After the user presses a callback button, Telegram clients will display a progress bar until you
call aiogram.methods.answer_callback_query.AnswerCallbackQuery. It is, therefore, nec-
essary to react by calling aiogram.methods.answer_callback_query.AnswerCallbackQuery
even if no notification to the user is needed (e.g., without specifying any of the optional parameters).

Source: https://core.telegram.org/bots/api#callbackquery

id: str

Unique identifier for this query

from_user: User

Sender

chat_instance: str

Global identifier, uniquely corresponding to the chat to which the message with the callback button was
sent. Useful for high scores in aiogram.methods.games.Games.

message: MaybeInaccessibleMessageUnion | None

Optional. Message sent by the bot with the callback button that originated the query

inline_message_id: str | None

Optional. Identifier of the message sent via the bot in inline mode, that originated the query.

data: str | None

Optional. Data associated with the callback button. Be aware that the message originated the query can
contain no callback buttons with this data.

game_short_name: str | None

Optional. Short name of a Game to be returned, serves as the unique identifier for the game

answer(text: str | None = None, show_alert: bool | None = None, url: str | None = None, cache_time: int |
None = None, **kwargs: Any)→ AnswerCallbackQuery

Shortcut for method aiogram.methods.answer_callback_query.AnswerCallbackQuery will auto-
matically fill method attributes:

• callback_query_id

Use this method to send answers to callback queries sent from inline keyboards. The answer will be dis-
played to the user as a notification at the top of the chat screen or as an alert. On success, True is returned.

2.3. Bot API 33

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#inline-mode
https://core.telegram.org/bots/api#callbackquery
https://core.telegram.org/bots/api#games
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Alternatively, the user can be redirected to the specified Game URL. For this option to work, you
must first create a game for your bot via @BotFather and accept the terms. Otherwise, you may
use links like t.me/your_bot?start=XXXX that open your bot with a parameter.

Source: https://core.telegram.org/bots/api#answercallbackquery

Parameters

• text – Text of the notification. If not specified, nothing will be shown to the user, 0-200
characters

• show_alert – If True, an alert will be shown by the client instead of a notification at the
top of the chat screen. Defaults to false.

• url – URL that will be opened by the user’s client. If you have created a aiogram.types.
game.Game and accepted the conditions via @BotFather, specify the URL that opens your
game - note that this will only work if the query comes from a https://core.telegram.org/
bots/api#inlinekeyboardbutton callback_game button.

• cache_time – The maximum amount of time in seconds that the result of the callback
query may be cached client-side. Telegram apps will support caching starting in version
3.14. Defaults to 0.

Returns
instance of method aiogram.methods.answer_callback_query.
AnswerCallbackQuery

Chat

class aiogram.types.chat.Chat(*, id: int, type: str, title: str | None = None, username: str | None = None,
first_name: str | None = None, last_name: str | None = None, is_forum: bool
| None = None, is_direct_messages: bool | None = None, accent_color_id: int
| None = None, active_usernames: list[str] | None = None,
available_reactions: list[ReactionTypeEmoji | ReactionTypeCustomEmoji |
ReactionTypePaid] | None = None, background_custom_emoji_id: str | None
= None, bio: str | None = None, birthdate: Birthdate | None = None,
business_intro: BusinessIntro | None = None, business_location:
BusinessLocation | None = None, business_opening_hours:
BusinessOpeningHours | None = None, can_set_sticker_set: bool | None =
None, custom_emoji_sticker_set_name: str | None = None, description: str |
None = None, emoji_status_custom_emoji_id: str | None = None,
emoji_status_expiration_date: _datetime_serializer, return_type=int,
when_used=unless - none)] | None = None,
has_aggressive_anti_spam_enabled: bool | None = None,
has_hidden_members: bool | None = None, has_private_forwards: bool |
None = None, has_protected_content: bool | None = None,
has_restricted_voice_and_video_messages: bool | None = None,
has_visible_history: bool | None = None, invite_link: str | None = None,
join_by_request: bool | None = None, join_to_send_messages: bool | None =
None, linked_chat_id: int | None = None, location: ChatLocation | None =
None, message_auto_delete_time: int | None = None, permissions:
ChatPermissions | None = None, personal_chat: Chat | None = None, photo:
ChatPhoto | None = None, pinned_message: Message | None = None,
profile_accent_color_id: int | None = None,
profile_background_custom_emoji_id: str | None = None, slow_mode_delay:
int | None = None, sticker_set_name: str | None = None,
unrestrict_boost_count: int | None = None, **extra_data: Any)

34 Chapter 2. Contents

https://t.me/botfather
https://core.telegram.org/bots/api#answercallbackquery
https://t.me/botfather
https://core.telegram.org/bots/api#inlinekeyboardbutton
https://core.telegram.org/bots/api#inlinekeyboardbutton

aiogram Documentation, Release 3.23.0

This object represents a chat.

Source: https://core.telegram.org/bots/api#chat

id: int

Unique identifier for this chat. This number may have more than 32 significant bits and some programming
languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a
signed 64-bit integer or double-precision float type are safe for storing this identifier.

type: str

Type of the chat, can be either ‘private’, ‘group’, ‘supergroup’ or ‘channel’

title: str | None

Optional. Title, for supergroups, channels and group chats

username: str | None

Optional. Username, for private chats, supergroups and channels if available

first_name: str | None

Optional. First name of the other party in a private chat

last_name: str | None

Optional. Last name of the other party in a private chat

is_forum: bool | None

Optional. True, if the supergroup chat is a forum (has topics enabled)

is_direct_messages: bool | None

Optional. True, if the chat is the direct messages chat of a channel

accent_color_id: int | None

Optional. Identifier of the accent color for the chat name and backgrounds of the chat photo, reply header,
and link preview. See accent colors for more details. Returned only in aiogram.methods.get_chat.
GetChat. Always returned in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

active_usernames: list[str] | None

Optional. If non-empty, the list of all active chat usernames; for private chats, supergroups and channels.
Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

available_reactions: list[ReactionTypeUnion] | None

Optional. List of available reactions allowed in the chat. If omitted, then all emoji reactions are allowed.
Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

background_custom_emoji_id: str | None

Optional. Custom emoji identifier of emoji chosen by the chat for the reply header and link preview back-
ground. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

bio: str | None

Optional. Bio of the other party in a private chat. Returned only in aiogram.methods.get_chat.
GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

2.3. Bot API 35

https://core.telegram.org/bots/api#chat
https://telegram.org/blog/topics-in-groups-collectible-usernames#topics-in-groups
https://core.telegram.org/bots/api#accent-colors
https://core.telegram.org/bots/api-changelog#may-6-2024
https://telegram.org/blog/topics-in-groups-collectible-usernames#collectible-usernames
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api#reactiontypeemoji
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024

aiogram Documentation, Release 3.23.0

birthdate: Birthdate | None

Optional. For private chats, the date of birth of the user. Returned only in aiogram.methods.get_chat.
GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

business_intro: BusinessIntro | None

Optional. For private chats with business accounts, the intro of the business. Returned only in aiogram.
methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

business_location: BusinessLocation | None

Optional. For private chats with business accounts, the location of the business. Returned only in aiogram.
methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

business_opening_hours: BusinessOpeningHours | None

Optional. For private chats with business accounts, the opening hours of the business. Returned only in
aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

can_set_sticker_set: bool | None

Optional. True, if the bot can change the group sticker set. Returned only in aiogram.methods.
get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

custom_emoji_sticker_set_name: str | None

Optional. For supergroups, the name of the group’s custom emoji sticker set. Custom emoji from this set
can be used by all users and bots in the group. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

description: str | None

Optional. Description, for groups, supergroups and channel chats. Returned only in aiogram.methods.
get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

emoji_status_custom_emoji_id: str | None

Optional. Custom emoji identifier of the emoji status of the chat or the other party in a private chat. Returned
only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

emoji_status_expiration_date: DateTime | None

Optional. Expiration date of the emoji status of the chat or the other party in a private chat, in Unix time,
if any. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

has_aggressive_anti_spam_enabled: bool | None

Optional. True, if aggressive anti-spam checks are enabled in the supergroup. The field is only available
to chat administrators. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

36 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024

aiogram Documentation, Release 3.23.0

has_hidden_members: bool | None

Optional. True, if non-administrators can only get the list of bots and administrators in the chat. Returned
only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

has_private_forwards: bool | None

Optional. True, if privacy settings of the other party in the private chat allows to use tg://user?
id=<user_id> links only in chats with the user. Returned only in aiogram.methods.get_chat.
GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

has_protected_content: bool | None

Optional. True, if messages from the chat can’t be forwarded to other chats. Returned only in aiogram.
methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

has_restricted_voice_and_video_messages: bool | None

Optional. True, if the privacy settings of the other party restrict sending voice and video note messages in
the private chat. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

has_visible_history: bool | None

Optional. True, if new chat members will have access to old messages; available only to chat administrators.
Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

invite_link: str | None

Optional. Primary invite link, for groups, supergroups and channel chats. Returned only in aiogram.
methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

join_by_request: bool | None

Optional. True, if all users directly joining the supergroup need to be approved by supergroup administra-
tors. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

join_to_send_messages: bool | None

Optional. True, if users need to join the supergroup before they can send messages. Returned only in
aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

linked_chat_id: int | None

Optional. Unique identifier for the linked chat, i.e. the discussion group identifier for a channel and vice
versa; for supergroups and channel chats. This identifier may be greater than 32 bits and some programming
languages may have difficulty/silent defects in interpreting it. But it is smaller than 52 bits, so a signed 64
bit integer or double-precision float type are safe for storing this identifier. Returned only in aiogram.
methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

2.3. Bot API 37

https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024

aiogram Documentation, Release 3.23.0

location: ChatLocation | None

Optional. For supergroups, the location to which the supergroup is connected. Returned only in aiogram.
methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

message_auto_delete_time: int | None

Optional. The time after which all messages sent to the chat will be automatically deleted; in seconds.
Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

permissions: ChatPermissions | None

Optional. Default chat member permissions, for groups and supergroups. Returned only in aiogram.
methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

personal_chat: Chat | None

Optional. For private chats, the personal channel of the user. Returned only in aiogram.methods.
get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

photo: ChatPhoto | None

Optional. Chat photo. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

pinned_message: Message | None

Optional. The most recent pinned message (by sending date). Returned only in aiogram.methods.
get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

profile_accent_color_id: int | None

Optional. Identifier of the accent color for the chat’s profile background. See profile accent colors for more
details. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

profile_background_custom_emoji_id: str | None

Optional. Custom emoji identifier of the emoji chosen by the chat for its profile background. Returned only
in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

slow_mode_delay: int | None

Optional. For supergroups, the minimum allowed delay between consecutive messages sent by each un-
privileged user; in seconds. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

sticker_set_name: str | None

Optional. For supergroups, name of group sticker set. Returned only in aiogram.methods.get_chat.
GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

38 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api#profile-accent-colors
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api-changelog#may-6-2024

aiogram Documentation, Release 3.23.0

unrestrict_boost_count: int | None

Optional. For supergroups, the minimum number of boosts that a non-administrator user needs to add
in order to ignore slow mode and chat permissions. Returned only in aiogram.methods.get_chat.
GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

property shifted_id: int

Returns shifted chat ID (positive and without “-100” prefix). Mostly used for private links like
t.me/c/chat_id/message_id

Currently supergroup/channel IDs have 10-digit ID after “-100” prefix removed. However, these IDs might
become 11-digit in future. So, first we remove “-100” prefix and count remaining number length. Then we
multiple -1 * 10 ^ (number_length + 2) Finally, self.id is substracted from that number

property full_name: str

Get full name of the Chat.

For private chat it is first_name + last_name. For other chat types it is title.

ban_sender_chat(sender_chat_id: int, **kwargs: Any)→ BanChatSenderChat
Shortcut for method aiogram.methods.ban_chat_sender_chat.BanChatSenderChat will automat-
ically fill method attributes:

• chat_id

Use this method to ban a channel chat in a supergroup or a channel. Until the chat is unbanned, the owner
of the banned chat won’t be able to send messages on behalf of any of their channels. The bot must be
an administrator in the supergroup or channel for this to work and must have the appropriate administrator
rights. Returns True on success.

Source: https://core.telegram.org/bots/api#banchatsenderchat

Parameters
sender_chat_id – Unique identifier of the target sender chat

Returns
instance of method aiogram.methods.ban_chat_sender_chat.BanChatSenderChat

unban_sender_chat(sender_chat_id: int, **kwargs: Any)→ UnbanChatSenderChat
Shortcut for method aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat will au-
tomatically fill method attributes:

• chat_id

Use this method to unban a previously banned channel chat in a supergroup or channel. The bot must be an
administrator for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatsenderchat

Parameters
sender_chat_id – Unique identifier of the target sender chat

Returns
instance of method aiogram.methods.unban_chat_sender_chat.
UnbanChatSenderChat

get_administrators(**kwargs: Any)→ GetChatAdministrators
Shortcut for method aiogram.methods.get_chat_administrators.GetChatAdministrators will
automatically fill method attributes:

• chat_id

2.3. Bot API 39

https://core.telegram.org/bots/api-changelog#may-6-2024
https://core.telegram.org/bots/api#unbanchatsenderchat
https://core.telegram.org/bots/api#banchatsenderchat
https://core.telegram.org/bots/api#unbanchatsenderchat

aiogram Documentation, Release 3.23.0

Use this method to get a list of administrators in a chat, which aren’t bots. Returns an Array of aiogram.
types.chat_member.ChatMember objects.

Source: https://core.telegram.org/bots/api#getchatadministrators

Returns
instance of method aiogram.methods.get_chat_administrators.
GetChatAdministrators

delete_message(message_id: int, **kwargs: Any)→ DeleteMessage
Shortcut for method aiogram.methods.delete_message.DeleteMessage will automatically fill
method attributes:

• chat_id

Use this method to delete a message, including service messages, with the following limitations:

• A message can only be deleted if it was sent less than 48 hours ago.

• Service messages about a supergroup, channel, or forum topic creation can’t be deleted.

• A dice message in a private chat can only be deleted if it was sent more than 24 hours ago.

• Bots can delete outgoing messages in private chats, groups, and supergroups.

• Bots can delete incoming messages in private chats.

• Bots granted can_post_messages permissions can delete outgoing messages in channels.

• If the bot is an administrator of a group, it can delete any message there.

• If the bot has can_delete_messages administrator right in a supergroup or a channel, it can delete any
message there.

• If the bot has can_manage_direct_messages administrator right in a channel, it can delete any message
in the corresponding direct messages chat.

Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessage

Parameters
message_id – Identifier of the message to delete

Returns
instance of method aiogram.methods.delete_message.DeleteMessage

revoke_invite_link(invite_link: str, **kwargs: Any)→ RevokeChatInviteLink
Shortcut for method aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink will
automatically fill method attributes:

• chat_id

Use this method to revoke an invite link created by the bot. If the primary link is revoked, a new link is
automatically generated. The bot must be an administrator in the chat for this to work and must have the ap-
propriate administrator rights. Returns the revoked invite link as aiogram.types.chat_invite_link.
ChatInviteLink object.

Source: https://core.telegram.org/bots/api#revokechatinvitelink

Parameters
invite_link – The invite link to revoke

Returns
instance of method aiogram.methods.revoke_chat_invite_link.
RevokeChatInviteLink

40 Chapter 2. Contents

https://core.telegram.org/bots/api#getchatadministrators
https://core.telegram.org/bots/api#deletemessage
https://core.telegram.org/bots/api#revokechatinvitelink

aiogram Documentation, Release 3.23.0

edit_invite_link(invite_link: str, name: str | None = None, expire_date: DateTimeUnion | None = None,
member_limit: int | None = None, creates_join_request: bool | None = None, **kwargs:
Any)→ EditChatInviteLink

Shortcut for method aiogram.methods.edit_chat_invite_link.EditChatInviteLink will auto-
matically fill method attributes:

• chat_id

Use this method to edit a non-primary invite link created by the bot. The bot must be an administrator in
the chat for this to work and must have the appropriate administrator rights. Returns the edited invite link
as a aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#editchatinvitelink

Parameters

• invite_link – The invite link to edit

• name – Invite link name; 0-32 characters

• expire_date – Point in time (Unix timestamp) when the link will expire

• member_limit – The maximum number of users that can be members of the chat simul-
taneously after joining the chat via this invite link; 1-99999

• creates_join_request – True, if users joining the chat via the link need to be approved
by chat administrators. If True, member_limit can’t be specified

Returns
instance of method aiogram.methods.edit_chat_invite_link.
EditChatInviteLink

create_invite_link(name: str | None = None, expire_date: DateTimeUnion | None = None,
member_limit: int | None = None, creates_join_request: bool | None = None,
**kwargs: Any)→ CreateChatInviteLink

Shortcut for method aiogram.methods.create_chat_invite_link.CreateChatInviteLink will
automatically fill method attributes:

• chat_id

Use this method to create an additional invite link for a chat. The bot must be an administrator in the chat
for this to work and must have the appropriate administrator rights. The link can be revoked using the
method aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink . Returns the new
invite link as aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#createchatinvitelink

Parameters

• name – Invite link name; 0-32 characters

• expire_date – Point in time (Unix timestamp) when the link will expire

• member_limit – The maximum number of users that can be members of the chat simul-
taneously after joining the chat via this invite link; 1-99999

• creates_join_request – True, if users joining the chat via the link need to be approved
by chat administrators. If True, member_limit can’t be specified

Returns
instance of method aiogram.methods.create_chat_invite_link.
CreateChatInviteLink

2.3. Bot API 41

https://core.telegram.org/bots/api#editchatinvitelink
https://core.telegram.org/bots/api#createchatinvitelink

aiogram Documentation, Release 3.23.0

export_invite_link(**kwargs: Any)→ ExportChatInviteLink
Shortcut for method aiogram.methods.export_chat_invite_link.ExportChatInviteLink will
automatically fill method attributes:

• chat_id

Use this method to generate a new primary invite link for a chat; any previously generated primary link
is revoked. The bot must be an administrator in the chat for this to work and must have the appropriate
administrator rights. Returns the new invite link as String on success.

Note: Each administrator in a chat generates their own invite links. Bots can’t use invite
links generated by other administrators. If you want your bot to work with invite links, it
will need to generate its own link using aiogram.methods.export_chat_invite_link.
ExportChatInviteLink or by calling the aiogram.methods.get_chat.GetChat method.
If your bot needs to generate a new primary invite link replacing its previous one, use aiogram.
methods.export_chat_invite_link.ExportChatInviteLink again.

Source: https://core.telegram.org/bots/api#exportchatinvitelink

Returns
instance of method aiogram.methods.export_chat_invite_link.
ExportChatInviteLink

do(action: str, business_connection_id: str | None = None, message_thread_id: int | None = None, **kwargs:
Any)→ SendChatAction

Shortcut for method aiogram.methods.send_chat_action.SendChatAction will automatically fill
method attributes:

• chat_id

Use this method when you need to tell the user that something is happening on the bot’s side. The status is
set for 5 seconds or less (when a message arrives from your bot, Telegram clients clear its typing status).
Returns True on success.

Example: The ImageBot needs some time to process a request and upload the image. Instead
of sending a text message along the lines of ‘Retrieving image, please wait. . . ’, the bot may use
aiogram.methods.send_chat_action.SendChatAction with action = upload_photo. The
user will see a ‘sending photo’ status for the bot.

We only recommend using this method when a response from the bot will take a noticeable amount of time
to arrive.

Source: https://core.telegram.org/bots/api#sendchataction

Parameters

• action – Type of action to broadcast. Choose one, depending on what the user is about to
receive: typing for text messages, upload_photo for photos, record_video or upload_video
for videos, record_voice or upload_voice for voice notes, upload_document for general
files, choose_sticker for stickers, find_location for location data, record_video_note or up-
load_video_note for video notes.

• business_connection_id – Unique identifier of the business connection on behalf of
which the action will be sent

• message_thread_id – Unique identifier for the target message thread; for supergroups
only

Returns
instance of method aiogram.methods.send_chat_action.SendChatAction

42 Chapter 2. Contents

https://core.telegram.org/bots/api#exportchatinvitelink
https://t.me/imagebot
https://core.telegram.org/bots/api#sendchataction
https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#sendphoto
https://core.telegram.org/bots/api#sendvideo
https://core.telegram.org/bots/api#sendvoice
https://core.telegram.org/bots/api#senddocument
https://core.telegram.org/bots/api#senddocument
https://core.telegram.org/bots/api#sendsticker
https://core.telegram.org/bots/api#sendlocation
https://core.telegram.org/bots/api#sendvideonote

aiogram Documentation, Release 3.23.0

delete_sticker_set(**kwargs: Any)→ DeleteChatStickerSet
Shortcut for method aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet will
automatically fill method attributes:

• chat_id

Use this method to delete a group sticker set from a supergroup. The bot must be an administrator in the
chat for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set
optionally returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this
method. Returns True on success.

Source: https://core.telegram.org/bots/api#deletechatstickerset

Returns
instance of method aiogram.methods.delete_chat_sticker_set.
DeleteChatStickerSet

set_sticker_set(sticker_set_name: str, **kwargs: Any)→ SetChatStickerSet
Shortcut for method aiogram.methods.set_chat_sticker_set.SetChatStickerSet will automat-
ically fill method attributes:

• chat_id

Use this method to set a new group sticker set for a supergroup. The bot must be an administrator in the
chat for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set
optionally returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this
method. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatstickerset

Parameters
sticker_set_name – Name of the sticker set to be set as the group sticker set

Returns
instance of method aiogram.methods.set_chat_sticker_set.SetChatStickerSet

get_member(user_id: int, **kwargs: Any)→ GetChatMember
Shortcut for method aiogram.methods.get_chat_member.GetChatMember will automatically fill
method attributes:

• chat_id

Use this method to get information about a member of a chat. The method is only guaranteed to work
for other users if the bot is an administrator in the chat. Returns a aiogram.types.chat_member.
ChatMember object on success.

Source: https://core.telegram.org/bots/api#getchatmember

Parameters
user_id – Unique identifier of the target user

Returns
instance of method aiogram.methods.get_chat_member.GetChatMember

get_member_count(**kwargs: Any)→ GetChatMemberCount
Shortcut for method aiogram.methods.get_chat_member_count.GetChatMemberCount will auto-
matically fill method attributes:

• chat_id

Use this method to get the number of members in a chat. Returns Int on success.

Source: https://core.telegram.org/bots/api#getchatmembercount

2.3. Bot API 43

https://core.telegram.org/bots/api#deletechatstickerset
https://core.telegram.org/bots/api#setchatstickerset
https://core.telegram.org/bots/api#getchatmember
https://core.telegram.org/bots/api#getchatmembercount

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.get_chat_member_count.
GetChatMemberCount

leave(**kwargs: Any)→ LeaveChat
Shortcut for method aiogram.methods.leave_chat.LeaveChat will automatically fill method at-
tributes:

• chat_id

Use this method for your bot to leave a group, supergroup or channel. Returns True on success.

Source: https://core.telegram.org/bots/api#leavechat

Returns
instance of method aiogram.methods.leave_chat.LeaveChat

unpin_all_messages(**kwargs: Any)→ UnpinAllChatMessages
Shortcut for method aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages will
automatically fill method attributes:

• chat_id

Use this method to clear the list of pinned messages in a chat. In private chats and channel direct messages
chats, no additional rights are required to unpin all pinned messages. Conversely, the bot must be an admin-
istrator with the ‘can_pin_messages’ right or the ‘can_edit_messages’ right to unpin all pinned messages
in groups and channels respectively. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallchatmessages

Returns
instance of method aiogram.methods.unpin_all_chat_messages.
UnpinAllChatMessages

unpin_message(business_connection_id: str | None = None, message_id: int | None = None, **kwargs:
Any)→ UnpinChatMessage

Shortcut for method aiogram.methods.unpin_chat_message.UnpinChatMessagewill automatically
fill method attributes:

• chat_id

Use this method to remove a message from the list of pinned messages in a chat. In private chats and channel
direct messages chats, all messages can be unpinned. Conversely, the bot must be an administrator with
the ‘can_pin_messages’ right or the ‘can_edit_messages’ right to unpin messages in groups and channels
respectively. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinchatmessage

Parameters

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be unpinned

• message_id – Identifier of the message to unpin. Required if business_connection_id
is specified. If not specified, the most recent pinned message (by sending date) will be
unpinned.

Returns
instance of method aiogram.methods.unpin_chat_message.UnpinChatMessage

44 Chapter 2. Contents

https://core.telegram.org/bots/api#leavechat
https://core.telegram.org/bots/api#unpinallchatmessages
https://core.telegram.org/bots/api#unpinchatmessage

aiogram Documentation, Release 3.23.0

pin_message(message_id: int, business_connection_id: str | None = None, disable_notification: bool | None
= None, **kwargs: Any)→ PinChatMessage

Shortcut for method aiogram.methods.pin_chat_message.PinChatMessage will automatically fill
method attributes:

• chat_id

Use this method to add a message to the list of pinned messages in a chat. In private chats and channel
direct messages chats, all non-service messages can be pinned. Conversely, the bot must be an administrator
with the ‘can_pin_messages’ right or the ‘can_edit_messages’ right to pin messages in groups and channels
respectively. Returns True on success.

Source: https://core.telegram.org/bots/api#pinchatmessage

Parameters

• message_id – Identifier of a message to pin

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be pinned

• disable_notification – Pass True if it is not necessary to send a notification to all chat
members about the new pinned message. Notifications are always disabled in channels and
private chats.

Returns
instance of method aiogram.methods.pin_chat_message.PinChatMessage

set_administrator_custom_title(user_id: int, custom_title: str, **kwargs: Any)→
SetChatAdministratorCustomTitle

Shortcut for method aiogram.methods.set_chat_administrator_custom_title.
SetChatAdministratorCustomTitle will automatically fill method attributes:

• chat_id

Use this method to set a custom title for an administrator in a supergroup promoted by the bot. Returns
True on success.

Source: https://core.telegram.org/bots/api#setchatadministratorcustomtitle

Parameters

• user_id – Unique identifier of the target user

• custom_title – New custom title for the administrator; 0-16 characters, emoji are not
allowed

Returns
instance of method aiogram.methods.set_chat_administrator_custom_title.
SetChatAdministratorCustomTitle

set_permissions(permissions: ChatPermissions, use_independent_chat_permissions: bool | None = None,
**kwargs: Any)→ SetChatPermissions

Shortcut for method aiogram.methods.set_chat_permissions.SetChatPermissions will auto-
matically fill method attributes:

• chat_id

Use this method to set default chat permissions for all members. The bot must be an administrator in
the group or a supergroup for this to work and must have the can_restrict_members administrator rights.
Returns True on success.

Source: https://core.telegram.org/bots/api#setchatpermissions

2.3. Bot API 45

https://core.telegram.org/bots/api#pinchatmessage
https://core.telegram.org/bots/api#setchatadministratorcustomtitle
https://core.telegram.org/bots/api#setchatpermissions

aiogram Documentation, Release 3.23.0

Parameters

• permissions – A JSON-serialized object for new default chat permissions

• use_independent_chat_permissions – Pass True if chat permissions are set inde-
pendently. Otherwise, the can_send_other_messages and can_add_web_page_previews
permissions will imply the can_send_messages, can_send_audios, can_send_documents,
can_send_photos, can_send_videos, can_send_video_notes, and can_send_voice_notes
permissions; the can_send_polls permission will imply the can_send_messages permis-
sion.

Returns
instance of method aiogram.methods.set_chat_permissions.SetChatPermissions

promote(user_id: int, is_anonymous: bool | None = None, can_manage_chat: bool | None = None,
can_delete_messages: bool | None = None, can_manage_video_chats: bool | None = None,
can_restrict_members: bool | None = None, can_promote_members: bool | None = None,
can_change_info: bool | None = None, can_invite_users: bool | None = None, can_post_stories:
bool | None = None, can_edit_stories: bool | None = None, can_delete_stories: bool | None = None,
can_post_messages: bool | None = None, can_edit_messages: bool | None = None,
can_pin_messages: bool | None = None, can_manage_topics: bool | None = None,
can_manage_direct_messages: bool | None = None, **kwargs: Any)→ PromoteChatMember

Shortcut for method aiogram.methods.promote_chat_member.PromoteChatMember will automati-
cally fill method attributes:

• chat_id

Use this method to promote or demote a user in a supergroup or a channel. The bot must be an administrator
in the chat for this to work and must have the appropriate administrator rights. Pass False for all boolean
parameters to demote a user. Returns True on success.

Source: https://core.telegram.org/bots/api#promotechatmember

Parameters

• user_id – Unique identifier of the target user

• is_anonymous – Pass True if the administrator’s presence in the chat is hidden

• can_manage_chat – Pass True if the administrator can access the chat event log, get
boost list, see hidden supergroup and channel members, report spam messages, ignore
slow mode, and send messages to the chat without paying Telegram Stars. Implied by any
other administrator privilege.

• can_delete_messages – Pass True if the administrator can delete messages of other
users

• can_manage_video_chats – Pass True if the administrator can manage video chats

• can_restrict_members – Pass True if the administrator can restrict, ban or unban chat
members, or access supergroup statistics

• can_promote_members – Pass True if the administrator can add new administrators with
a subset of their own privileges or demote administrators that they have promoted, directly
or indirectly (promoted by administrators that were appointed by him)

• can_change_info – Pass True if the administrator can change chat title, photo and other
settings

• can_invite_users – Pass True if the administrator can invite new users to the chat

• can_post_stories – Pass True if the administrator can post stories to the chat

46 Chapter 2. Contents

https://core.telegram.org/bots/api#promotechatmember

aiogram Documentation, Release 3.23.0

• can_edit_stories – Pass True if the administrator can edit stories posted by other users,
post stories to the chat page, pin chat stories, and access the chat’s story archive

• can_delete_stories – Pass True if the administrator can delete stories posted by other
users

• can_post_messages – Pass True if the administrator can post messages in the channel,
approve suggested posts, or access channel statistics; for channels only

• can_edit_messages – Pass True if the administrator can edit messages of other users
and can pin messages; for channels only

• can_pin_messages – Pass True if the administrator can pin messages; for supergroups
only

• can_manage_topics – Pass True if the user is allowed to create, rename, close, and
reopen forum topics; for supergroups only

• can_manage_direct_messages – Pass True if the administrator can manage direct mes-
sages within the channel and decline suggested posts; for channels only

Returns
instance of method aiogram.methods.promote_chat_member.PromoteChatMember

restrict(user_id: int, permissions: ChatPermissions, use_independent_chat_permissions: bool | None =
None, until_date: DateTimeUnion | None = None, **kwargs: Any)→ RestrictChatMember

Shortcut for method aiogram.methods.restrict_chat_member.RestrictChatMember will auto-
matically fill method attributes:

• chat_id

Use this method to restrict a user in a supergroup. The bot must be an administrator in the supergroup
for this to work and must have the appropriate administrator rights. Pass True for all permissions to lift
restrictions from a user. Returns True on success.

Source: https://core.telegram.org/bots/api#restrictchatmember

Parameters

• user_id – Unique identifier of the target user

• permissions – A JSON-serialized object for new user permissions

• use_independent_chat_permissions – Pass True if chat permissions are set inde-
pendently. Otherwise, the can_send_other_messages and can_add_web_page_previews
permissions will imply the can_send_messages, can_send_audios, can_send_documents,
can_send_photos, can_send_videos, can_send_video_notes, and can_send_voice_notes
permissions; the can_send_polls permission will imply the can_send_messages permis-
sion.

• until_date – Date when restrictions will be lifted for the user; Unix time. If user is
restricted for more than 366 days or less than 30 seconds from the current time, they are
considered to be restricted forever

Returns
instance of method aiogram.methods.restrict_chat_member.RestrictChatMember

unban(user_id: int, only_if_banned: bool | None = None, **kwargs: Any)→ UnbanChatMember
Shortcut for method aiogram.methods.unban_chat_member.UnbanChatMember will automatically
fill method attributes:

• chat_id

2.3. Bot API 47

https://core.telegram.org/bots/api#restrictchatmember

aiogram Documentation, Release 3.23.0

Use this method to unban a previously banned user in a supergroup or channel. The user will not return to
the group or channel automatically, but will be able to join via link, etc. The bot must be an administrator
for this to work. By default, this method guarantees that after the call the user is not a member of the chat,
but will be able to join it. So if the user is a member of the chat they will also be removed from the chat.
If you don’t want this, use the parameter only_if_banned. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatmember

Parameters

• user_id – Unique identifier of the target user

• only_if_banned – Do nothing if the user is not banned

Returns
instance of method aiogram.methods.unban_chat_member.UnbanChatMember

ban(user_id: int, until_date: DateTimeUnion | None = None, revoke_messages: bool | None = None,
**kwargs: Any)→ BanChatMember
Shortcut for method aiogram.methods.ban_chat_member.BanChatMember will automatically fill
method attributes:

• chat_id

Use this method to ban a user in a group, a supergroup or a channel. In the case of supergroups and channels,
the user will not be able to return to the chat on their own using invite links, etc., unless unbanned first.
The bot must be an administrator in the chat for this to work and must have the appropriate administrator
rights. Returns True on success.

Source: https://core.telegram.org/bots/api#banchatmember

Parameters

• user_id – Unique identifier of the target user

• until_date – Date when the user will be unbanned; Unix time. If user is banned for
more than 366 days or less than 30 seconds from the current time they are considered to be
banned forever. Applied for supergroups and channels only.

• revoke_messages – Pass True to delete all messages from the chat for the user that is
being removed. If False, the user will be able to see messages in the group that were sent
before the user was removed. Always True for supergroups and channels.

Returns
instance of method aiogram.methods.ban_chat_member.BanChatMember

set_description(description: str | None = None, **kwargs: Any)→ SetChatDescription
Shortcut for method aiogram.methods.set_chat_description.SetChatDescription will auto-
matically fill method attributes:

• chat_id

Use this method to change the description of a group, a supergroup or a channel. The bot must be an
administrator in the chat for this to work and must have the appropriate administrator rights. Returns True
on success.

Source: https://core.telegram.org/bots/api#setchatdescription

Parameters
description – New chat description, 0-255 characters

Returns
instance of method aiogram.methods.set_chat_description.SetChatDescription

48 Chapter 2. Contents

https://core.telegram.org/bots/api#unbanchatmember
https://core.telegram.org/bots/api#unbanchatmember
https://core.telegram.org/bots/api#banchatmember
https://core.telegram.org/bots/api#setchatdescription

aiogram Documentation, Release 3.23.0

set_title(title: str, **kwargs: Any)→ SetChatTitle
Shortcut for method aiogram.methods.set_chat_title.SetChatTitle will automatically fill
method attributes:

• chat_id

Use this method to change the title of a chat. Titles can’t be changed for private chats. The bot must be an
administrator in the chat for this to work and must have the appropriate administrator rights. Returns True
on success.

Source: https://core.telegram.org/bots/api#setchattitle

Parameters
title – New chat title, 1-128 characters

Returns
instance of method aiogram.methods.set_chat_title.SetChatTitle

delete_photo(**kwargs: Any)→ DeleteChatPhoto
Shortcut for method aiogram.methods.delete_chat_photo.DeleteChatPhoto will automatically
fill method attributes:

• chat_id

Use this method to delete a chat photo. Photos can’t be changed for private chats. The bot must be an
administrator in the chat for this to work and must have the appropriate administrator rights. Returns True
on success.

Source: https://core.telegram.org/bots/api#deletechatphoto

Returns
instance of method aiogram.methods.delete_chat_photo.DeleteChatPhoto

set_photo(photo: InputFile, **kwargs: Any)→ SetChatPhoto
Shortcut for method aiogram.methods.set_chat_photo.SetChatPhoto will automatically fill
method attributes:

• chat_id

Use this method to set a new profile photo for the chat. Photos can’t be changed for private chats. The bot
must be an administrator in the chat for this to work and must have the appropriate administrator rights.
Returns True on success.

Source: https://core.telegram.org/bots/api#setchatphoto

Parameters
photo – New chat photo, uploaded using multipart/form-data

Returns
instance of method aiogram.methods.set_chat_photo.SetChatPhoto

unpin_all_general_forum_topic_messages(**kwargs: Any)→ UnpinAllGeneralForumTopicMessages
Shortcut for method aiogram.methods.unpin_all_general_forum_topic_messages.
UnpinAllGeneralForumTopicMessages will automatically fill method attributes:

• chat_id

Use this method to clear the list of pinned messages in a General forum topic. The bot must be an adminis-
trator in the chat for this to work and must have the can_pin_messages administrator right in the supergroup.
Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallgeneralforumtopicmessages

2.3. Bot API 49

https://core.telegram.org/bots/api#setchattitle
https://core.telegram.org/bots/api#deletechatphoto
https://core.telegram.org/bots/api#setchatphoto
https://core.telegram.org/bots/api#unpinallgeneralforumtopicmessages

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.unpin_all_general_forum_topic_messages.
UnpinAllGeneralForumTopicMessages

ChatAdministratorRights

class aiogram.types.chat_administrator_rights.ChatAdministratorRights(*, is_anonymous: bool,
can_manage_chat: bool,
can_delete_messages:
bool,
can_manage_video_chats:
bool,
can_restrict_members:
bool,
can_promote_members:
bool, can_change_info:
bool, can_invite_users:
bool, can_post_stories:
bool, can_edit_stories:
bool, can_delete_stories:
bool,
can_post_messages:
bool | None = None,
can_edit_messages: bool
| None = None,
can_pin_messages: bool
| None = None,
can_manage_topics:
bool | None = None,
can_manage_direct_messages:
bool | None = None,
**extra_data: Any)

Represents the rights of an administrator in a chat.

Source: https://core.telegram.org/bots/api#chatadministratorrights

is_anonymous: bool

True, if the user’s presence in the chat is hidden

can_manage_chat: bool

True, if the administrator can access the chat event log, get boost list, see hidden supergroup and channel
members, report spam messages, ignore slow mode, and send messages to the chat without paying Telegram
Stars. Implied by any other administrator privilege.

can_delete_messages: bool

True, if the administrator can delete messages of other users

can_manage_video_chats: bool

True, if the administrator can manage video chats

can_restrict_members: bool

True, if the administrator can restrict, ban or unban chat members, or access supergroup statistics

50 Chapter 2. Contents

https://core.telegram.org/bots/api#chatadministratorrights

aiogram Documentation, Release 3.23.0

can_promote_members: bool

True, if the administrator can add new administrators with a subset of their own privileges or demote ad-
ministrators that they have promoted, directly or indirectly (promoted by administrators that were appointed
by the user)

can_change_info: bool

True, if the user is allowed to change the chat title, photo and other settings

can_invite_users: bool

True, if the user is allowed to invite new users to the chat

can_post_stories: bool

True, if the administrator can post stories to the chat

can_edit_stories: bool

True, if the administrator can edit stories posted by other users, post stories to the chat page, pin chat
stories, and access the chat’s story archive

can_delete_stories: bool

True, if the administrator can delete stories posted by other users

can_post_messages: bool | None

Optional. True, if the administrator can post messages in the channel, approve suggested posts, or access
channel statistics; for channels only

can_edit_messages: bool | None

Optional. True, if the administrator can edit messages of other users and can pin messages; for channels
only

can_pin_messages: bool | None

Optional. True, if the user is allowed to pin messages; for groups and supergroups only

can_manage_topics: bool | None

Optional. True, if the user is allowed to create, rename, close, and reopen forum topics; for supergroups
only

can_manage_direct_messages: bool | None

Optional. True, if the administrator can manage direct messages of the channel and decline suggested
posts; for channels only

ChatBackground

class aiogram.types.chat_background.ChatBackground(*, type: BackgroundTypeFill |
BackgroundTypeWallpaper |
BackgroundTypePattern |
BackgroundTypeChatTheme, **extra_data: Any)

This object represents a chat background.

Source: https://core.telegram.org/bots/api#chatbackground

type: BackgroundTypeUnion

Type of the background

2.3. Bot API 51

https://core.telegram.org/bots/api#chatbackground

aiogram Documentation, Release 3.23.0

ChatBoost

class aiogram.types.chat_boost.ChatBoost(*, boost_id: str, add_date: _datetime_serializer,
return_type=int, when_used=unless - none)], expiration_date:
_datetime_serializer, return_type=int, when_used=unless -
none)], source: ChatBoostSourcePremium |
ChatBoostSourceGiftCode | ChatBoostSourceGiveaway,
**extra_data: Any)

This object contains information about a chat boost.

Source: https://core.telegram.org/bots/api#chatboost

boost_id: str

Unique identifier of the boost

add_date: DateTime

Point in time (Unix timestamp) when the chat was boosted

expiration_date: DateTime

Point in time (Unix timestamp) when the boost will automatically expire, unless the booster’s Telegram
Premium subscription is prolonged

source: ChatBoostSourceUnion

Source of the added boost

ChatBoostAdded

class aiogram.types.chat_boost_added.ChatBoostAdded(*, boost_count: int, **extra_data: Any)
This object represents a service message about a user boosting a chat.

Source: https://core.telegram.org/bots/api#chatboostadded

boost_count: int

Number of boosts added by the user

ChatBoostRemoved

class aiogram.types.chat_boost_removed.ChatBoostRemoved(*, chat: Chat, boost_id: str, remove_date:
_datetime_serializer, return_type=int,
when_used=unless - none)], source:
ChatBoostSourcePremium |
ChatBoostSourceGiftCode |
ChatBoostSourceGiveaway, **extra_data:
Any)

This object represents a boost removed from a chat.

Source: https://core.telegram.org/bots/api#chatboostremoved

chat: Chat

Chat which was boosted

boost_id: str

Unique identifier of the boost

52 Chapter 2. Contents

https://core.telegram.org/bots/api#chatboost
https://core.telegram.org/bots/api#chatboostadded
https://core.telegram.org/bots/api#chatboostremoved

aiogram Documentation, Release 3.23.0

remove_date: DateTime

Point in time (Unix timestamp) when the boost was removed

source: ChatBoostSourceUnion

Source of the removed boost

ChatBoostSource

class aiogram.types.chat_boost_source.ChatBoostSource(**extra_data: Any)
This object describes the source of a chat boost. It can be one of

• aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium

• aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode

• aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway

Source: https://core.telegram.org/bots/api#chatboostsource

ChatBoostSourceGiftCode

class aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode(*, source: Lit-
eral[ChatBoostSourceType.GIFT_CODE]
= ChatBoostSource-
Type.GIFT_CODE,
user: User,
**extra_data: Any)

The boost was obtained by the creation of Telegram Premium gift codes to boost a chat. Each such code boosts
the chat 4 times for the duration of the corresponding Telegram Premium subscription.

Source: https://core.telegram.org/bots/api#chatboostsourcegiftcode

source: Literal[ChatBoostSourceType.GIFT_CODE]

Source of the boost, always ‘gift_code’

user: User

User for which the gift code was created

ChatBoostSourceGiveaway

class aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway(*, source: Lit-
eral[ChatBoostSourceType.GIVEAWAY]
= ChatBoostSource-
Type.GIVEAWAY ,
giveaway_message_id:
int, user: User | None =
None, prize_star_count:
int | None = None,
is_unclaimed: bool |
None = None,
**extra_data: Any)

The boost was obtained by the creation of a Telegram Premium or a Telegram Star giveaway. This boosts the chat

2.3. Bot API 53

https://core.telegram.org/bots/api#chatboostsource
https://core.telegram.org/bots/api#chatboostsourcegiftcode

aiogram Documentation, Release 3.23.0

4 times for the duration of the corresponding Telegram Premium subscription for Telegram Premium giveaways
and prize_star_count / 500 times for one year for Telegram Star giveaways.

Source: https://core.telegram.org/bots/api#chatboostsourcegiveaway

source: Literal[ChatBoostSourceType.GIVEAWAY]

Source of the boost, always ‘giveaway’

giveaway_message_id: int

Identifier of a message in the chat with the giveaway; the message could have been deleted already. May
be 0 if the message isn’t sent yet.

user: User | None

Optional. User that won the prize in the giveaway if any; for Telegram Premium giveaways only

prize_star_count: int | None

Optional. The number of Telegram Stars to be split between giveaway winners; for Telegram Star giveaways
only

is_unclaimed: bool | None

Optional. True, if the giveaway was completed, but there was no user to win the prize

ChatBoostSourcePremium

class aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium(*, source: Lit-
eral[ChatBoostSourceType.PREMIUM]
= ChatBoostSource-
Type.PREMIUM, user:
User, **extra_data: Any)

The boost was obtained by subscribing to Telegram Premium or by gifting a Telegram Premium subscription to
another user.

Source: https://core.telegram.org/bots/api#chatboostsourcepremium

source: Literal[ChatBoostSourceType.PREMIUM]

Source of the boost, always ‘premium’

user: User

User that boosted the chat

ChatBoostUpdated

class aiogram.types.chat_boost_updated.ChatBoostUpdated(*, chat: Chat, boost: ChatBoost,
**extra_data: Any)

This object represents a boost added to a chat or changed.

Source: https://core.telegram.org/bots/api#chatboostupdated

chat: Chat

Chat which was boosted

boost: ChatBoost

Information about the chat boost

54 Chapter 2. Contents

https://core.telegram.org/bots/api#chatboostsourcegiveaway
https://core.telegram.org/bots/api#chatboostsourcepremium
https://core.telegram.org/bots/api#chatboostupdated

aiogram Documentation, Release 3.23.0

ChatFullInfo

class aiogram.types.chat_full_info.ChatFullInfo(*, id: int, type: str, title: str | None = None,
username: str | None = None, first_name: str | None
= None, last_name: str | None = None, is_forum:
bool | None = None, is_direct_messages: bool | None
= None, accent_color_id: int, active_usernames:
list[str] | None = None, available_reactions:
list[ReactionTypeEmoji | ReactionTypeCustomEmoji |
ReactionTypePaid] | None = None,
background_custom_emoji_id: str | None = None,
bio: str | None = None, birthdate: Birthdate | None =
None, business_intro: BusinessIntro | None = None,
business_location: BusinessLocation | None = None,
business_opening_hours: BusinessOpeningHours |
None = None, can_set_sticker_set: bool | None =
None, custom_emoji_sticker_set_name: str | None =
None, description: str | None = None,
emoji_status_custom_emoji_id: str | None = None,
emoji_status_expiration_date: _datetime_serializer,
return_type=int, when_used=unless - none)] | None =
None, has_aggressive_anti_spam_enabled: bool |
None = None, has_hidden_members: bool | None =
None, has_private_forwards: bool | None = None,
has_protected_content: bool | None = None,
has_restricted_voice_and_video_messages: bool |
None = None, has_visible_history: bool | None =
None, invite_link: str | None = None, join_by_request:
bool | None = None, join_to_send_messages: bool |
None = None, linked_chat_id: int | None = None,
location: ChatLocation | None = None,
message_auto_delete_time: int | None = None,
permissions: ChatPermissions | None = None,
personal_chat: Chat | None = None, photo:
ChatPhoto | None = None, pinned_message: Message
| None = None, profile_accent_color_id: int | None =
None, profile_background_custom_emoji_id: str |
None = None, slow_mode_delay: int | None = None,
sticker_set_name: str | None = None,
unrestrict_boost_count: int | None = None,
max_reaction_count: int, accepted_gift_types:
AcceptedGiftTypes, parent_chat: Chat | None =
None, can_send_paid_media: bool | None = None,
can_send_gift: bool | None = None, **extra_data:
Any)

This object contains full information about a chat.

Source: https://core.telegram.org/bots/api#chatfullinfo

id: int

Unique identifier for this chat. This number may have more than 32 significant bits and some programming
languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a
signed 64-bit integer or double-precision float type are safe for storing this identifier.

2.3. Bot API 55

https://core.telegram.org/bots/api#chatfullinfo

aiogram Documentation, Release 3.23.0

type: str

Type of the chat, can be either ‘private’, ‘group’, ‘supergroup’ or ‘channel’

accent_color_id: int

Identifier of the accent color for the chat name and backgrounds of the chat photo, reply header, and link
preview. See accent colors for more details.

max_reaction_count: int

The maximum number of reactions that can be set on a message in the chat

accepted_gift_types: AcceptedGiftTypes

Information about types of gifts that are accepted by the chat or by the corresponding user for private chats

title: str | None

Optional. Title, for supergroups, channels and group chats

username: str | None

Optional. Username, for private chats, supergroups and channels if available

first_name: str | None

Optional. First name of the other party in a private chat

last_name: str | None

Optional. Last name of the other party in a private chat

is_forum: bool | None

Optional. True, if the supergroup chat is a forum (has topics enabled)

is_direct_messages: bool | None

Optional. True, if the chat is the direct messages chat of a channel

photo: ChatPhoto | None

Optional. Chat photo

active_usernames: list[str] | None

Optional. If non-empty, the list of all active chat usernames; for private chats, supergroups and channels

birthdate: Birthdate | None

Optional. For private chats, the date of birth of the user

business_intro: BusinessIntro | None

Optional. For private chats with business accounts, the intro of the business

business_location: BusinessLocation | None

Optional. For private chats with business accounts, the location of the business

business_opening_hours: BusinessOpeningHours | None

Optional. For private chats with business accounts, the opening hours of the business

personal_chat: Chat | None

Optional. For private chats, the personal channel of the user

parent_chat: Chat | None

Optional. Information about the corresponding channel chat; for direct messages chats only

available_reactions: list[ReactionTypeUnion] | None

Optional. List of available reactions allowed in the chat. If omitted, then all emoji reactions are allowed.

56 Chapter 2. Contents

https://core.telegram.org/bots/api#accent-colors
https://telegram.org/blog/topics-in-groups-collectible-usernames#topics-in-groups
https://telegram.org/blog/topics-in-groups-collectible-usernames#collectible-usernames
https://core.telegram.org/bots/api#reactiontypeemoji

aiogram Documentation, Release 3.23.0

background_custom_emoji_id: str | None

Optional. Custom emoji identifier of the emoji chosen by the chat for the reply header and link preview
background

profile_accent_color_id: int | None

Optional. Identifier of the accent color for the chat’s profile background. See profile accent colors for more
details.

profile_background_custom_emoji_id: str | None

Optional. Custom emoji identifier of the emoji chosen by the chat for its profile background

emoji_status_custom_emoji_id: str | None

Optional. Custom emoji identifier of the emoji status of the chat or the other party in a private chat

emoji_status_expiration_date: DateTime | None

Optional. Expiration date of the emoji status of the chat or the other party in a private chat, in Unix time,
if any

bio: str | None

Optional. Bio of the other party in a private chat

has_private_forwards: bool | None

Optional. True, if privacy settings of the other party in the private chat allows to use tg://user?
id=<user_id> links only in chats with the user

has_restricted_voice_and_video_messages: bool | None

Optional. True, if the privacy settings of the other party restrict sending voice and video note messages in
the private chat

join_to_send_messages: bool | None

Optional. True, if users need to join the supergroup before they can send messages

join_by_request: bool | None

Optional. True, if all users directly joining the supergroup without using an invite link need to be approved
by supergroup administrators

description: str | None

Optional. Description, for groups, supergroups and channel chats

invite_link: str | None

Optional. Primary invite link, for groups, supergroups and channel chats

pinned_message: Message | None

Optional. The most recent pinned message (by sending date)

permissions: ChatPermissions | None

Optional. Default chat member permissions, for groups and supergroups

can_send_paid_media: bool | None

Optional. True, if paid media messages can be sent or forwarded to the channel chat. The field is available
only for channel chats.

slow_mode_delay: int | None

Optional. For supergroups, the minimum allowed delay between consecutive messages sent by each un-
privileged user; in seconds

2.3. Bot API 57

https://core.telegram.org/bots/api#profile-accent-colors

aiogram Documentation, Release 3.23.0

unrestrict_boost_count: int | None

Optional. For supergroups, the minimum number of boosts that a non-administrator user needs to add in
order to ignore slow mode and chat permissions

message_auto_delete_time: int | None

Optional. The time after which all messages sent to the chat will be automatically deleted; in seconds

has_aggressive_anti_spam_enabled: bool | None

Optional. True, if aggressive anti-spam checks are enabled in the supergroup. The field is only available
to chat administrators.

has_hidden_members: bool | None

Optional. True, if non-administrators can only get the list of bots and administrators in the chat

has_protected_content: bool | None

Optional. True, if messages from the chat can’t be forwarded to other chats

has_visible_history: bool | None

Optional. True, if new chat members will have access to old messages; available only to chat administrators

sticker_set_name: str | None

Optional. For supergroups, name of the group sticker set

can_set_sticker_set: bool | None

Optional. True, if the bot can change the group sticker set

custom_emoji_sticker_set_name: str | None

Optional. For supergroups, the name of the group’s custom emoji sticker set. Custom emoji from this set
can be used by all users and bots in the group.

linked_chat_id: int | None

Optional. Unique identifier for the linked chat, i.e. the discussion group identifier for a channel and vice
versa; for supergroups and channel chats. This identifier may be greater than 32 bits and some programming
languages may have difficulty/silent defects in interpreting it. But it is smaller than 52 bits, so a signed 64
bit integer or double-precision float type are safe for storing this identifier.

location: ChatLocation | None

Optional. For supergroups, the location to which the supergroup is connected

can_send_gift: bool | None

Optional. True, if gifts can be sent to the chat

Deprecated since version API:9.0: https://core.telegram.org/bots/api-changelog#april-11-2025

ChatInviteLink

class aiogram.types.chat_invite_link.ChatInviteLink(*, invite_link: str, creator: User,
creates_join_request: bool, is_primary: bool,
is_revoked: bool, name: str | None = None,
expire_date: _datetime_serializer,
return_type=int, when_used=unless - none)] |
None = None, member_limit: int | None = None,
pending_join_request_count: int | None = None,
subscription_period: int | None = None,
subscription_price: int | None = None,
**extra_data: Any)

58 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#april-11-2025

aiogram Documentation, Release 3.23.0

Represents an invite link for a chat.

Source: https://core.telegram.org/bots/api#chatinvitelink

invite_link: str

The invite link. If the link was created by another chat administrator, then the second part of the link will
be replaced with ‘. . . ’.

creator: User

Creator of the link

creates_join_request: bool

True, if users joining the chat via the link need to be approved by chat administrators

is_primary: bool

True, if the link is primary

is_revoked: bool

True, if the link is revoked

name: str | None

Optional. Invite link name

expire_date: DateTime | None

Optional. Point in time (Unix timestamp) when the link will expire or has been expired

member_limit: int | None

Optional. The maximum number of users that can be members of the chat simultaneously after joining the
chat via this invite link; 1-99999

pending_join_request_count: int | None

Optional. Number of pending join requests created using this link

subscription_period: int | None

Optional. The number of seconds the subscription will be active for before the next payment

subscription_price: int | None

Optional. The amount of Telegram Stars a user must pay initially and after each subsequent subscription
period to be a member of the chat using the link

ChatJoinRequest

class aiogram.types.chat_join_request.ChatJoinRequest(*, chat: Chat, from_user: User, user_chat_id:
int, date: _datetime_serializer,
return_type=int, when_used=unless - none)],
bio: str | None = None, invite_link:
ChatInviteLink | None = None, **extra_data:
Any)

Represents a join request sent to a chat.

Source: https://core.telegram.org/bots/api#chatjoinrequest

chat: Chat

Chat to which the request was sent

2.3. Bot API 59

https://core.telegram.org/bots/api#chatinvitelink
https://core.telegram.org/bots/api#chatjoinrequest

aiogram Documentation, Release 3.23.0

from_user: User

User that sent the join request

user_chat_id: int

Identifier of a private chat with the user who sent the join request. This number may have more than 32
significant bits and some programming languages may have difficulty/silent defects in interpreting it. But
it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing this
identifier. The bot can use this identifier for 5 minutes to send messages until the join request is processed,
assuming no other administrator contacted the user.

date: DateTime

Date the request was sent in Unix time

bio: str | None

Optional. Bio of the user.

invite_link: ChatInviteLink | None

Optional. Chat invite link that was used by the user to send the join request

approve(**kwargs: Any)→ ApproveChatJoinRequest
Shortcut for method aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest
will automatically fill method attributes:

• chat_id

• user_id

Use this method to approve a chat join request. The bot must be an administrator in the chat for this to work
and must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#approvechatjoinrequest

Returns
instance of method aiogram.methods.approve_chat_join_request.
ApproveChatJoinRequest

decline(**kwargs: Any)→ DeclineChatJoinRequest
Shortcut for method aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest
will automatically fill method attributes:

• chat_id

• user_id

Use this method to decline a chat join request. The bot must be an administrator in the chat for this to work
and must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#declinechatjoinrequest

Returns
instance of method aiogram.methods.decline_chat_join_request.
DeclineChatJoinRequest

60 Chapter 2. Contents

https://core.telegram.org/bots/api#approvechatjoinrequest
https://core.telegram.org/bots/api#declinechatjoinrequest

aiogram Documentation, Release 3.23.0

answer(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None, link_preview_options:
Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None, message_effect_id:
Optional[str] = None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs:
Any)→ SendMessage

Shortcut for method aiogram.methods.send_message.SendMessage will automatically fill method at-
tributes:

• chat_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendmessage

Parameters

• text – Text of the message to be sent, 1-4096 characters after entities parsing

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

2.3. Bot API 61

https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• disable_web_page_preview – Disables link previews for links in this message

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_message.SendMessage

answer_pm(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] =
None, direct_messages_topic_id: Optional[int] = None, parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None,
link_preview_options: Optional[Union[LinkPreviewOptions, Default]] =
<Default('link_preview')>, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters] =
None, reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs:
Any)→ SendMessage

Shortcut for method aiogram.methods.send_message.SendMessage will automatically fill method at-
tributes:

• chat_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendmessage

Parameters

• text – Text of the message to be sent, 1-4096 characters after entities parsing

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

62 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• disable_web_page_preview – Disables link previews for links in this message

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_message.SendMessage

answer_animation(animation: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, width: Optional[int] = None, height:
Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] =
None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>,
has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendAnimation

Shortcut for method aiogram.methods.send_animation.SendAnimation will automatically fill
method attributes:

• chat_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success,
the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to
50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

Parameters

• animation – Animation to send. Pass a file_id as String to send an animation that exists
on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an animation from the Internet, or upload a new animation using multipart/form-data.
More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

2.3. Bot API 63

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendanimation

aiogram Documentation, Release 3.23.0

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent animation in seconds

• width – Animation width

• height – Animation height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Animation caption (may also be used when resending animation by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the animation caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_animation.SendAnimation

64 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_animation_pm(animation: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, duration: Optional[int] = None, width: Optional[int] = None, height:
Optional[int] = None, thumbnail: Optional[InputFile] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs:
Any)→ SendAnimation

Shortcut for method aiogram.methods.send_animation.SendAnimation will automatically fill
method attributes:

• chat_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success,
the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to
50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

Parameters

• animation – Animation to send. Pass a file_id as String to send an animation that exists
on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an animation from the Internet, or upload a new animation using multipart/form-data.
More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent animation in seconds

• width – Animation width

• height – Animation height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Animation caption (may also be used when resending animation by file_id),
0-1024 characters after entities parsing

2.3. Bot API 65

https://core.telegram.org/bots/api#sendanimation

aiogram Documentation, Release 3.23.0

• parse_mode – Mode for parsing entities in the animation caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_animation.SendAnimation

answer_audio(audio: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None,
thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendAudio

Shortcut for method aiogram.methods.send_audio.SendAudio will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your
audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is
returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

66 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Source: https://core.telegram.org/bots/api#sendaudio

Parameters

• audio – Audio file to send. Pass a file_id as String to send an audio file that exists on
the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an audio file from the Internet, or upload a new one using multipart/form-data. More
information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Audio caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the audio caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the audio in seconds

• performer – Performer

• title – Track name

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

2.3. Bot API 67

https://core.telegram.org/bots/api#sendaudio
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_audio.SendAudio

answer_audio_pm(audio: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] =
None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] =
None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendAudio

Shortcut for method aiogram.methods.send_audio.SendAudio will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your
audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is
returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

Parameters

• audio – Audio file to send. Pass a file_id as String to send an audio file that exists on
the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an audio file from the Internet, or upload a new one using multipart/form-data. More
information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Audio caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the audio caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the audio in seconds

• performer – Performer

• title – Track name

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not

68 Chapter 2. Contents

https://core.telegram.org/bots/api#sendaudio
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_audio.SendAudio

answer_contact(phone_number: str, first_name: str, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, last_name: Optional[str] = None, vcard: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendContact

Shortcut for method aiogram.methods.send_contact.SendContact will automatically fill method
attributes:

• chat_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendcontact

Parameters

• phone_number – Contact’s phone number

• first_name – Contact’s first name

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

2.3. Bot API 69

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendcontact

aiogram Documentation, Release 3.23.0

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• last_name – Contact’s last name

• vcard – Additional data about the contact in the form of a vCard, 0-2048 bytes

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_contact.SendContact

answer_contact_pm(phone_number: str, first_name: str, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, last_name: Optional[str] = None, vcard: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendContact

Shortcut for method aiogram.methods.send_contact.SendContact will automatically fill method
attributes:

• chat_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendcontact

Parameters

• phone_number – Contact’s phone number

70 Chapter 2. Contents

https://en.wikipedia.org/wiki/VCard
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendcontact

aiogram Documentation, Release 3.23.0

• first_name – Contact’s first name

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• last_name – Contact’s last name

• vcard – Additional data about the contact in the form of a vCard, 0-2048 bytes

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_contact.SendContact

answer_document(document: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, disable_content_type_detection:
Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendDocument

Shortcut for method aiogram.methods.send_document.SendDocument will automatically fill method
attributes:

• chat_id

2.3. Bot API 71

https://en.wikipedia.org/wiki/VCard
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Use this method to send general files. On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#senddocument

Parameters

• document – File to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from
the Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Document caption (may also be used when resending documents by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the document caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• disable_content_type_detection – Disables automatic server-side content type de-
tection for files uploaded using multipart/form-data

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

72 Chapter 2. Contents

https://core.telegram.org/bots/api#senddocument
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_document.SendDocument

answer_document_pm(document: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None,
disable_content_type_detection: Optional[bool] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendDocument

Shortcut for method aiogram.methods.send_document.SendDocument will automatically fill method
attributes:

• chat_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#senddocument

Parameters

• document – File to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from
the Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Document caption (may also be used when resending documents by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the document caption. See formatting options
for more details.

2.3. Bot API 73

https://core.telegram.org/bots/api#senddocument
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• disable_content_type_detection – Disables automatic server-side content type de-
tection for files uploaded using multipart/form-data

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_document.SendDocument

answer_game(game_short_name: str, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendGame

Shortcut for method aiogram.methods.send_game.SendGame will automatically fill method attributes:

• chat_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

Parameters

• game_short_name – Short name of the game, serves as the unique identifier for the game.
Set up your games via @BotFather.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

74 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Play
game_title’ button will be shown. If not empty, the first button must launch the game.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_game.SendGame

answer_game_pm(game_short_name: str, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool]
= None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendGame

Shortcut for method aiogram.methods.send_game.SendGame will automatically fill method attributes:

• chat_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

Parameters

• game_short_name – Short name of the game, serves as the unique identifier for the game.
Set up your games via @BotFather.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Play
game_title’ button will be shown. If not empty, the first button must launch the game.

2.3. Bot API 75

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_game.SendGame

answer_invoice(title: str, description: str, payload: str, currency: str, prices: list[LabeledPrice],
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, provider_token: Optional[str] = None, max_tip_amount: Optional[int] = None,
suggested_tip_amounts: Optional[list[int]] = None, start_parameter: Optional[str] =
None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size:
Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] =
None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None,
need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None,
send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider:
Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendInvoice

Shortcut for method aiogram.methods.send_invoice.SendInvoice will automatically fill method at-
tributes:

• chat_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

Parameters

• title – Product name, 1-32 characters

• description – Product description, 1-255 characters

• payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user,
use it for your internal processes.

• currency – Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for
payments in Telegram Stars.

• prices – Price breakdown, a JSON-serialized list of components (e.g. product price,
tax, discount, delivery cost, delivery tax, bonus, etc.). Must contain exactly one item for
payments in Telegram Stars.

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• provider_token – Payment provider token, obtained via @BotFather. Pass an empty
string for payments in Telegram Stars.

• max_tip_amount – The maximum accepted amount for tips in the smallest units of the
currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass
max_tip_amount = 145. See the exp parameter in currencies.json, it shows the number

76 Chapter 2. Contents

https://core.telegram.org/bots/api#sendinvoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json

aiogram Documentation, Release 3.23.0

of digits past the decimal point for each currency (2 for the majority of currencies). Defaults
to 0. Not supported for payments in Telegram Stars.

• suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the
smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts
can be specified. The suggested tip amounts must be positive, passed in a strictly increased
order and must not exceed max_tip_amount.

• start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of
the sent message will have a Pay button, allowing multiple users to pay directly from the
forwarded message, using the same invoice. If non-empty, forwarded copies of the sent
message will have a URL button with a deep link to the bot (instead of a Pay button), with
the value used as the start parameter

• provider_data – JSON-serialized data about the invoice, which will be shared with the
payment provider. A detailed description of required fields should be provided by the pay-
ment provider.

• photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a
marketing image for a service. People like it better when they see what they are paying for.

• photo_size – Photo size in bytes

• photo_width – Photo width

• photo_height – Photo height

• need_name – Pass True if you require the user’s full name to complete the order. Ignored
for payments in Telegram Stars.

• need_phone_number – Pass True if you require the user’s phone number to complete the
order. Ignored for payments in Telegram Stars.

• need_email – Pass True if you require the user’s email address to complete the order.
Ignored for payments in Telegram Stars.

• need_shipping_address – Pass True if you require the user’s shipping address to com-
plete the order. Ignored for payments in Telegram Stars.

• send_phone_number_to_provider – Pass True if the user’s phone number should be
sent to the provider. Ignored for payments in Telegram Stars.

• send_email_to_provider – Pass True if the user’s email address should be sent to the
provider. Ignored for payments in Telegram Stars.

• is_flexible – Pass True if the final price depends on the shipping method. Ignored for
payments in Telegram Stars.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

2.3. Bot API 77

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Pay
total price’ button will be shown. If not empty, the first button must be a Pay button.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_invoice.SendInvoice

answer_invoice_pm(title: str, description: str, payload: str, currency: str, prices: list[LabeledPrice],
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, provider_token: Optional[str] = None, max_tip_amount: Optional[int] = None,
suggested_tip_amounts: Optional[list[int]] = None, start_parameter: Optional[str] =
None, provider_data: Optional[str] = None, photo_url: Optional[str] = None,
photo_size: Optional[int] = None, photo_width: Optional[int] = None, photo_height:
Optional[int] = None, need_name: Optional[bool] = None, need_phone_number:
Optional[bool] = None, need_email: Optional[bool] = None, need_shipping_address:
Optional[bool] = None, send_phone_number_to_provider: Optional[bool] = None,
send_email_to_provider: Optional[bool] = None, is_flexible: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup]
= None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendInvoice

Shortcut for method aiogram.methods.send_invoice.SendInvoice will automatically fill method at-
tributes:

• chat_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

Parameters

• title – Product name, 1-32 characters

• description – Product description, 1-255 characters

• payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user,
use it for your internal processes.

• currency – Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for
payments in Telegram Stars.

• prices – Price breakdown, a JSON-serialized list of components (e.g. product price,
tax, discount, delivery cost, delivery tax, bonus, etc.). Must contain exactly one item for
payments in Telegram Stars.

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

78 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#sendinvoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

• provider_token – Payment provider token, obtained via @BotFather. Pass an empty
string for payments in Telegram Stars.

• max_tip_amount – The maximum accepted amount for tips in the smallest units of the
currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass
max_tip_amount = 145. See the exp parameter in currencies.json, it shows the number
of digits past the decimal point for each currency (2 for the majority of currencies). Defaults
to 0. Not supported for payments in Telegram Stars.

• suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the
smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts
can be specified. The suggested tip amounts must be positive, passed in a strictly increased
order and must not exceed max_tip_amount.

• start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of
the sent message will have a Pay button, allowing multiple users to pay directly from the
forwarded message, using the same invoice. If non-empty, forwarded copies of the sent
message will have a URL button with a deep link to the bot (instead of a Pay button), with
the value used as the start parameter

• provider_data – JSON-serialized data about the invoice, which will be shared with the
payment provider. A detailed description of required fields should be provided by the pay-
ment provider.

• photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a
marketing image for a service. People like it better when they see what they are paying for.

• photo_size – Photo size in bytes

• photo_width – Photo width

• photo_height – Photo height

• need_name – Pass True if you require the user’s full name to complete the order. Ignored
for payments in Telegram Stars.

• need_phone_number – Pass True if you require the user’s phone number to complete the
order. Ignored for payments in Telegram Stars.

• need_email – Pass True if you require the user’s email address to complete the order.
Ignored for payments in Telegram Stars.

• need_shipping_address – Pass True if you require the user’s shipping address to com-
plete the order. Ignored for payments in Telegram Stars.

• send_phone_number_to_provider – Pass True if the user’s phone number should be
sent to the provider. Ignored for payments in Telegram Stars.

• send_email_to_provider – Pass True if the user’s email address should be sent to the
provider. Ignored for payments in Telegram Stars.

• is_flexible – Pass True if the final price depends on the shipping method. Ignored for
payments in Telegram Stars.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

2.3. Bot API 79

https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Pay
total price’ button will be shown. If not empty, the first button must be a Pay button.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_invoice.SendInvoice

answer_location(latitude: float, longitude: float, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None,
heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendLocation

Shortcut for method aiogram.methods.send_location.SendLocation will automatically fill method
attributes:

• chat_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendlocation

Parameters

• latitude – Latitude of the location

• longitude – Longitude of the location

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• live_period – Period in seconds during which the location will be updated (see Live
Locations, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be
edited indefinitely.

80 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#sendlocation
https://telegram.org/blog/live-locations
https://telegram.org/blog/live-locations

aiogram Documentation, Release 3.23.0

• heading – For live locations, a direction in which the user is moving, in degrees. Must be
between 1 and 360 if specified.

• proximity_alert_radius – For live locations, a maximum distance for proximity alerts
about approaching another chat member, in meters. Must be between 1 and 100000 if
specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_location.SendLocation

answer_location_pm(latitude: float, longitude: float, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] =
None, heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendLocation

Shortcut for method aiogram.methods.send_location.SendLocation will automatically fill method
attributes:

• chat_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendlocation

Parameters

• latitude – Latitude of the location

• longitude – Longitude of the location

2.3. Bot API 81

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendlocation

aiogram Documentation, Release 3.23.0

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• live_period – Period in seconds during which the location will be updated (see Live
Locations, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be
edited indefinitely.

• heading – For live locations, a direction in which the user is moving, in degrees. Must be
between 1 and 360 if specified.

• proximity_alert_radius – For live locations, a maximum distance for proximity alerts
about approaching another chat member, in meters. Must be between 1 and 100000 if
specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_location.SendLocation

answer_media_group(media: list[MediaUnion], business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, reply_parameters: Optional[ReplyParameters] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendMediaGroup

82 Chapter 2. Contents

https://telegram.org/blog/live-locations
https://telegram.org/blog/live-locations
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Shortcut for method aiogram.methods.send_media_group.SendMediaGroup will automatically fill
method attributes:

• chat_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and
audio files can be only grouped in an album with messages of the same type. On success, an array of
aiogram.types.message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

Parameters

• media – A JSON-serialized array describing messages to be sent, must include 2-10 items

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sages will be sent; required if the messages are sent to a direct messages chat

• disable_notification – Sends messages silently. Users will receive a notification with
no sound.

• protect_content – Protects the contents of the sent messages from forwarding and sav-
ing

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the messages are a reply, ID of the original message

Returns
instance of method aiogram.methods.send_media_group.SendMediaGroup

answer_media_group_pm(media: list[MediaUnion], business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id:
Optional[int] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str]
= None, reply_parameters: Optional[ReplyParameters] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendMediaGroup

Shortcut for method aiogram.methods.send_media_group.SendMediaGroup will automatically fill
method attributes:

• chat_id

2.3. Bot API 83

https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

Use this method to send a group of photos, videos, documents or audios as an album. Documents and
audio files can be only grouped in an album with messages of the same type. On success, an array of
aiogram.types.message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

Parameters

• media – A JSON-serialized array describing messages to be sent, must include 2-10 items

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sages will be sent; required if the messages are sent to a direct messages chat

• disable_notification – Sends messages silently. Users will receive a notification with
no sound.

• protect_content – Protects the contents of the sent messages from forwarding and sav-
ing

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the messages are a reply, ID of the original message

Returns
instance of method aiogram.methods.send_media_group.SendMediaGroup

answer_photo(photo: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendPhoto

Shortcut for method aiogram.methods.send_photo.SendPhoto will automatically fill method at-
tributes:

• chat_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

84 Chapter 2. Contents

https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/api#sendphoto

aiogram Documentation, Release 3.23.0

Parameters

• photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from
the Internet, or upload a new photo using multipart/form-data. The photo must be at most
10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and
height ratio must be at most 20. More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Photo caption (may also be used when resending photos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the photo caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_photo.SendPhoto

2.3. Bot API 85

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_photo_pm(photo: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendPhoto

Shortcut for method aiogram.methods.send_photo.SendPhoto will automatically fill method at-
tributes:

• chat_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

Parameters

• photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from
the Internet, or upload a new photo using multipart/form-data. The photo must be at most
10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and
height ratio must be at most 20. More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Photo caption (may also be used when resending photos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the photo caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

86 Chapter 2. Contents

https://core.telegram.org/bots/api#sendphoto
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_photo.SendPhoto

answer_poll(question: str, options: list[InputPollOptionUnion], business_connection_id: Optional[str] =
None, message_thread_id: Optional[int] = None, question_parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, question_entities: Optional[list[MessageEntity]] =
None, is_anonymous: Optional[bool] = None, type: Optional[str] = None,
allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None,
explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, explanation_entities: Optional[list[MessageEntity]] = None,
open_period: Optional[int] = None, close_date: Optional[DateTimeUnion] = None,
is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendPoll

Shortcut for method aiogram.methods.send_poll.SendPoll will automatically fill method attributes:

• chat_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendpoll

Parameters

• question – Poll question, 1-300 characters

• options – A JSON-serialized list of 2-12 answer options

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• question_parse_mode – Mode for parsing entities in the question. See formatting op-
tions for more details. Currently, only custom emoji entities are allowed

• question_entities – A JSON-serialized list of special entities that appear in the poll
question. It can be specified instead of question_parse_mode

• is_anonymous – True, if the poll needs to be anonymous, defaults to True

2.3. Bot API 87

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendpoll
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

• allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls
in quiz mode, defaults to False

• correct_option_id – 0-based identifier of the correct answer option, required for polls
in quiz mode

• explanation – Text that is shown when a user chooses an incorrect answer or taps on
the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities
parsing

• explanation_parse_mode – Mode for parsing entities in the explanation. See formatting
options for more details.

• explanation_entities – A JSON-serialized list of special entities that appear in the
poll explanation. It can be specified instead of explanation_parse_mode

• open_period – Amount of time in seconds the poll will be active after creation, 5-600.
Can’t be used together with close_date.

• close_date – Point in time (Unix timestamp) when the poll will be automatically closed.
Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with
open_period.

• is_closed – Pass True if the poll needs to be immediately closed. This can be useful for
poll preview.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_poll.SendPoll

88 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_poll_pm(question: str, options: list[InputPollOptionUnion], business_connection_id: Optional[str]
= None, message_thread_id: Optional[int] = None, question_parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, question_entities:
Optional[list[MessageEntity]] = None, is_anonymous: Optional[bool] = None, type:
Optional[str] = None, allows_multiple_answers: Optional[bool] = None,
correct_option_id: Optional[int] = None, explanation: Optional[str] = None,
explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
explanation_entities: Optional[list[MessageEntity]] = None, open_period: Optional[int]
= None, close_date: Optional[DateTimeUnion] = None, is_closed: Optional[bool] =
None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendPoll

Shortcut for method aiogram.methods.send_poll.SendPoll will automatically fill method attributes:

• chat_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendpoll

Parameters

• question – Poll question, 1-300 characters

• options – A JSON-serialized list of 2-12 answer options

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• question_parse_mode – Mode for parsing entities in the question. See formatting op-
tions for more details. Currently, only custom emoji entities are allowed

• question_entities – A JSON-serialized list of special entities that appear in the poll
question. It can be specified instead of question_parse_mode

• is_anonymous – True, if the poll needs to be anonymous, defaults to True

• type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

• allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls
in quiz mode, defaults to False

• correct_option_id – 0-based identifier of the correct answer option, required for polls
in quiz mode

• explanation – Text that is shown when a user chooses an incorrect answer or taps on
the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities
parsing

• explanation_parse_mode – Mode for parsing entities in the explanation. See formatting
options for more details.

• explanation_entities – A JSON-serialized list of special entities that appear in the
poll explanation. It can be specified instead of explanation_parse_mode

2.3. Bot API 89

https://core.telegram.org/bots/api#sendpoll
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• open_period – Amount of time in seconds the poll will be active after creation, 5-600.
Can’t be used together with close_date.

• close_date – Point in time (Unix timestamp) when the poll will be automatically closed.
Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with
open_period.

• is_closed – Pass True if the poll needs to be immediately closed. This can be useful for
poll preview.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_poll.SendPoll

answer_dice(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, emoji: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters] =
None, reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendDice

Shortcut for method aiogram.methods.send_dice.SendDice will automatically fill method attributes:

• chat_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

Parameters

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

90 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddice

aiogram Documentation, Release 3.23.0

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘’,
‘’, ‘’, ‘’, ‘’, or ‘’. Dice can have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values
1-64 for ‘’. Defaults to ‘’

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_dice.SendDice

answer_dice_pm(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, emoji: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendDice

Shortcut for method aiogram.methods.send_dice.SendDice will automatically fill method attributes:

• chat_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

Parameters

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

2.3. Bot API 91

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddice

aiogram Documentation, Release 3.23.0

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘’,
‘’, ‘’, ‘’, ‘’, or ‘’. Dice can have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values
1-64 for ‘’. Defaults to ‘’

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_dice.SendDice

answer_sticker(sticker: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendSticker

Shortcut for method aiogram.methods.send_sticker.SendSticker will automatically fill method
attributes:

• chat_id

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent
aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

Parameters

• sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker

92 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker

aiogram Documentation, Release 3.23.0

from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-
data. More information on Sending Files ». Video and animated stickers can’t be sent via
an HTTP URL.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji associated with the sticker; only for just uploaded stickers

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_sticker.SendSticker

answer_sticker_pm(sticker: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool]
= None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendSticker

Shortcut for method aiogram.methods.send_sticker.SendSticker will automatically fill method
attributes:

• chat_id

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent
aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

2.3. Bot API 93

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker

aiogram Documentation, Release 3.23.0

Parameters

• sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker
from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-
data. More information on Sending Files ». Video and animated stickers can’t be sent via
an HTTP URL.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji associated with the sticker; only for just uploaded stickers

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_sticker.SendSticker

answer_venue(latitude: float, longitude: float, title: str, address: str, business_connection_id: Optional[str]
= None, message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None,
google_place_id: Optional[str] = None, google_place_type: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVenue

Shortcut for method aiogram.methods.send_venue.SendVenue will automatically fill method at-
tributes:

94 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• chat_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.
Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

Parameters

• latitude – Latitude of the venue

• longitude – Longitude of the venue

• title – Name of the venue

• address – Address of the venue

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• foursquare_id – Foursquare identifier of the venue

• foursquare_type – Foursquare type of the venue, if known. (For example,
‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

• google_place_id – Google Places identifier of the venue

• google_place_type – Google Places type of the venue. (See supported types.)

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_venue.SendVenue

2.3. Bot API 95

https://core.telegram.org/bots/api#sendvenue
https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_venue_pm(latitude: float, longitude: float, title: str, address: str, business_connection_id:
Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, foursquare_id: Optional[str] = None,
foursquare_type: Optional[str] = None, google_place_id: Optional[str] = None,
google_place_type: Optional[str] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendVenue

Shortcut for method aiogram.methods.send_venue.SendVenue will automatically fill method at-
tributes:

• chat_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.
Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

Parameters

• latitude – Latitude of the venue

• longitude – Longitude of the venue

• title – Name of the venue

• address – Address of the venue

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• foursquare_id – Foursquare identifier of the venue

• foursquare_type – Foursquare type of the venue, if known. (For example,
‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

• google_place_id – Google Places identifier of the venue

• google_place_type – Google Places type of the venue. (See supported types.)

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

96 Chapter 2. Contents

https://core.telegram.org/bots/api#sendvenue
https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_venue.SendVenue

answer_video(video: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None,
thumbnail: Optional[InputFile] = None, cover: Optional[InputFileUnion] = None,
start_timestamp: Optional[DateTimeUnion] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media: Optional[Union[bool,
Default]] = <Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVideo

Shortcut for method aiogram.methods.send_video.SendVideo will automatically fill method at-
tributes:

• chat_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent
as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message
is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#sendvideo

Parameters

• video – Video to send. Pass a file_id as String to send a video that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the
Internet, or upload a new video using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• width – Video width

• height – Video height

2.3. Bot API 97

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvideo

aiogram Documentation, Release 3.23.0

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• cover – Cover for the video in the message. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the
Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-
data under <file_attach_name> name. More information on Sending Files »

• start_timestamp – Start timestamp for the video in the message

• caption – Video caption (may also be used when resending videos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the video caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the video needs to be covered with a spoiler animation

• supports_streaming – Pass True if the uploaded video is suitable for streaming

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video.SendVideo

98 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_video_pm(video: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, width: Optional[int] = None, height:
Optional[int] = None, thumbnail: Optional[InputFile] = None, cover:
Optional[InputFileUnion] = None, start_timestamp: Optional[DateTimeUnion] = None,
caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] =
None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendVideo

Shortcut for method aiogram.methods.send_video.SendVideo will automatically fill method at-
tributes:

• chat_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent
as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message
is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#sendvideo

Parameters

• video – Video to send. Pass a file_id as String to send a video that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the
Internet, or upload a new video using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• width – Video width

• height – Video height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• cover – Cover for the video in the message. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the

2.3. Bot API 99

https://core.telegram.org/bots/api#sendvideo

aiogram Documentation, Release 3.23.0

Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-
data under <file_attach_name> name. More information on Sending Files »

• start_timestamp – Start timestamp for the video in the message

• caption – Video caption (may also be used when resending videos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the video caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the video needs to be covered with a spoiler animation

• supports_streaming – Pass True if the uploaded video is suitable for streaming

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video.SendVideo

answer_video_note(video_note: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, length: Optional[int] = None, thumbnail:
Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool]
= None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendVideoNote

100 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Shortcut for method aiogram.methods.send_video_note.SendVideoNote will automatically fill
method attributes:

• chat_id

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this
method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

Parameters

• video_note – Video note to send. Pass a file_id as String to send a video note that exists
on the Telegram servers (recommended) or upload a new video using multipart/form-data.
More information on Sending Files ». Sending video notes by a URL is currently unsup-
ported

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• length – Video width and height, i.e. diameter of the video message

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

2.3. Bot API 101

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video_note.SendVideoNote

answer_video_note_pm(video_note: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id:
Optional[int] = None, duration: Optional[int] = None, length: Optional[int] =
None, thumbnail: Optional[InputFile] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion]
= None, allow_sending_without_reply: Optional[bool] = None,
reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendVideoNote

Shortcut for method aiogram.methods.send_video_note.SendVideoNote will automatically fill
method attributes:

• chat_id

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this
method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

Parameters

• video_note – Video note to send. Pass a file_id as String to send a video note that exists
on the Telegram servers (recommended) or upload a new video using multipart/form-data.
More information on Sending Files ». Sending video notes by a URL is currently unsup-
ported

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• length – Video width and height, i.e. diameter of the video message

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

102 Chapter 2. Contents

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video_note.SendVideoNote

answer_voice(voice: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVoice

Shortcut for method aiogram.methods.send_voice.SendVoice will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice
message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format,
or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.
document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can
currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

Parameters

• voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the
Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Voice message caption, 0-1024 characters after entities parsing

2.3. Bot API 103

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvoice

aiogram Documentation, Release 3.23.0

• parse_mode – Mode for parsing entities in the voice message caption. See formatting
options for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the voice message in seconds

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_voice.SendVoice

answer_voice_pm(voice: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
duration: Optional[int] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendVoice

Shortcut for method aiogram.methods.send_voice.SendVoice will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice
message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format,
or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.
document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can
currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

104 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvoice

aiogram Documentation, Release 3.23.0

Parameters

• voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the
Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Voice message caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the voice message caption. See formatting
options for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the voice message in seconds

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_voice.SendVoice

2.3. Bot API 105

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

ChatLocation

class aiogram.types.chat_location.ChatLocation(*, location: Location, address: str, **extra_data:
Any)

Represents a location to which a chat is connected.

Source: https://core.telegram.org/bots/api#chatlocation

location: Location

The location to which the supergroup is connected. Can’t be a live location.

address: str

Location address; 1-64 characters, as defined by the chat owner

ChatMember

class aiogram.types.chat_member.ChatMember(**extra_data: Any)
This object contains information about one member of a chat. Currently, the following 6 types of chat members
are supported:

• aiogram.types.chat_member_owner.ChatMemberOwner

• aiogram.types.chat_member_administrator.ChatMemberAdministrator

• aiogram.types.chat_member_member.ChatMemberMember

• aiogram.types.chat_member_restricted.ChatMemberRestricted

• aiogram.types.chat_member_left.ChatMemberLeft

• aiogram.types.chat_member_banned.ChatMemberBanned

Source: https://core.telegram.org/bots/api#chatmember

106 Chapter 2. Contents

https://core.telegram.org/bots/api#chatlocation
https://core.telegram.org/bots/api#chatmember

aiogram Documentation, Release 3.23.0

ChatMemberAdministrator

class aiogram.types.chat_member_administrator.ChatMemberAdministrator(*, status: Lit-
eral[ChatMemberStatus.ADMINISTRATOR]
= ChatMemberSta-
tus.ADMINISTRATOR,
user: User,
can_be_edited: bool,
is_anonymous: bool,
can_manage_chat: bool,
can_delete_messages:
bool,
can_manage_video_chats:
bool,
can_restrict_members:
bool,
can_promote_members:
bool, can_change_info:
bool, can_invite_users:
bool, can_post_stories:
bool, can_edit_stories:
bool, can_delete_stories:
bool,
can_post_messages:
bool | None = None,
can_edit_messages: bool
| None = None,
can_pin_messages: bool
| None = None,
can_manage_topics:
bool | None = None,
can_manage_direct_messages:
bool | None = None,
custom_title: str | None
= None, **extra_data:
Any)

Represents a chat member that has some additional privileges.

Source: https://core.telegram.org/bots/api#chatmemberadministrator

status: Literal[ChatMemberStatus.ADMINISTRATOR]

The member’s status in the chat, always ‘administrator’

user: User

Information about the user

can_be_edited: bool

True, if the bot is allowed to edit administrator privileges of that user

is_anonymous: bool

True, if the user’s presence in the chat is hidden

can_manage_chat: bool

True, if the administrator can access the chat event log, get boost list, see hidden supergroup and channel

2.3. Bot API 107

https://core.telegram.org/bots/api#chatmember
https://core.telegram.org/bots/api#chatmemberadministrator

aiogram Documentation, Release 3.23.0

members, report spam messages, ignore slow mode, and send messages to the chat without paying Telegram
Stars. Implied by any other administrator privilege.

can_delete_messages: bool

True, if the administrator can delete messages of other users

can_manage_video_chats: bool

True, if the administrator can manage video chats

can_restrict_members: bool

True, if the administrator can restrict, ban or unban chat members, or access supergroup statistics

can_promote_members: bool

True, if the administrator can add new administrators with a subset of their own privileges or demote ad-
ministrators that they have promoted, directly or indirectly (promoted by administrators that were appointed
by the user)

can_change_info: bool

True, if the user is allowed to change the chat title, photo and other settings

can_invite_users: bool

True, if the user is allowed to invite new users to the chat

can_post_stories: bool

True, if the administrator can post stories to the chat

can_edit_stories: bool

True, if the administrator can edit stories posted by other users, post stories to the chat page, pin chat
stories, and access the chat’s story archive

can_delete_stories: bool

True, if the administrator can delete stories posted by other users

can_post_messages: bool | None

Optional. True, if the administrator can post messages in the channel, approve suggested posts, or access
channel statistics; for channels only

can_edit_messages: bool | None

Optional. True, if the administrator can edit messages of other users and can pin messages; for channels
only

can_pin_messages: bool | None

Optional. True, if the user is allowed to pin messages; for groups and supergroups only

can_manage_topics: bool | None

Optional. True, if the user is allowed to create, rename, close, and reopen forum topics; for supergroups
only

can_manage_direct_messages: bool | None

Optional. True, if the administrator can manage direct messages of the channel and decline suggested
posts; for channels only

custom_title: str | None

Optional. Custom title for this user

108 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

ChatMemberBanned

class aiogram.types.chat_member_banned.ChatMemberBanned(*, status:
Literal[ChatMemberStatus.KICKED] =
ChatMemberStatus.KICKED, user: User,
until_date: _datetime_serializer,
return_type=int, when_used=unless -
none)], **extra_data: Any)

Represents a chat member that was banned in the chat and can’t return to the chat or view chat messages.

Source: https://core.telegram.org/bots/api#chatmemberbanned

status: Literal[ChatMemberStatus.KICKED]

The member’s status in the chat, always ‘kicked’

user: User

Information about the user

until_date: DateTime

Date when restrictions will be lifted for this user; Unix time. If 0, then the user is banned forever

ChatMemberLeft

class aiogram.types.chat_member_left.ChatMemberLeft(*, status: Literal[ChatMemberStatus.LEFT] =
ChatMemberStatus.LEFT , user: User,
**extra_data: Any)

Represents a chat member that isn’t currently a member of the chat, but may join it themselves.

Source: https://core.telegram.org/bots/api#chatmemberleft

status: Literal[ChatMemberStatus.LEFT]

The member’s status in the chat, always ‘left’

user: User

Information about the user

ChatMemberMember

class aiogram.types.chat_member_member.ChatMemberMember(*, status:
Literal[ChatMemberStatus.MEMBER] =
ChatMemberStatus.MEMBER, user: User,
until_date: _datetime_serializer,
return_type=int, when_used=unless -
none)] | None = None, **extra_data: Any)

Represents a chat member that has no additional privileges or restrictions.

Source: https://core.telegram.org/bots/api#chatmembermember

status: Literal[ChatMemberStatus.MEMBER]

The member’s status in the chat, always ‘member’

user: User

Information about the user

2.3. Bot API 109

https://core.telegram.org/bots/api#chatmember
https://core.telegram.org/bots/api#chatmemberbanned
https://core.telegram.org/bots/api#chatmember
https://core.telegram.org/bots/api#chatmemberleft
https://core.telegram.org/bots/api#chatmember
https://core.telegram.org/bots/api#chatmembermember

aiogram Documentation, Release 3.23.0

until_date: DateTime | None

Optional. Date when the user’s subscription will expire; Unix time

ChatMemberOwner

class aiogram.types.chat_member_owner.ChatMemberOwner(*, status:
Literal[ChatMemberStatus.CREATOR] =
ChatMemberStatus.CREATOR, user: User,
is_anonymous: bool, custom_title: str | None
= None, **extra_data: Any)

Represents a chat member that owns the chat and has all administrator privileges.

Source: https://core.telegram.org/bots/api#chatmemberowner

status: Literal[ChatMemberStatus.CREATOR]

The member’s status in the chat, always ‘creator’

user: User

Information about the user

is_anonymous: bool

True, if the user’s presence in the chat is hidden

custom_title: str | None

Optional. Custom title for this user

ChatMemberRestricted

class aiogram.types.chat_member_restricted.ChatMemberRestricted(*, status: Lit-
eral[ChatMemberStatus.RESTRICTED]
= ChatMemberSta-
tus.RESTRICTED, user: User,
is_member: bool,
can_send_messages: bool,
can_send_audios: bool,
can_send_documents: bool,
can_send_photos: bool,
can_send_videos: bool,
can_send_video_notes: bool,
can_send_voice_notes: bool,
can_send_polls: bool,
can_send_other_messages: bool,
can_add_web_page_previews:
bool, can_change_info: bool,
can_invite_users: bool,
can_pin_messages: bool,
can_manage_topics: bool,
until_date: _datetime_serializer,
return_type=int,
when_used=unless - none)],
**extra_data: Any)

Represents a chat member that is under certain restrictions in the chat. Supergroups only.

Source: https://core.telegram.org/bots/api#chatmemberrestricted

110 Chapter 2. Contents

https://core.telegram.org/bots/api#chatmember
https://core.telegram.org/bots/api#chatmemberowner
https://core.telegram.org/bots/api#chatmember
https://core.telegram.org/bots/api#chatmemberrestricted

aiogram Documentation, Release 3.23.0

status: Literal[ChatMemberStatus.RESTRICTED]

The member’s status in the chat, always ‘restricted’

user: User

Information about the user

is_member: bool

True, if the user is a member of the chat at the moment of the request

can_send_messages: bool

True, if the user is allowed to send text messages, contacts, giveaways, giveaway winners, invoices, loca-
tions and venues

can_send_audios: bool

True, if the user is allowed to send audios

can_send_documents: bool

True, if the user is allowed to send documents

can_send_photos: bool

True, if the user is allowed to send photos

can_send_videos: bool

True, if the user is allowed to send videos

can_send_video_notes: bool

True, if the user is allowed to send video notes

can_send_voice_notes: bool

True, if the user is allowed to send voice notes

can_send_polls: bool

True, if the user is allowed to send polls and checklists

can_send_other_messages: bool

True, if the user is allowed to send animations, games, stickers and use inline bots

can_add_web_page_previews: bool

True, if the user is allowed to add web page previews to their messages

can_change_info: bool

True, if the user is allowed to change the chat title, photo and other settings

can_invite_users: bool

True, if the user is allowed to invite new users to the chat

can_pin_messages: bool

True, if the user is allowed to pin messages

can_manage_topics: bool

True, if the user is allowed to create forum topics

until_date: DateTime

Date when restrictions will be lifted for this user; Unix time. If 0, then the user is restricted forever

2.3. Bot API 111

aiogram Documentation, Release 3.23.0

ChatMemberUpdated

class aiogram.types.chat_member_updated.ChatMemberUpdated(*, chat: Chat, from_user: User, date:
_datetime_serializer, return_type=int,
when_used=unless - none)],
old_chat_member: ChatMemberOwner |
ChatMemberAdministrator |
ChatMemberMember |
ChatMemberRestricted |
ChatMemberLeft | ChatMemberBanned,
new_chat_member: ChatMemberOwner
| ChatMemberAdministrator |
ChatMemberMember |
ChatMemberRestricted |
ChatMemberLeft | ChatMemberBanned,
invite_link: ChatInviteLink | None =
None, via_join_request: bool | None =
None, via_chat_folder_invite_link: bool |
None = None, **extra_data: Any)

This object represents changes in the status of a chat member.

Source: https://core.telegram.org/bots/api#chatmemberupdated

chat: Chat

Chat the user belongs to

from_user: User

Performer of the action, which resulted in the change

date: DateTime

Date the change was done in Unix time

old_chat_member: ChatMemberUnion

Previous information about the chat member

new_chat_member: ChatMemberUnion

New information about the chat member

invite_link: ChatInviteLink | None

Optional. Chat invite link, which was used by the user to join the chat; for joining by invite link events
only.

via_join_request: bool | None

Optional. True, if the user joined the chat after sending a direct join request without using an invite link
and being approved by an administrator

via_chat_folder_invite_link: bool | None

Optional. True, if the user joined the chat via a chat folder invite link

112 Chapter 2. Contents

https://core.telegram.org/bots/api#chatmemberupdated

aiogram Documentation, Release 3.23.0

answer(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None, link_preview_options:
Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None, message_effect_id:
Optional[str] = None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs:
Any)→ SendMessage

Shortcut for method aiogram.methods.send_message.SendMessage will automatically fill method at-
tributes:

• chat_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendmessage

Parameters

• text – Text of the message to be sent, 1-4096 characters after entities parsing

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

2.3. Bot API 113

https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• disable_web_page_preview – Disables link previews for links in this message

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_message.SendMessage

answer_animation(animation: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, width: Optional[int] = None, height:
Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] =
None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>,
has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendAnimation

Shortcut for method aiogram.methods.send_animation.SendAnimation will automatically fill
method attributes:

• chat_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success,
the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to
50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

Parameters

• animation – Animation to send. Pass a file_id as String to send an animation that exists
on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an animation from the Internet, or upload a new animation using multipart/form-data.
More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent animation in seconds

• width – Animation width

• height – Animation height

114 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendanimation

aiogram Documentation, Release 3.23.0

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Animation caption (may also be used when resending animation by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the animation caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_animation.SendAnimation

2.3. Bot API 115

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_audio(audio: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None,
thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendAudio

Shortcut for method aiogram.methods.send_audio.SendAudio will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your
audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is
returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

Parameters

• audio – Audio file to send. Pass a file_id as String to send an audio file that exists on
the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an audio file from the Internet, or upload a new one using multipart/form-data. More
information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Audio caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the audio caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the audio in seconds

• performer – Performer

• title – Track name

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

116 Chapter 2. Contents

https://core.telegram.org/bots/api#sendaudio
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_audio.SendAudio

answer_contact(phone_number: str, first_name: str, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, last_name: Optional[str] = None, vcard: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendContact

Shortcut for method aiogram.methods.send_contact.SendContact will automatically fill method
attributes:

• chat_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendcontact

Parameters

• phone_number – Contact’s phone number

• first_name – Contact’s first name

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

2.3. Bot API 117

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendcontact

aiogram Documentation, Release 3.23.0

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• last_name – Contact’s last name

• vcard – Additional data about the contact in the form of a vCard, 0-2048 bytes

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_contact.SendContact

answer_document(document: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, disable_content_type_detection:
Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendDocument

Shortcut for method aiogram.methods.send_document.SendDocument will automatically fill method
attributes:

• chat_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#senddocument

Parameters

118 Chapter 2. Contents

https://en.wikipedia.org/wiki/VCard
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddocument

aiogram Documentation, Release 3.23.0

• document – File to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from
the Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Document caption (may also be used when resending documents by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the document caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• disable_content_type_detection – Disables automatic server-side content type de-
tection for files uploaded using multipart/form-data

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_document.SendDocument

2.3. Bot API 119

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_game(game_short_name: str, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendGame

Shortcut for method aiogram.methods.send_game.SendGame will automatically fill method attributes:

• chat_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

Parameters

• game_short_name – Short name of the game, serves as the unique identifier for the game.
Set up your games via @BotFather.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Play
game_title’ button will be shown. If not empty, the first button must launch the game.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_game.SendGame

120 Chapter 2. Contents

https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

answer_invoice(title: str, description: str, payload: str, currency: str, prices: list[LabeledPrice],
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, provider_token: Optional[str] = None, max_tip_amount: Optional[int] = None,
suggested_tip_amounts: Optional[list[int]] = None, start_parameter: Optional[str] =
None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size:
Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] =
None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None,
need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None,
send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider:
Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendInvoice

Shortcut for method aiogram.methods.send_invoice.SendInvoice will automatically fill method at-
tributes:

• chat_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

Parameters

• title – Product name, 1-32 characters

• description – Product description, 1-255 characters

• payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user,
use it for your internal processes.

• currency – Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for
payments in Telegram Stars.

• prices – Price breakdown, a JSON-serialized list of components (e.g. product price,
tax, discount, delivery cost, delivery tax, bonus, etc.). Must contain exactly one item for
payments in Telegram Stars.

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• provider_token – Payment provider token, obtained via @BotFather. Pass an empty
string for payments in Telegram Stars.

• max_tip_amount – The maximum accepted amount for tips in the smallest units of the
currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass
max_tip_amount = 145. See the exp parameter in currencies.json, it shows the number
of digits past the decimal point for each currency (2 for the majority of currencies). Defaults
to 0. Not supported for payments in Telegram Stars.

• suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the
smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts
can be specified. The suggested tip amounts must be positive, passed in a strictly increased
order and must not exceed max_tip_amount.

2.3. Bot API 121

https://core.telegram.org/bots/api#sendinvoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

• start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of
the sent message will have a Pay button, allowing multiple users to pay directly from the
forwarded message, using the same invoice. If non-empty, forwarded copies of the sent
message will have a URL button with a deep link to the bot (instead of a Pay button), with
the value used as the start parameter

• provider_data – JSON-serialized data about the invoice, which will be shared with the
payment provider. A detailed description of required fields should be provided by the pay-
ment provider.

• photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a
marketing image for a service. People like it better when they see what they are paying for.

• photo_size – Photo size in bytes

• photo_width – Photo width

• photo_height – Photo height

• need_name – Pass True if you require the user’s full name to complete the order. Ignored
for payments in Telegram Stars.

• need_phone_number – Pass True if you require the user’s phone number to complete the
order. Ignored for payments in Telegram Stars.

• need_email – Pass True if you require the user’s email address to complete the order.
Ignored for payments in Telegram Stars.

• need_shipping_address – Pass True if you require the user’s shipping address to com-
plete the order. Ignored for payments in Telegram Stars.

• send_phone_number_to_provider – Pass True if the user’s phone number should be
sent to the provider. Ignored for payments in Telegram Stars.

• send_email_to_provider – Pass True if the user’s email address should be sent to the
provider. Ignored for payments in Telegram Stars.

• is_flexible – Pass True if the final price depends on the shipping method. Ignored for
payments in Telegram Stars.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Pay
total price’ button will be shown. If not empty, the first button must be a Pay button.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

122 Chapter 2. Contents

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_invoice.SendInvoice

answer_location(latitude: float, longitude: float, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None,
heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendLocation

Shortcut for method aiogram.methods.send_location.SendLocation will automatically fill method
attributes:

• chat_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendlocation

Parameters

• latitude – Latitude of the location

• longitude – Longitude of the location

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• live_period – Period in seconds during which the location will be updated (see Live
Locations, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be
edited indefinitely.

• heading – For live locations, a direction in which the user is moving, in degrees. Must be
between 1 and 360 if specified.

• proximity_alert_radius – For live locations, a maximum distance for proximity alerts
about approaching another chat member, in meters. Must be between 1 and 100000 if
specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

2.3. Bot API 123

https://core.telegram.org/bots/api#sendlocation
https://telegram.org/blog/live-locations
https://telegram.org/blog/live-locations
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_location.SendLocation

answer_media_group(media: list[MediaUnion], business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, reply_parameters: Optional[ReplyParameters] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendMediaGroup

Shortcut for method aiogram.methods.send_media_group.SendMediaGroup will automatically fill
method attributes:

• chat_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and
audio files can be only grouped in an album with messages of the same type. On success, an array of
aiogram.types.message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

Parameters

• media – A JSON-serialized array describing messages to be sent, must include 2-10 items

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sages will be sent; required if the messages are sent to a direct messages chat

• disable_notification – Sends messages silently. Users will receive a notification with
no sound.

• protect_content – Protects the contents of the sent messages from forwarding and sav-
ing

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

124 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the messages are a reply, ID of the original message

Returns
instance of method aiogram.methods.send_media_group.SendMediaGroup

answer_photo(photo: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendPhoto

Shortcut for method aiogram.methods.send_photo.SendPhoto will automatically fill method at-
tributes:

• chat_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

Parameters

• photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from
the Internet, or upload a new photo using multipart/form-data. The photo must be at most
10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and
height ratio must be at most 20. More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Photo caption (may also be used when resending photos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the photo caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

2.3. Bot API 125

https://core.telegram.org/bots/api#sendphoto
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_photo.SendPhoto

answer_poll(question: str, options: list[InputPollOptionUnion], business_connection_id: Optional[str] =
None, message_thread_id: Optional[int] = None, question_parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, question_entities: Optional[list[MessageEntity]] =
None, is_anonymous: Optional[bool] = None, type: Optional[str] = None,
allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None,
explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, explanation_entities: Optional[list[MessageEntity]] = None,
open_period: Optional[int] = None, close_date: Optional[DateTimeUnion] = None,
is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendPoll

Shortcut for method aiogram.methods.send_poll.SendPoll will automatically fill method attributes:

• chat_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendpoll

Parameters

• question – Poll question, 1-300 characters

• options – A JSON-serialized list of 2-12 answer options

126 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendpoll

aiogram Documentation, Release 3.23.0

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• question_parse_mode – Mode for parsing entities in the question. See formatting op-
tions for more details. Currently, only custom emoji entities are allowed

• question_entities – A JSON-serialized list of special entities that appear in the poll
question. It can be specified instead of question_parse_mode

• is_anonymous – True, if the poll needs to be anonymous, defaults to True

• type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

• allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls
in quiz mode, defaults to False

• correct_option_id – 0-based identifier of the correct answer option, required for polls
in quiz mode

• explanation – Text that is shown when a user chooses an incorrect answer or taps on
the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities
parsing

• explanation_parse_mode – Mode for parsing entities in the explanation. See formatting
options for more details.

• explanation_entities – A JSON-serialized list of special entities that appear in the
poll explanation. It can be specified instead of explanation_parse_mode

• open_period – Amount of time in seconds the poll will be active after creation, 5-600.
Can’t be used together with close_date.

• close_date – Point in time (Unix timestamp) when the poll will be automatically closed.
Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with
open_period.

• is_closed – Pass True if the poll needs to be immediately closed. This can be useful for
poll preview.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

2.3. Bot API 127

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.send_poll.SendPoll

answer_dice(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, emoji: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters] =
None, reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendDice

Shortcut for method aiogram.methods.send_dice.SendDice will automatically fill method attributes:

• chat_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

Parameters

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘’,
‘’, ‘’, ‘’, ‘’, or ‘’. Dice can have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values
1-64 for ‘’. Defaults to ‘’

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

128 Chapter 2. Contents

https://core.telegram.org/bots/api#senddice
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.send_dice.SendDice

answer_sticker(sticker: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendSticker

Shortcut for method aiogram.methods.send_sticker.SendSticker will automatically fill method
attributes:

• chat_id

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent
aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

Parameters

• sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker
from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-
data. More information on Sending Files ». Video and animated stickers can’t be sent via
an HTTP URL.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji associated with the sticker; only for just uploaded stickers

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

2.3. Bot API 129

https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_sticker.SendSticker

answer_venue(latitude: float, longitude: float, title: str, address: str, business_connection_id: Optional[str]
= None, message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None,
google_place_id: Optional[str] = None, google_place_type: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVenue

Shortcut for method aiogram.methods.send_venue.SendVenue will automatically fill method at-
tributes:

• chat_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.
Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

Parameters

• latitude – Latitude of the venue

• longitude – Longitude of the venue

• title – Name of the venue

• address – Address of the venue

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• foursquare_id – Foursquare identifier of the venue

• foursquare_type – Foursquare type of the venue, if known. (For example,
‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

• google_place_id – Google Places identifier of the venue

• google_place_type – Google Places type of the venue. (See supported types.)

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

130 Chapter 2. Contents

https://core.telegram.org/bots/api#sendvenue
https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_venue.SendVenue

answer_video(video: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None,
thumbnail: Optional[InputFile] = None, cover: Optional[InputFileUnion] = None,
start_timestamp: Optional[DateTimeUnion] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media: Optional[Union[bool,
Default]] = <Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVideo

Shortcut for method aiogram.methods.send_video.SendVideo will automatically fill method at-
tributes:

• chat_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent
as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message
is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#sendvideo

Parameters

• video – Video to send. Pass a file_id as String to send a video that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the
Internet, or upload a new video using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

2.3. Bot API 131

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvideo

aiogram Documentation, Release 3.23.0

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• width – Video width

• height – Video height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• cover – Cover for the video in the message. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the
Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-
data under <file_attach_name> name. More information on Sending Files »

• start_timestamp – Start timestamp for the video in the message

• caption – Video caption (may also be used when resending videos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the video caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the video needs to be covered with a spoiler animation

• supports_streaming – Pass True if the uploaded video is suitable for streaming

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

132 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video.SendVideo

answer_video_note(video_note: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, length: Optional[int] = None, thumbnail:
Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool]
= None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendVideoNote

Shortcut for method aiogram.methods.send_video_note.SendVideoNote will automatically fill
method attributes:

• chat_id

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this
method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

Parameters

• video_note – Video note to send. Pass a file_id as String to send a video note that exists
on the Telegram servers (recommended) or upload a new video using multipart/form-data.
More information on Sending Files ». Sending video notes by a URL is currently unsup-
ported

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• length – Video width and height, i.e. diameter of the video message

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

2.3. Bot API 133

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video_note.SendVideoNote

answer_voice(voice: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVoice

Shortcut for method aiogram.methods.send_voice.SendVoice will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice
message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format,
or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.
document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can
currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

Parameters

• voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the
Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

134 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvoice

aiogram Documentation, Release 3.23.0

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Voice message caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the voice message caption. See formatting
options for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the voice message in seconds

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_voice.SendVoice

ChatPermissions

class aiogram.types.chat_permissions.ChatPermissions(*, can_send_messages: bool | None = None,
can_send_audios: bool | None = None,
can_send_documents: bool | None = None,
can_send_photos: bool | None = None,
can_send_videos: bool | None = None,
can_send_video_notes: bool | None = None,
can_send_voice_notes: bool | None = None,
can_send_polls: bool | None = None,
can_send_other_messages: bool | None =
None, can_add_web_page_previews: bool |
None = None, can_change_info: bool | None =
None, can_invite_users: bool | None = None,
can_pin_messages: bool | None = None,
can_manage_topics: bool | None = None,
**extra_data: Any)

2.3. Bot API 135

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Describes actions that a non-administrator user is allowed to take in a chat.

Source: https://core.telegram.org/bots/api#chatpermissions

can_send_messages: bool | None

Optional. True, if the user is allowed to send text messages, contacts, giveaways, giveaway winners, in-
voices, locations and venues

can_send_audios: bool | None

Optional. True, if the user is allowed to send audios

can_send_documents: bool | None

Optional. True, if the user is allowed to send documents

can_send_photos: bool | None

Optional. True, if the user is allowed to send photos

can_send_videos: bool | None

Optional. True, if the user is allowed to send videos

can_send_video_notes: bool | None

Optional. True, if the user is allowed to send video notes

can_send_voice_notes: bool | None

Optional. True, if the user is allowed to send voice notes

can_send_polls: bool | None

Optional. True, if the user is allowed to send polls and checklists

can_send_other_messages: bool | None

Optional. True, if the user is allowed to send animations, games, stickers and use inline bots

can_add_web_page_previews: bool | None

Optional. True, if the user is allowed to add web page previews to their messages

can_change_info: bool | None

Optional. True, if the user is allowed to change the chat title, photo and other settings. Ignored in public
supergroups

can_invite_users: bool | None

Optional. True, if the user is allowed to invite new users to the chat

can_pin_messages: bool | None

Optional. True, if the user is allowed to pin messages. Ignored in public supergroups

can_manage_topics: bool | None

Optional. True, if the user is allowed to create forum topics. If omitted defaults to the value of
can_pin_messages

136 Chapter 2. Contents

https://core.telegram.org/bots/api#chatpermissions

aiogram Documentation, Release 3.23.0

ChatPhoto

class aiogram.types.chat_photo.ChatPhoto(*, small_file_id: str, small_file_unique_id: str, big_file_id: str,
big_file_unique_id: str, **extra_data: Any)

This object represents a chat photo.

Source: https://core.telegram.org/bots/api#chatphoto

small_file_id: str

File identifier of small (160x160) chat photo. This file_id can be used only for photo download and only
for as long as the photo is not changed.

small_file_unique_id: str

Unique file identifier of small (160x160) chat photo, which is supposed to be the same over time and for
different bots. Can’t be used to download or reuse the file.

big_file_id: str

File identifier of big (640x640) chat photo. This file_id can be used only for photo download and only for
as long as the photo is not changed.

big_file_unique_id: str

Unique file identifier of big (640x640) chat photo, which is supposed to be the same over time and for
different bots. Can’t be used to download or reuse the file.

ChatShared

class aiogram.types.chat_shared.ChatShared(*, request_id: int, chat_id: int, title: str | None = None,
username: str | None = None, photo: list[PhotoSize] | None
= None, **extra_data: Any)

This object contains information about a chat that was shared with the bot using a aiogram.types.
keyboard_button_request_chat.KeyboardButtonRequestChat button.

Source: https://core.telegram.org/bots/api#chatshared

request_id: int

Identifier of the request

chat_id: int

Identifier of the shared chat. This number may have more than 32 significant bits and some programming
languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a
64-bit integer or double-precision float type are safe for storing this identifier. The bot may not have access
to the chat and could be unable to use this identifier, unless the chat is already known to the bot by some
other means.

title: str | None

Optional. Title of the chat, if the title was requested by the bot.

username: str | None

Optional. Username of the chat, if the username was requested by the bot and available.

photo: list[PhotoSize] | None

Optional. Available sizes of the chat photo, if the photo was requested by the bot

2.3. Bot API 137

https://core.telegram.org/bots/api#chatphoto
https://core.telegram.org/bots/api#chatshared

aiogram Documentation, Release 3.23.0

Checklist

class aiogram.types.checklist.Checklist(*, title: str, tasks: list[ChecklistTask], title_entities:
list[MessageEntity] | None = None, others_can_add_tasks: bool
| None = None, others_can_mark_tasks_as_done: bool | None =
None, **extra_data: Any)

Describes a checklist.

Source: https://core.telegram.org/bots/api#checklist

title: str

Title of the checklist

tasks: list[ChecklistTask]

List of tasks in the checklist

title_entities: list[MessageEntity] | None

Optional. Special entities that appear in the checklist title

others_can_add_tasks: bool | None

Optional. True, if users other than the creator of the list can add tasks to the list

others_can_mark_tasks_as_done: bool | None

Optional. True, if users other than the creator of the list can mark tasks as done or not done

ChecklistTask

class aiogram.types.checklist_task.ChecklistTask(*, id: int, text: str, text_entities: list[MessageEntity]
| None = None, completed_by_user: User | None =
None, completion_date: int | None = None,
**extra_data: Any)

Describes a task in a checklist.

Source: https://core.telegram.org/bots/api#checklisttask

id: int

Unique identifier of the task

text: str

Text of the task

text_entities: list[MessageEntity] | None

Optional. Special entities that appear in the task text

completed_by_user: User | None

Optional. User that completed the task; omitted if the task wasn’t completed

completion_date: int | None

Optional. Point in time (Unix timestamp) when the task was completed; 0 if the task wasn’t completed

138 Chapter 2. Contents

https://core.telegram.org/bots/api#checklist
https://core.telegram.org/bots/api#checklisttask

aiogram Documentation, Release 3.23.0

ChecklistTasksAdded

class aiogram.types.checklist_tasks_added.ChecklistTasksAdded(*, tasks: list[ChecklistTask],
checklist_message: Message | None
= None, **extra_data: Any)

Describes a service message about tasks added to a checklist.

Source: https://core.telegram.org/bots/api#checklisttasksadded

tasks: list[ChecklistTask]

List of tasks added to the checklist

checklist_message: Message | None

Optional. Message containing the checklist to which the tasks were added. Note that the aiogram.types.
message.Message object in this field will not contain the reply_to_message field even if it itself is a reply.

ChecklistTasksDone

class aiogram.types.checklist_tasks_done.ChecklistTasksDone(*, checklist_message: Message | None
= None, marked_as_done_task_ids:
list[int] | None = None,
marked_as_not_done_task_ids:
list[int] | None = None, **extra_data:
Any)

Describes a service message about checklist tasks marked as done or not done.

Source: https://core.telegram.org/bots/api#checklisttasksdone

checklist_message: Message | None

Optional. Message containing the checklist whose tasks were marked as done or not done. Note that the
aiogram.types.message.Message object in this field will not contain the reply_to_message field even
if it itself is a reply.

marked_as_done_task_ids: list[int] | None

Optional. Identifiers of the tasks that were marked as done

marked_as_not_done_task_ids: list[int] | None

Optional. Identifiers of the tasks that were marked as not done

Contact

class aiogram.types.contact.Contact(*, phone_number: str, first_name: str, last_name: str | None = None,
user_id: int | None = None, vcard: str | None = None, **extra_data:
Any)

This object represents a phone contact.

Source: https://core.telegram.org/bots/api#contact

phone_number: str

Contact’s phone number

first_name: str

Contact’s first name

2.3. Bot API 139

https://core.telegram.org/bots/api#checklisttasksadded
https://core.telegram.org/bots/api#checklisttasksdone
https://core.telegram.org/bots/api#contact

aiogram Documentation, Release 3.23.0

last_name: str | None

Optional. Contact’s last name

user_id: int | None

Optional. Contact’s user identifier in Telegram. This number may have more than 32 significant bits and
some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52
significant bits, so a 64-bit integer or double-precision float type are safe for storing this identifier.

vcard: str | None

Optional. Additional data about the contact in the form of a vCard

CopyTextButton

class aiogram.types.copy_text_button.CopyTextButton(*, text: str, **extra_data: Any)
This object represents an inline keyboard button that copies specified text to the clipboard.

Source: https://core.telegram.org/bots/api#copytextbutton

text: str

The text to be copied to the clipboard; 1-256 characters

Dice

class aiogram.types.dice.Dice(*, emoji: str, value: int, **extra_data: Any)
This object represents an animated emoji that displays a random value.

Source: https://core.telegram.org/bots/api#dice

emoji: str

Emoji on which the dice throw animation is based

value: int

Value of the dice, 1-6 for ‘’, ‘’ and ‘’ base emoji, 1-5 for ‘’ and ‘’ base emoji, 1-64 for ‘’ base emoji

class aiogram.types.dice.DiceEmoji

DICE = ''

DART = ''

BASKETBALL = ''

FOOTBALL = ''

SLOT_MACHINE = ''

BOWLING = ''

140 Chapter 2. Contents

https://en.wikipedia.org/wiki/VCard
https://core.telegram.org/bots/api#copytextbutton
https://core.telegram.org/bots/api#dice

aiogram Documentation, Release 3.23.0

DirectMessagePriceChanged

class aiogram.types.direct_message_price_changed.DirectMessagePriceChanged(*,
are_direct_messages_enabled:
bool, di-
rect_message_star_count:
int | None = None,
**extra_data:
Any)

Describes a service message about a change in the price of direct messages sent to a channel chat.

Source: https://core.telegram.org/bots/api#directmessagepricechanged

are_direct_messages_enabled: bool

True, if direct messages are enabled for the channel chat; false otherwise

direct_message_star_count: int | None

Optional. The new number of Telegram Stars that must be paid by users for each direct message sent to the
channel. Does not apply to users who have been exempted by administrators. Defaults to 0.

DirectMessagesTopic

class aiogram.types.direct_messages_topic.DirectMessagesTopic(*, topic_id: int, user: User | None
= None, **extra_data: Any)

Describes a topic of a direct messages chat.

Source: https://core.telegram.org/bots/api#directmessagestopic

topic_id: int

Unique identifier of the topic

user: User | None

Optional. Information about the user that created the topic. Currently, it is always present

Document

class aiogram.types.document.Document(*, file_id: str, file_unique_id: str, thumbnail: PhotoSize | None =
None, file_name: str | None = None, mime_type: str | None =
None, file_size: int | None = None, **extra_data: Any)

This object represents a general file (as opposed to photos, voice messages and audio files).

Source: https://core.telegram.org/bots/api#document

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

thumbnail: PhotoSize | None

Optional. Document thumbnail as defined by the sender

2.3. Bot API 141

https://core.telegram.org/bots/api#directmessagepricechanged
https://core.telegram.org/bots/api#directmessagestopic
https://core.telegram.org/bots/api#photosize
https://core.telegram.org/bots/api#voice
https://core.telegram.org/bots/api#audio
https://core.telegram.org/bots/api#document

aiogram Documentation, Release 3.23.0

file_name: str | None

Optional. Original filename as defined by the sender

mime_type: str | None

Optional. MIME type of the file as defined by the sender

file_size: int | None

Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have
difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or
double-precision float type are safe for storing this value.

ExternalReplyInfo

class aiogram.types.external_reply_info.ExternalReplyInfo(*, origin: MessageOriginUser |
MessageOriginHiddenUser |
MessageOriginChat |
MessageOriginChannel, chat: Chat |
None = None, message_id: int | None =
None, link_preview_options:
LinkPreviewOptions | None = None,
animation: Animation | None = None,
audio: Audio | None = None, document:
Document | None = None, paid_media:
PaidMediaInfo | None = None, photo:
list[PhotoSize] | None = None, sticker:
Sticker | None = None, story: Story |
None = None, video: Video | None =
None, video_note: VideoNote | None =
None, voice: Voice | None = None,
has_media_spoiler: bool | None = None,
checklist: Checklist | None = None,
contact: Contact | None = None, dice:
Dice | None = None, game: Game | None
= None, giveaway: Giveaway | None =
None, giveaway_winners:
GiveawayWinners | None = None,
invoice: Invoice | None = None,
location: Location | None = None, poll:
Poll | None = None, venue: Venue | None
= None, **extra_data: Any)

This object contains information about a message that is being replied to, which may come from another chat or
forum topic.

Source: https://core.telegram.org/bots/api#externalreplyinfo

origin: MessageOriginUnion

Origin of the message replied to by the given message

chat: Chat | None

Optional. Chat the original message belongs to. Available only if the chat is a supergroup or a channel.

message_id: int | None

Optional. Unique message identifier inside the original chat. Available only if the original chat is a super-
group or a channel.

142 Chapter 2. Contents

https://core.telegram.org/bots/api#externalreplyinfo

aiogram Documentation, Release 3.23.0

link_preview_options: LinkPreviewOptions | None

Optional. Options used for link preview generation for the original message, if it is a text message

animation: Animation | None

Optional. Message is an animation, information about the animation

audio: Audio | None

Optional. Message is an audio file, information about the file

document: Document | None

Optional. Message is a general file, information about the file

paid_media: PaidMediaInfo | None

Optional. Message contains paid media; information about the paid media

photo: list[PhotoSize] | None

Optional. Message is a photo, available sizes of the photo

sticker: Sticker | None

Optional. Message is a sticker, information about the sticker

story: Story | None

Optional. Message is a forwarded story

video: Video | None

Optional. Message is a video, information about the video

video_note: VideoNote | None

Optional. Message is a video note, information about the video message

voice: Voice | None

Optional. Message is a voice message, information about the file

has_media_spoiler: bool | None

Optional. True, if the message media is covered by a spoiler animation

checklist: Checklist | None

Optional. Message is a checklist

contact: Contact | None

Optional. Message is a shared contact, information about the contact

dice: Dice | None

Optional. Message is a dice with random value

game: Game | None

Optional. Message is a game, information about the game. More about games »

giveaway: Giveaway | None

Optional. Message is a scheduled giveaway, information about the giveaway

giveaway_winners: GiveawayWinners | None

Optional. A giveaway with public winners was completed

invoice: Invoice | None

Optional. Message is an invoice for a payment, information about the invoice. More about payments »

2.3. Bot API 143

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#games
https://core.telegram.org/bots/api#payments
https://core.telegram.org/bots/api#payments

aiogram Documentation, Release 3.23.0

location: Location | None

Optional. Message is a shared location, information about the location

poll: Poll | None

Optional. Message is a native poll, information about the poll

venue: Venue | None

Optional. Message is a venue, information about the venue

File

class aiogram.types.file.File(*, file_id: str, file_unique_id: str, file_size: int | None = None, file_path: str |
None = None, **extra_data: Any)

This object represents a file ready to be downloaded. The file can be downloaded via the link https://api.
telegram.org/file/bot<token>/<file_path>. It is guaranteed that the link will be valid for at least 1
hour. When the link expires, a new one can be requested by calling aiogram.methods.get_file.GetFile.

The maximum file size to download is 20 MB

Source: https://core.telegram.org/bots/api#file

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

file_size: int | None

Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have
difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or
double-precision float type are safe for storing this value.

file_path: str | None

Optional. File path. Use https://api.telegram.org/file/bot<token>/<file_path> to get the
file.

ForceReply

class aiogram.types.force_reply.ForceReply(*, force_reply: Literal[True] = True,
input_field_placeholder: str | None = None, selective: bool |
None = None, **extra_data: Any)

Upon receiving a message with this object, Telegram clients will display a reply interface to the user (act as if
the user has selected the bot’s message and tapped ‘Reply’). This can be extremely useful if you want to create
user-friendly step-by-step interfaces without having to sacrifice privacy mode. Not supported in channels and
for messages sent on behalf of a Telegram Business account.

Example: A poll bot for groups runs in privacy mode (only receives commands, replies to its mes-
sages and mentions). There could be two ways to create a new poll:

• Explain the user how to send a command with parameters (e.g. /newpoll question answer1 an-
swer2). May be appealing for hardcore users but lacks modern day polish.

• Guide the user through a step-by-step process. ‘Please send me your question’, ‘Cool, now let’s
add the first answer option’, ‘Great. Keep adding answer options, then send /done when you’re
ready’.

144 Chapter 2. Contents

https://core.telegram.org/bots/api#file
https://core.telegram.org/bots/features#privacy-mode
https://t.me/PollBot

aiogram Documentation, Release 3.23.0

The last option is definitely more attractive. And if you use aiogram.types.force_reply.
ForceReply in your bot’s questions, it will receive the user’s answers even if it only receives replies,
commands and mentions - without any extra work for the user.

Source: https://core.telegram.org/bots/api#forcereply

force_reply: Literal[True]

Shows reply interface to the user, as if they manually selected the bot’s message and tapped ‘Reply’

input_field_placeholder: str | None

Optional. The placeholder to be shown in the input field when the reply is active; 1-64 characters

selective: bool | None

Optional. Use this parameter if you want to force reply from specific users only. Targets: 1) users that are
@mentioned in the text of the aiogram.types.message.Message object; 2) if the bot’s message is a
reply to a message in the same chat and forum topic, sender of the original message.

ForumTopic

class aiogram.types.forum_topic.ForumTopic(*, message_thread_id: int, name: str, icon_color: int,
icon_custom_emoji_id: str | None = None, **extra_data:
Any)

This object represents a forum topic.

Source: https://core.telegram.org/bots/api#forumtopic

message_thread_id: int

Unique identifier of the forum topic

name: str

Name of the topic

icon_color: int

Color of the topic icon in RGB format

icon_custom_emoji_id: str | None

Optional. Unique identifier of the custom emoji shown as the topic icon

ForumTopicClosed

class aiogram.types.forum_topic_closed.ForumTopicClosed(**extra_data: Any)
This object represents a service message about a forum topic closed in the chat. Currently holds no information.

Source: https://core.telegram.org/bots/api#forumtopicclosed

2.3. Bot API 145

https://core.telegram.org/bots/api#forcereply
https://core.telegram.org/bots/api#forumtopic
https://core.telegram.org/bots/api#forumtopicclosed

aiogram Documentation, Release 3.23.0

ForumTopicCreated

class aiogram.types.forum_topic_created.ForumTopicCreated(*, name: str, icon_color: int,
icon_custom_emoji_id: str | None =
None, **extra_data: Any)

This object represents a service message about a new forum topic created in the chat.

Source: https://core.telegram.org/bots/api#forumtopiccreated

name: str

Name of the topic

icon_color: int

Color of the topic icon in RGB format

icon_custom_emoji_id: str | None

Optional. Unique identifier of the custom emoji shown as the topic icon

ForumTopicEdited

class aiogram.types.forum_topic_edited.ForumTopicEdited(*, name: str | None = None,
icon_custom_emoji_id: str | None = None,
**extra_data: Any)

This object represents a service message about an edited forum topic.

Source: https://core.telegram.org/bots/api#forumtopicedited

name: str | None

Optional. New name of the topic, if it was edited

icon_custom_emoji_id: str | None

Optional. New identifier of the custom emoji shown as the topic icon, if it was edited; an empty string if
the icon was removed

ForumTopicReopened

class aiogram.types.forum_topic_reopened.ForumTopicReopened(**extra_data: Any)
This object represents a service message about a forum topic reopened in the chat. Currently holds no informa-
tion.

Source: https://core.telegram.org/bots/api#forumtopicreopened

GeneralForumTopicHidden

class aiogram.types.general_forum_topic_hidden.GeneralForumTopicHidden(**extra_data: Any)
This object represents a service message about General forum topic hidden in the chat. Currently holds no
information.

Source: https://core.telegram.org/bots/api#generalforumtopichidden

146 Chapter 2. Contents

https://core.telegram.org/bots/api#forumtopiccreated
https://core.telegram.org/bots/api#forumtopicedited
https://core.telegram.org/bots/api#forumtopicreopened
https://core.telegram.org/bots/api#generalforumtopichidden

aiogram Documentation, Release 3.23.0

GeneralForumTopicUnhidden

class aiogram.types.general_forum_topic_unhidden.GeneralForumTopicUnhidden(**extra_data:
Any)

This object represents a service message about General forum topic unhidden in the chat. Currently holds no
information.

Source: https://core.telegram.org/bots/api#generalforumtopicunhidden

Gift

class aiogram.types.gift.Gift(*, id: str, sticker: Sticker, star_count: int, upgrade_star_count: int | None =
None, total_count: int | None = None, remaining_count: int | None = None,
publisher_chat: Chat | None = None, **extra_data: Any)

This object represents a gift that can be sent by the bot.

Source: https://core.telegram.org/bots/api#gift

id: str

Unique identifier of the gift

sticker: Sticker

The sticker that represents the gift

star_count: int

The number of Telegram Stars that must be paid to send the sticker

upgrade_star_count: int | None

Optional. The number of Telegram Stars that must be paid to upgrade the gift to a unique one

total_count: int | None

Optional. The total number of the gifts of this type that can be sent; for limited gifts only

remaining_count: int | None

Optional. The number of remaining gifts of this type that can be sent; for limited gifts only

publisher_chat: Chat | None

Optional. Information about the chat that published the gift

GiftInfo

class aiogram.types.gift_info.GiftInfo(*, gift: Gift, owned_gift_id: str | None = None,
convert_star_count: int | None = None,
prepaid_upgrade_star_count: int | None = None,
can_be_upgraded: bool | None = None, text: str | None = None,
entities: list[MessageEntity] | None = None, is_private: bool |
None = None, **extra_data: Any)

Describes a service message about a regular gift that was sent or received.

Source: https://core.telegram.org/bots/api#giftinfo

gift: Gift

Information about the gift

2.3. Bot API 147

https://core.telegram.org/bots/api#generalforumtopicunhidden
https://core.telegram.org/bots/api#gift
https://core.telegram.org/bots/api#giftinfo

aiogram Documentation, Release 3.23.0

owned_gift_id: str | None

Optional. Unique identifier of the received gift for the bot; only present for gifts received on behalf of
business accounts

convert_star_count: int | None

Optional. Number of Telegram Stars that can be claimed by the receiver by converting the gift; omitted if
conversion to Telegram Stars is impossible

prepaid_upgrade_star_count: int | None

Optional. Number of Telegram Stars that were prepaid by the sender for the ability to upgrade the gift

can_be_upgraded: bool | None

Optional. True, if the gift can be upgraded to a unique gift

text: str | None

Optional. Text of the message that was added to the gift

entities: list[MessageEntity] | None

Optional. Special entities that appear in the text

is_private: bool | None

Optional. True, if the sender and gift text are shown only to the gift receiver; otherwise, everyone will be
able to see them

Gifts

class aiogram.types.gifts.Gifts(*, gifts: list[Gift], **extra_data: Any)
This object represent a list of gifts.

Source: https://core.telegram.org/bots/api#gifts

gifts: list[Gift]

The list of gifts

Giveaway

class aiogram.types.giveaway.Giveaway(*, chats: list[Chat], winners_selection_date: _datetime_serializer,
return_type=int, when_used=unless - none)], winner_count: int,
only_new_members: bool | None = None, has_public_winners:
bool | None = None, prize_description: str | None = None,
country_codes: list[str] | None = None, prize_star_count: int |
None = None, premium_subscription_month_count: int | None =
None, **extra_data: Any)

This object represents a message about a scheduled giveaway.

Source: https://core.telegram.org/bots/api#giveaway

chats: list[Chat]

The list of chats which the user must join to participate in the giveaway

winners_selection_date: DateTime

Point in time (Unix timestamp) when winners of the giveaway will be selected

148 Chapter 2. Contents

https://core.telegram.org/bots/api#gifts
https://core.telegram.org/bots/api#giveaway

aiogram Documentation, Release 3.23.0

winner_count: int

The number of users which are supposed to be selected as winners of the giveaway

only_new_members: bool | None

Optional. True, if only users who join the chats after the giveaway started should be eligible to win

has_public_winners: bool | None

Optional. True, if the list of giveaway winners will be visible to everyone

prize_description: str | None

Optional. Description of additional giveaway prize

country_codes: list[str] | None

Optional. A list of two-letter ISO 3166-1 alpha-2 country codes indicating the countries from which eligible
users for the giveaway must come. If empty, then all users can participate in the giveaway. Users with a
phone number that was bought on Fragment can always participate in giveaways.

prize_star_count: int | None

Optional. The number of Telegram Stars to be split between giveaway winners; for Telegram Star giveaways
only

premium_subscription_month_count: int | None

Optional. The number of months the Telegram Premium subscription won from the giveaway will be active
for; for Telegram Premium giveaways only

GiveawayCompleted

class aiogram.types.giveaway_completed.GiveawayCompleted(*, winner_count: int,
unclaimed_prize_count: int | None =
None, giveaway_message: Message |
None = None, is_star_giveaway: bool |
None = None, **extra_data: Any)

This object represents a service message about the completion of a giveaway without public winners.

Source: https://core.telegram.org/bots/api#giveawaycompleted

winner_count: int

Number of winners in the giveaway

unclaimed_prize_count: int | None

Optional. Number of undistributed prizes

giveaway_message: Message | None

Optional. Message with the giveaway that was completed, if it wasn’t deleted

is_star_giveaway: bool | None

Optional. True, if the giveaway is a Telegram Star giveaway. Otherwise, currently, the giveaway is a
Telegram Premium giveaway.

2.3. Bot API 149

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://core.telegram.org/bots/api#giveawaycompleted

aiogram Documentation, Release 3.23.0

GiveawayCreated

class aiogram.types.giveaway_created.GiveawayCreated(*, prize_star_count: int | None = None,
**extra_data: Any)

This object represents a service message about the creation of a scheduled giveaway.

Source: https://core.telegram.org/bots/api#giveawaycreated

prize_star_count: int | None

Optional. The number of Telegram Stars to be split between giveaway winners; for Telegram Star giveaways
only

GiveawayWinners

class aiogram.types.giveaway_winners.GiveawayWinners(*, chat: Chat, giveaway_message_id: int,
winners_selection_date: _datetime_serializer,
return_type=int, when_used=unless - none)],
winner_count: int, winners: list[User],
additional_chat_count: int | None = None,
prize_star_count: int | None = None,
premium_subscription_month_count: int |
None = None, unclaimed_prize_count: int |
None = None, only_new_members: bool | None
= None, was_refunded: bool | None = None,
prize_description: str | None = None,
**extra_data: Any)

This object represents a message about the completion of a giveaway with public winners.

Source: https://core.telegram.org/bots/api#giveawaywinners

chat: Chat

The chat that created the giveaway

giveaway_message_id: int

Identifier of the message with the giveaway in the chat

winners_selection_date: DateTime

Point in time (Unix timestamp) when winners of the giveaway were selected

winner_count: int

Total number of winners in the giveaway

winners: list[User]

List of up to 100 winners of the giveaway

additional_chat_count: int | None

Optional. The number of other chats the user had to join in order to be eligible for the giveaway

prize_star_count: int | None

Optional. The number of Telegram Stars that were split between giveaway winners; for Telegram Star
giveaways only

premium_subscription_month_count: int | None

Optional. The number of months the Telegram Premium subscription won from the giveaway will be active
for; for Telegram Premium giveaways only

150 Chapter 2. Contents

https://core.telegram.org/bots/api#giveawaycreated
https://core.telegram.org/bots/api#giveawaywinners

aiogram Documentation, Release 3.23.0

unclaimed_prize_count: int | None

Optional. Number of undistributed prizes

only_new_members: bool | None

Optional. True, if only users who had joined the chats after the giveaway started were eligible to win

was_refunded: bool | None

Optional. True, if the giveaway was canceled because the payment for it was refunded

prize_description: str | None

Optional. Description of additional giveaway prize

InaccessibleMessage

class aiogram.types.inaccessible_message.InaccessibleMessage(*, chat: Chat, message_id: int, date:
Literal[0] = 0, **extra_data: Any)

This object describes a message that was deleted or is otherwise inaccessible to the bot.

Source: https://core.telegram.org/bots/api#inaccessiblemessage

chat: Chat

Chat the message belonged to

message_id: int

Unique message identifier inside the chat

date: Literal[0]

Always 0. The field can be used to differentiate regular and inaccessible messages.

answer(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None, link_preview_options:
Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None, message_effect_id:
Optional[str] = None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs:
Any)→ SendMessage

Shortcut for method aiogram.methods.send_message.SendMessage will automatically fill method at-
tributes:

• chat_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendmessage

Parameters

• text – Text of the message to be sent, 1-4096 characters after entities parsing

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

2.3. Bot API 151

https://core.telegram.org/bots/api#inaccessiblemessage
https://core.telegram.org/bots/api#sendmessage

aiogram Documentation, Release 3.23.0

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• disable_web_page_preview – Disables link previews for links in this message

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_message.SendMessage

reply(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None, link_preview_options:
Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None, message_effect_id:
Optional[str] = None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool]
= None, disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, **kwargs: Any)→ SendMessage

Shortcut for method aiogram.methods.send_message.SendMessage will automatically fill method at-
tributes:

• chat_id

• reply_parameters

152 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Use this method to send text messages. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendmessage

Parameters

• text – Text of the message to be sent, 1-4096 characters after entities parsing

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• disable_web_page_preview – Disables link previews for links in this message

Returns
instance of method aiogram.methods.send_message.SendMessage

2.3. Bot API 153

https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_animation(animation: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, width: Optional[int] = None, height:
Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] =
None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>,
has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendAnimation

Shortcut for method aiogram.methods.send_animation.SendAnimation will automatically fill
method attributes:

• chat_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success,
the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to
50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

Parameters

• animation – Animation to send. Pass a file_id as String to send an animation that exists
on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an animation from the Internet, or upload a new animation using multipart/form-data.
More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent animation in seconds

• width – Animation width

• height – Animation height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Animation caption (may also be used when resending animation by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the animation caption. See formatting options
for more details.

154 Chapter 2. Contents

https://core.telegram.org/bots/api#sendanimation
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_animation.SendAnimation

reply_animation(animation: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, width: Optional[int] = None, height:
Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] =
None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>,
has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, **kwargs: Any)→ SendAnimation

Shortcut for method aiogram.methods.send_animation.SendAnimation will automatically fill
method attributes:

• chat_id

• reply_parameters

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success,
the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to
50 MB in size, this limit may be changed in the future.

2.3. Bot API 155

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Source: https://core.telegram.org/bots/api#sendanimation

Parameters

• animation – Animation to send. Pass a file_id as String to send an animation that exists
on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an animation from the Internet, or upload a new animation using multipart/form-data.
More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent animation in seconds

• width – Animation width

• height – Animation height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Animation caption (may also be used when resending animation by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the animation caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

156 Chapter 2. Contents

https://core.telegram.org/bots/api#sendanimation
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_animation.SendAnimation

answer_audio(audio: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None,
thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendAudio

Shortcut for method aiogram.methods.send_audio.SendAudio will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your
audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is
returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

Parameters

• audio – Audio file to send. Pass a file_id as String to send an audio file that exists on
the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an audio file from the Internet, or upload a new one using multipart/form-data. More
information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Audio caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the audio caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the audio in seconds

• performer – Performer

2.3. Bot API 157

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendaudio
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• title – Track name

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_audio.SendAudio

reply_audio(audio: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption: Optional[str]
= None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, duration: Optional[int] = None,
performer: Optional[str] = None, title: Optional[str] = None, thumbnail: Optional[InputFile]
= None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendAudio

Shortcut for method aiogram.methods.send_audio.SendAudio will automatically fill method at-
tributes:

• chat_id

• reply_parameters

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your
audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is
returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

158 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Source: https://core.telegram.org/bots/api#sendaudio

Parameters

• audio – Audio file to send. Pass a file_id as String to send an audio file that exists on
the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an audio file from the Internet, or upload a new one using multipart/form-data. More
information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Audio caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the audio caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the audio in seconds

• performer – Performer

• title – Track name

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

2.3. Bot API 159

https://core.telegram.org/bots/api#sendaudio
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.send_audio.SendAudio

answer_contact(phone_number: str, first_name: str, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, last_name: Optional[str] = None, vcard: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendContact

Shortcut for method aiogram.methods.send_contact.SendContact will automatically fill method
attributes:

• chat_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendcontact

Parameters

• phone_number – Contact’s phone number

• first_name – Contact’s first name

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• last_name – Contact’s last name

• vcard – Additional data about the contact in the form of a vCard, 0-2048 bytes

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

160 Chapter 2. Contents

https://core.telegram.org/bots/api#sendcontact
https://en.wikipedia.org/wiki/VCard
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_contact.SendContact

reply_contact(phone_number: str, first_name: str, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion]
= None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→
SendContact

Shortcut for method aiogram.methods.send_contact.SendContact will automatically fill method
attributes:

• chat_id

• reply_parameters

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendcontact

Parameters

• phone_number – Contact’s phone number

• first_name – Contact’s first name

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• last_name – Contact’s last name

• vcard – Additional data about the contact in the form of a vCard, 0-2048 bytes

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

2.3. Bot API 161

https://core.telegram.org/bots/api#sendcontact
https://en.wikipedia.org/wiki/VCard
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_contact.SendContact

answer_document(document: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, disable_content_type_detection:
Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendDocument

Shortcut for method aiogram.methods.send_document.SendDocument will automatically fill method
attributes:

• chat_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#senddocument

Parameters

• document – File to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from
the Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Document caption (may also be used when resending documents by file_id),
0-1024 characters after entities parsing

162 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddocument

aiogram Documentation, Release 3.23.0

• parse_mode – Mode for parsing entities in the document caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• disable_content_type_detection – Disables automatic server-side content type de-
tection for files uploaded using multipart/form-data

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_document.SendDocument

reply_document(document: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, disable_content_type_detection: Optional[bool] =
None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendDocument

Shortcut for method aiogram.methods.send_document.SendDocument will automatically fill method
attributes:

• chat_id

• reply_parameters

Use this method to send general files. On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#senddocument

2.3. Bot API 163

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddocument

aiogram Documentation, Release 3.23.0

Parameters

• document – File to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from
the Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Document caption (may also be used when resending documents by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the document caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• disable_content_type_detection – Disables automatic server-side content type de-
tection for files uploaded using multipart/form-data

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_document.SendDocument

164 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

answer_game(game_short_name: str, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendGame

Shortcut for method aiogram.methods.send_game.SendGame will automatically fill method attributes:

• chat_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

Parameters

• game_short_name – Short name of the game, serves as the unique identifier for the game.
Set up your games via @BotFather.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Play
game_title’ button will be shown. If not empty, the first button must launch the game.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_game.SendGame

reply_game(game_short_name: str, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, reply_markup:
Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendGame

Shortcut for method aiogram.methods.send_game.SendGame will automatically fill method attributes:

• chat_id

• reply_parameters

2.3. Bot API 165

https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

Parameters

• game_short_name – Short name of the game, serves as the unique identifier for the game.
Set up your games via @BotFather.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Play
game_title’ button will be shown. If not empty, the first button must launch the game.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_game.SendGame

answer_invoice(title: str, description: str, payload: str, currency: str, prices: list[LabeledPrice],
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, provider_token: Optional[str] = None, max_tip_amount: Optional[int] = None,
suggested_tip_amounts: Optional[list[int]] = None, start_parameter: Optional[str] =
None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size:
Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] =
None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None,
need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None,
send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider:
Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendInvoice

Shortcut for method aiogram.methods.send_invoice.SendInvoice will automatically fill method at-
tributes:

• chat_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

166 Chapter 2. Contents

https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#sendinvoice

aiogram Documentation, Release 3.23.0

Parameters

• title – Product name, 1-32 characters

• description – Product description, 1-255 characters

• payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user,
use it for your internal processes.

• currency – Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for
payments in Telegram Stars.

• prices – Price breakdown, a JSON-serialized list of components (e.g. product price,
tax, discount, delivery cost, delivery tax, bonus, etc.). Must contain exactly one item for
payments in Telegram Stars.

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• provider_token – Payment provider token, obtained via @BotFather. Pass an empty
string for payments in Telegram Stars.

• max_tip_amount – The maximum accepted amount for tips in the smallest units of the
currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass
max_tip_amount = 145. See the exp parameter in currencies.json, it shows the number
of digits past the decimal point for each currency (2 for the majority of currencies). Defaults
to 0. Not supported for payments in Telegram Stars.

• suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the
smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts
can be specified. The suggested tip amounts must be positive, passed in a strictly increased
order and must not exceed max_tip_amount.

• start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of
the sent message will have a Pay button, allowing multiple users to pay directly from the
forwarded message, using the same invoice. If non-empty, forwarded copies of the sent
message will have a URL button with a deep link to the bot (instead of a Pay button), with
the value used as the start parameter

• provider_data – JSON-serialized data about the invoice, which will be shared with the
payment provider. A detailed description of required fields should be provided by the pay-
ment provider.

• photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a
marketing image for a service. People like it better when they see what they are paying for.

• photo_size – Photo size in bytes

• photo_width – Photo width

• photo_height – Photo height

• need_name – Pass True if you require the user’s full name to complete the order. Ignored
for payments in Telegram Stars.

• need_phone_number – Pass True if you require the user’s phone number to complete the
order. Ignored for payments in Telegram Stars.

• need_email – Pass True if you require the user’s email address to complete the order.
Ignored for payments in Telegram Stars.

2.3. Bot API 167

https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

• need_shipping_address – Pass True if you require the user’s shipping address to com-
plete the order. Ignored for payments in Telegram Stars.

• send_phone_number_to_provider – Pass True if the user’s phone number should be
sent to the provider. Ignored for payments in Telegram Stars.

• send_email_to_provider – Pass True if the user’s email address should be sent to the
provider. Ignored for payments in Telegram Stars.

• is_flexible – Pass True if the final price depends on the shipping method. Ignored for
payments in Telegram Stars.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Pay
total price’ button will be shown. If not empty, the first button must be a Pay button.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_invoice.SendInvoice

reply_invoice(title: str, description: str, payload: str, currency: str, prices: list[LabeledPrice],
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, provider_token: Optional[str] = None, max_tip_amount: Optional[int] = None,
suggested_tip_amounts: Optional[list[int]] = None, start_parameter: Optional[str] = None,
provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size:
Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] =
None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None,
need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None,
send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider:
Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup:
Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendInvoice

Shortcut for method aiogram.methods.send_invoice.SendInvoice will automatically fill method at-
tributes:

• chat_id

168 Chapter 2. Contents

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

• reply_parameters

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

Parameters

• title – Product name, 1-32 characters

• description – Product description, 1-255 characters

• payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user,
use it for your internal processes.

• currency – Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for
payments in Telegram Stars.

• prices – Price breakdown, a JSON-serialized list of components (e.g. product price,
tax, discount, delivery cost, delivery tax, bonus, etc.). Must contain exactly one item for
payments in Telegram Stars.

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• provider_token – Payment provider token, obtained via @BotFather. Pass an empty
string for payments in Telegram Stars.

• max_tip_amount – The maximum accepted amount for tips in the smallest units of the
currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass
max_tip_amount = 145. See the exp parameter in currencies.json, it shows the number
of digits past the decimal point for each currency (2 for the majority of currencies). Defaults
to 0. Not supported for payments in Telegram Stars.

• suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the
smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts
can be specified. The suggested tip amounts must be positive, passed in a strictly increased
order and must not exceed max_tip_amount.

• start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of
the sent message will have a Pay button, allowing multiple users to pay directly from the
forwarded message, using the same invoice. If non-empty, forwarded copies of the sent
message will have a URL button with a deep link to the bot (instead of a Pay button), with
the value used as the start parameter

• provider_data – JSON-serialized data about the invoice, which will be shared with the
payment provider. A detailed description of required fields should be provided by the pay-
ment provider.

• photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a
marketing image for a service. People like it better when they see what they are paying for.

• photo_size – Photo size in bytes

• photo_width – Photo width

• photo_height – Photo height

• need_name – Pass True if you require the user’s full name to complete the order. Ignored
for payments in Telegram Stars.

2.3. Bot API 169

https://core.telegram.org/bots/api#sendinvoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

• need_phone_number – Pass True if you require the user’s phone number to complete the
order. Ignored for payments in Telegram Stars.

• need_email – Pass True if you require the user’s email address to complete the order.
Ignored for payments in Telegram Stars.

• need_shipping_address – Pass True if you require the user’s shipping address to com-
plete the order. Ignored for payments in Telegram Stars.

• send_phone_number_to_provider – Pass True if the user’s phone number should be
sent to the provider. Ignored for payments in Telegram Stars.

• send_email_to_provider – Pass True if the user’s email address should be sent to the
provider. Ignored for payments in Telegram Stars.

• is_flexible – Pass True if the final price depends on the shipping method. Ignored for
payments in Telegram Stars.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Pay
total price’ button will be shown. If not empty, the first button must be a Pay button.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_invoice.SendInvoice

answer_location(latitude: float, longitude: float, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None,
heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendLocation

Shortcut for method aiogram.methods.send_location.SendLocation will automatically fill method
attributes:

• chat_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is
returned.

170 Chapter 2. Contents

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Source: https://core.telegram.org/bots/api#sendlocation

Parameters

• latitude – Latitude of the location

• longitude – Longitude of the location

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• live_period – Period in seconds during which the location will be updated (see Live
Locations, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be
edited indefinitely.

• heading – For live locations, a direction in which the user is moving, in degrees. Must be
between 1 and 360 if specified.

• proximity_alert_radius – For live locations, a maximum distance for proximity alerts
about approaching another chat member, in meters. Must be between 1 and 100000 if
specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_location.SendLocation

2.3. Bot API 171

https://core.telegram.org/bots/api#sendlocation
https://telegram.org/blog/live-locations
https://telegram.org/blog/live-locations
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

reply_location(latitude: float, longitude: float, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None,
heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendLocation

Shortcut for method aiogram.methods.send_location.SendLocation will automatically fill method
attributes:

• chat_id

• reply_parameters

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendlocation

Parameters

• latitude – Latitude of the location

• longitude – Longitude of the location

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• live_period – Period in seconds during which the location will be updated (see Live
Locations, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be
edited indefinitely.

• heading – For live locations, a direction in which the user is moving, in degrees. Must be
between 1 and 360 if specified.

• proximity_alert_radius – For live locations, a maximum distance for proximity alerts
about approaching another chat member, in meters. Must be between 1 and 100000 if
specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

172 Chapter 2. Contents

https://core.telegram.org/bots/api#sendlocation
https://telegram.org/blog/live-locations
https://telegram.org/blog/live-locations
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_location.SendLocation

answer_media_group(media: list[MediaUnion], business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, reply_parameters: Optional[ReplyParameters] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendMediaGroup

Shortcut for method aiogram.methods.send_media_group.SendMediaGroup will automatically fill
method attributes:

• chat_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and
audio files can be only grouped in an album with messages of the same type. On success, an array of
aiogram.types.message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

Parameters

• media – A JSON-serialized array describing messages to be sent, must include 2-10 items

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sages will be sent; required if the messages are sent to a direct messages chat

• disable_notification – Sends messages silently. Users will receive a notification with
no sound.

• protect_content – Protects the contents of the sent messages from forwarding and sav-
ing

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

2.3. Bot API 173

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_to_message_id – If the messages are a reply, ID of the original message

Returns
instance of method aiogram.methods.send_media_group.SendMediaGroup

reply_media_group(media: list[MediaUnion], business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→
SendMediaGroup

Shortcut for method aiogram.methods.send_media_group.SendMediaGroup will automatically fill
method attributes:

• chat_id

• reply_parameters

Use this method to send a group of photos, videos, documents or audios as an album. Documents and
audio files can be only grouped in an album with messages of the same type. On success, an array of
aiogram.types.message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

Parameters

• media – A JSON-serialized array describing messages to be sent, must include 2-10 items

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sages will be sent; required if the messages are sent to a direct messages chat

• disable_notification – Sends messages silently. Users will receive a notification with
no sound.

• protect_content – Protects the contents of the sent messages from forwarding and sav-
ing

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_media_group.SendMediaGroup

174 Chapter 2. Contents

https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

answer_photo(photo: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendPhoto

Shortcut for method aiogram.methods.send_photo.SendPhoto will automatically fill method at-
tributes:

• chat_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

Parameters

• photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from
the Internet, or upload a new photo using multipart/form-data. The photo must be at most
10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and
height ratio must be at most 20. More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Photo caption (may also be used when resending photos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the photo caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

2.3. Bot API 175

https://core.telegram.org/bots/api#sendphoto
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_photo.SendPhoto

reply_photo(photo: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption: Optional[str]
= None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>, has_spoiler:
Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendPhoto

Shortcut for method aiogram.methods.send_photo.SendPhoto will automatically fill method at-
tributes:

• chat_id

• reply_parameters

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

Parameters

• photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from
the Internet, or upload a new photo using multipart/form-data. The photo must be at most
10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and
height ratio must be at most 20. More information on Sending Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Photo caption (may also be used when resending photos by file_id), 0-1024
characters after entities parsing

176 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendphoto

aiogram Documentation, Release 3.23.0

• parse_mode – Mode for parsing entities in the photo caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_photo.SendPhoto

answer_poll(question: str, options: list[InputPollOptionUnion], business_connection_id: Optional[str] =
None, message_thread_id: Optional[int] = None, question_parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, question_entities: Optional[list[MessageEntity]] =
None, is_anonymous: Optional[bool] = None, type: Optional[str] = None,
allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None,
explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, explanation_entities: Optional[list[MessageEntity]] = None,
open_period: Optional[int] = None, close_date: Optional[DateTimeUnion] = None,
is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendPoll

Shortcut for method aiogram.methods.send_poll.SendPoll will automatically fill method attributes:

• chat_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendpoll

Parameters

2.3. Bot API 177

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendpoll

aiogram Documentation, Release 3.23.0

• question – Poll question, 1-300 characters

• options – A JSON-serialized list of 2-12 answer options

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• question_parse_mode – Mode for parsing entities in the question. See formatting op-
tions for more details. Currently, only custom emoji entities are allowed

• question_entities – A JSON-serialized list of special entities that appear in the poll
question. It can be specified instead of question_parse_mode

• is_anonymous – True, if the poll needs to be anonymous, defaults to True

• type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

• allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls
in quiz mode, defaults to False

• correct_option_id – 0-based identifier of the correct answer option, required for polls
in quiz mode

• explanation – Text that is shown when a user chooses an incorrect answer or taps on
the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities
parsing

• explanation_parse_mode – Mode for parsing entities in the explanation. See formatting
options for more details.

• explanation_entities – A JSON-serialized list of special entities that appear in the
poll explanation. It can be specified instead of explanation_parse_mode

• open_period – Amount of time in seconds the poll will be active after creation, 5-600.
Can’t be used together with close_date.

• close_date – Point in time (Unix timestamp) when the poll will be automatically closed.
Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with
open_period.

• is_closed – Pass True if the poll needs to be immediately closed. This can be useful for
poll preview.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

178 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_poll.SendPoll

reply_poll(question: str, options: list[InputPollOptionUnion], business_connection_id: Optional[str] =
None, message_thread_id: Optional[int] = None, question_parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, question_entities: Optional[list[MessageEntity]] = None,
is_anonymous: Optional[bool] = None, type: Optional[str] = None, allows_multiple_answers:
Optional[bool] = None, correct_option_id: Optional[int] = None, explanation: Optional[str] =
None, explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
explanation_entities: Optional[list[MessageEntity]] = None, open_period: Optional[int] =
None, close_date: Optional[DateTimeUnion] = None, is_closed: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendPoll

Shortcut for method aiogram.methods.send_poll.SendPoll will automatically fill method attributes:

• chat_id

• reply_parameters

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendpoll

Parameters

• question – Poll question, 1-300 characters

• options – A JSON-serialized list of 2-12 answer options

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• question_parse_mode – Mode for parsing entities in the question. See formatting op-
tions for more details. Currently, only custom emoji entities are allowed

• question_entities – A JSON-serialized list of special entities that appear in the poll
question. It can be specified instead of question_parse_mode

• is_anonymous – True, if the poll needs to be anonymous, defaults to True

• type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

• allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls
in quiz mode, defaults to False

• correct_option_id – 0-based identifier of the correct answer option, required for polls
in quiz mode

• explanation – Text that is shown when a user chooses an incorrect answer or taps on
the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities
parsing

2.3. Bot API 179

https://core.telegram.org/bots/api#sendpoll
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• explanation_parse_mode – Mode for parsing entities in the explanation. See formatting
options for more details.

• explanation_entities – A JSON-serialized list of special entities that appear in the
poll explanation. It can be specified instead of explanation_parse_mode

• open_period – Amount of time in seconds the poll will be active after creation, 5-600.
Can’t be used together with close_date.

• close_date – Point in time (Unix timestamp) when the poll will be automatically closed.
Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with
open_period.

• is_closed – Pass True if the poll needs to be immediately closed. This can be useful for
poll preview.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_poll.SendPoll

answer_dice(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, emoji: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters] =
None, reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendDice

Shortcut for method aiogram.methods.send_dice.SendDice will automatically fill method attributes:

• chat_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

Parameters

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

180 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddice

aiogram Documentation, Release 3.23.0

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘’,
‘’, ‘’, ‘’, ‘’, or ‘’. Dice can have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values
1-64 for ‘’. Defaults to ‘’

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_dice.SendDice

reply_dice(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None,
direct_messages_topic_id: Optional[int] = None, emoji: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendDice

Shortcut for method aiogram.methods.send_dice.SendDice will automatically fill method attributes:

• chat_id

• reply_parameters

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

Parameters

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

2.3. Bot API 181

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddice

aiogram Documentation, Release 3.23.0

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘’,
‘’, ‘’, ‘’, ‘’, or ‘’. Dice can have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values
1-64 for ‘’. Defaults to ‘’

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_dice.SendDice

answer_sticker(sticker: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendSticker

Shortcut for method aiogram.methods.send_sticker.SendSticker will automatically fill method
attributes:

• chat_id

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent
aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

Parameters

• sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker
from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-
data. More information on Sending Files ». Video and animated stickers can’t be sent via
an HTTP URL.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

182 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker

aiogram Documentation, Release 3.23.0

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji associated with the sticker; only for just uploaded stickers

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_sticker.SendSticker

reply_sticker(sticker: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendSticker

Shortcut for method aiogram.methods.send_sticker.SendSticker will automatically fill method
attributes:

• chat_id

• reply_parameters

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent
aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

Parameters

• sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker

2.3. Bot API 183

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker

aiogram Documentation, Release 3.23.0

from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-
data. More information on Sending Files ». Video and animated stickers can’t be sent via
an HTTP URL.

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji associated with the sticker; only for just uploaded stickers

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_sticker.SendSticker

answer_venue(latitude: float, longitude: float, title: str, address: str, business_connection_id: Optional[str]
= None, message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None,
google_place_id: Optional[str] = None, google_place_type: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVenue

Shortcut for method aiogram.methods.send_venue.SendVenue will automatically fill method at-
tributes:

• chat_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.
Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

184 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvenue

aiogram Documentation, Release 3.23.0

Parameters

• latitude – Latitude of the venue

• longitude – Longitude of the venue

• title – Name of the venue

• address – Address of the venue

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• foursquare_id – Foursquare identifier of the venue

• foursquare_type – Foursquare type of the venue, if known. (For example,
‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

• google_place_id – Google Places identifier of the venue

• google_place_type – Google Places type of the venue. (See supported types.)

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_venue.SendVenue

2.3. Bot API 185

https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

reply_venue(latitude: float, longitude: float, title: str, address: str, business_connection_id: Optional[str]
= None, message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int]
= None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None,
google_place_id: Optional[str] = None, google_place_type: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendVenue

Shortcut for method aiogram.methods.send_venue.SendVenue will automatically fill method at-
tributes:

• chat_id

• reply_parameters

Use this method to send information about a venue. On success, the sent aiogram.types.message.
Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

Parameters

• latitude – Latitude of the venue

• longitude – Longitude of the venue

• title – Name of the venue

• address – Address of the venue

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• foursquare_id – Foursquare identifier of the venue

• foursquare_type – Foursquare type of the venue, if known. (For example,
‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

• google_place_id – Google Places identifier of the venue

• google_place_type – Google Places type of the venue. (See supported types.)

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

186 Chapter 2. Contents

https://core.telegram.org/bots/api#sendvenue
https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_venue.SendVenue

answer_video(video: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None,
thumbnail: Optional[InputFile] = None, cover: Optional[InputFileUnion] = None,
start_timestamp: Optional[DateTimeUnion] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media: Optional[Union[bool,
Default]] = <Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVideo

Shortcut for method aiogram.methods.send_video.SendVideo will automatically fill method at-
tributes:

• chat_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent
as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message
is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#sendvideo

Parameters

• video – Video to send. Pass a file_id as String to send a video that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the
Internet, or upload a new video using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• width – Video width

• height – Video height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB

2.3. Bot API 187

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvideo

aiogram Documentation, Release 3.23.0

in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• cover – Cover for the video in the message. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the
Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-
data under <file_attach_name> name. More information on Sending Files »

• start_timestamp – Start timestamp for the video in the message

• caption – Video caption (may also be used when resending videos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the video caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the video needs to be covered with a spoiler animation

• supports_streaming – Pass True if the uploaded video is suitable for streaming

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video.SendVideo

188 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

reply_video(video: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail:
Optional[InputFile] = None, cover: Optional[InputFileUnion] = None, start_timestamp:
Optional[DateTimeUnion] = None, caption: Optional[str] = None, parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media: Optional[Union[bool,
Default]] = <Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
**kwargs: Any)→ SendVideo

Shortcut for method aiogram.methods.send_video.SendVideo will automatically fill method at-
tributes:

• chat_id

• reply_parameters

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent
as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message
is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#sendvideo

Parameters

• video – Video to send. Pass a file_id as String to send a video that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the
Internet, or upload a new video using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• width – Video width

• height – Video height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• cover – Cover for the video in the message. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the

2.3. Bot API 189

https://core.telegram.org/bots/api#sendvideo

aiogram Documentation, Release 3.23.0

Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-
data under <file_attach_name> name. More information on Sending Files »

• start_timestamp – Start timestamp for the video in the message

• caption – Video caption (may also be used when resending videos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the video caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the video needs to be covered with a spoiler animation

• supports_streaming – Pass True if the uploaded video is suitable for streaming

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_video.SendVideo

answer_video_note(video_note: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, length: Optional[int] = None, thumbnail:
Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool]
= None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendVideoNote

Shortcut for method aiogram.methods.send_video_note.SendVideoNote will automatically fill
method attributes:

• chat_id

190 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this
method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

Parameters

• video_note – Video note to send. Pass a file_id as String to send a video note that exists
on the Telegram servers (recommended) or upload a new video using multipart/form-data.
More information on Sending Files ». Sending video notes by a URL is currently unsup-
ported

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• length – Video width and height, i.e. diameter of the video message

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video_note.SendVideoNote

2.3. Bot API 191

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

reply_video_note(video_note: InputFileUnion, business_connection_id: Optional[str] = None,
message_thread_id: Optional[int] = None, direct_messages_topic_id: Optional[int] =
None, duration: Optional[int] = None, length: Optional[int] = None, thumbnail:
Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, **kwargs: Any)→ SendVideoNote

Shortcut for method aiogram.methods.send_video_note.SendVideoNote will automatically fill
method attributes:

• chat_id

• reply_parameters

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this
method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

Parameters

• video_note – Video note to send. Pass a file_id as String to send a video note that exists
on the Telegram servers (recommended) or upload a new video using multipart/form-data.
More information on Sending Files ». Sending video notes by a URL is currently unsup-
ported

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• length – Video width and height, i.e. diameter of the video message

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

192 Chapter 2. Contents

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_video_note.SendVideoNote

answer_voice(voice: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVoice

Shortcut for method aiogram.methods.send_voice.SendVoice will automatically fill method at-
tributes:

• chat_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice
message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format,
or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.
document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can
currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

Parameters

• voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the
Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Voice message caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the voice message caption. See formatting
options for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

2.3. Bot API 193

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvoice
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• duration – Duration of the voice message in seconds

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_voice.SendVoice

reply_voice(voice: InputFileUnion, business_connection_id: Optional[str] = None, message_thread_id:
Optional[int] = None, direct_messages_topic_id: Optional[int] = None, caption: Optional[str]
= None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, duration: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendVoice

Shortcut for method aiogram.methods.send_voice.SendVoice will automatically fill method at-
tributes:

• chat_id

• reply_parameters

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice
message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format,
or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.
document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can
currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

Parameters

• voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the
Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

194 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvoice

aiogram Documentation, Release 3.23.0

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Voice message caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the voice message caption. See formatting
options for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the voice message in seconds

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_voice.SendVoice

answer_paid_media(star_count: int, media: list[InputPaidMediaUnion], business_connection_id: str |
None = None, message_thread_id: int | None = None, direct_messages_topic_id: int |
None = None, payload: str | None = None, caption: str | None = None, parse_mode:
str | None = None, caption_entities: list[MessageEntity] | None = None,
show_caption_above_media: bool | None = None, disable_notification: bool | None =
None, protect_content: bool | None = None, allow_paid_broadcast: bool | None =
None, suggested_post_parameters: SuggestedPostParameters | None = None,
reply_parameters: ReplyParameters | None = None, reply_markup:
ReplyMarkupUnion | None = None, **kwargs: Any)→ SendPaidMedia

Shortcut for method aiogram.methods.send_paid_media.SendPaidMedia will automatically fill
method attributes:

• chat_id

Use this method to send paid media. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpaidmedia

2.3. Bot API 195

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendpaidmedia

aiogram Documentation, Release 3.23.0

Parameters

• star_count – The number of Telegram Stars that must be paid to buy access to the media;
1-10000

• media – A JSON-serialized array describing the media to be sent; up to 10 items

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• payload – Bot-defined paid media payload, 0-128 bytes. This will not be displayed to the
user, use it for your internal processes.

• caption – Media caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the media caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

Returns
instance of method aiogram.methods.send_paid_media.SendPaidMedia

reply_paid_media(star_count: int, media: list[InputPaidMediaUnion], business_connection_id: str | None
= None, message_thread_id: int | None = None, direct_messages_topic_id: int | None =
None, payload: str | None = None, caption: str | None = None, parse_mode: str | None
= None, caption_entities: list[MessageEntity] | None = None,
show_caption_above_media: bool | None = None, disable_notification: bool | None =
None, protect_content: bool | None = None, allow_paid_broadcast: bool | None = None,
suggested_post_parameters: SuggestedPostParameters | None = None, reply_markup:
ReplyMarkupUnion | None = None, **kwargs: Any)→ SendPaidMedia

Shortcut for method aiogram.methods.send_paid_media.SendPaidMedia will automatically fill
method attributes:

196 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• chat_id

• reply_parameters

Use this method to send paid media. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpaidmedia

Parameters

• star_count – The number of Telegram Stars that must be paid to buy access to the media;
1-10000

• media – A JSON-serialized array describing the media to be sent; up to 10 items

• business_connection_id – Unique identifier of the business connection on behalf of
which the message will be sent

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• payload – Bot-defined paid media payload, 0-128 bytes. This will not be displayed to the
user, use it for your internal processes.

• caption – Media caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the media caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

Returns
instance of method aiogram.methods.send_paid_media.SendPaidMedia

as_reply_parameters(allow_sending_without_reply: Optional[Union[bool, Default]] =
<Default('allow_sending_without_reply')>, quote: Optional[str] = None,
quote_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
quote_entities: Optional[List[MessageEntity]] = None, quote_position:
Optional[int] = None)→ ReplyParameters

2.3. Bot API 197

https://core.telegram.org/bots/api#sendpaidmedia
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

InlineKeyboardButton

class aiogram.types.inline_keyboard_button.InlineKeyboardButton(*, text: str, url: str | None =
None, callback_data: str | None
= None, web_app: WebAppInfo
| None = None, login_url:
LoginUrl | None = None,
switch_inline_query: str | None
= None,
switch_inline_query_current_chat:
str | None = None,
switch_inline_query_chosen_chat:
SwitchInlineQueryChosenChat |
None = None, copy_text:
CopyTextButton | None = None,
callback_game: CallbackGame |
None = None, pay: bool | None
= None, **extra_data: Any)

This object represents one button of an inline keyboard. Exactly one of the optional fields must be used to specify
type of the button.

Source: https://core.telegram.org/bots/api#inlinekeyboardbutton

text: str

Label text on the button

url: str | None

Optional. HTTP or tg:// URL to be opened when the button is pressed. Links tg://user?id=<user_id>
can be used to mention a user by their identifier without using a username, if this is allowed by their privacy
settings.

callback_data: str | None

Optional. Data to be sent in a callback query to the bot when the button is pressed, 1-64 bytes

web_app: WebAppInfo | None

Optional. Description of the Web App that will be launched when the user presses the button. The Web
App will be able to send an arbitrary message on behalf of the user using the method aiogram.methods.
answer_web_app_query.AnswerWebAppQuery. Available only in private chats between a user and the
bot. Not supported for messages sent on behalf of a Telegram Business account.

login_url: LoginUrl | None

Optional. An HTTPS URL used to automatically authorize the user. Can be used as a replacement for the
Telegram Login Widget.

switch_inline_query: str | None

Optional. If set, pressing the button will prompt the user to select one of their chats, open that chat and
insert the bot’s username and the specified inline query in the input field. May be empty, in which case just
the bot’s username will be inserted. Not supported for messages sent in channel direct messages chats and
on behalf of a Telegram Business account.

switch_inline_query_current_chat: str | None

Optional. If set, pressing the button will insert the bot’s username and the specified inline query in the
current chat’s input field. May be empty, in which case only the bot’s username will be inserted.

198 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinekeyboardbutton
https://core.telegram.org/bots/api#callbackquery
https://core.telegram.org/bots/webapps
https://core.telegram.org/widgets/login

aiogram Documentation, Release 3.23.0

switch_inline_query_chosen_chat: SwitchInlineQueryChosenChat | None

Optional. If set, pressing the button will prompt the user to select one of their chats of the specified type,
open that chat and insert the bot’s username and the specified inline query in the input field. Not supported
for messages sent in channel direct messages chats and on behalf of a Telegram Business account.

copy_text: CopyTextButton | None

Optional. Description of the button that copies the specified text to the clipboard.

callback_game: CallbackGame | None

Optional. Description of the game that will be launched when the user presses the button.

pay: bool | None

Optional. Specify True, to send a Pay button. Substrings ‘’ and ‘XTR’ in the buttons’s text will be replaced
with a Telegram Star icon.

InlineKeyboardMarkup

class aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup(*, inline_keyboard:
list[list[InlineKeyboardButton]],
**extra_data: Any)

This object represents an inline keyboard that appears right next to the message it belongs to.

Source: https://core.telegram.org/bots/api#inlinekeyboardmarkup

inline_keyboard: list[list[InlineKeyboardButton]]

Array of button rows, each represented by an Array of aiogram.types.inline_keyboard_button.
InlineKeyboardButton objects

InputChecklist

class aiogram.types.input_checklist.InputChecklist(*, title: str, tasks: list[InputChecklistTask],
parse_mode: str | None = None, title_entities:
list[MessageEntity] | None = None,
others_can_add_tasks: bool | None = None,
others_can_mark_tasks_as_done: bool | None =
None, **extra_data: Any)

Describes a checklist to create.

Source: https://core.telegram.org/bots/api#inputchecklist

title: str

Title of the checklist; 1-255 characters after entities parsing

tasks: list[InputChecklistTask]

List of 1-30 tasks in the checklist

parse_mode: str | None

Optional. Mode for parsing entities in the title. See formatting options for more details.

title_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the title, which can be specified instead of parse_mode.
Currently, only bold, italic, underline, strikethrough, spoiler, and custom_emoji entities are allowed.

2.3. Bot API 199

https://core.telegram.org/bots/api#payments
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#inlinekeyboardmarkup
https://core.telegram.org/bots/api#inputchecklist
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

others_can_add_tasks: bool | None

Optional. Pass True if other users can add tasks to the checklist

others_can_mark_tasks_as_done: bool | None

Optional. Pass True if other users can mark tasks as done or not done in the checklist

InputChecklistTask

class aiogram.types.input_checklist_task.InputChecklistTask(*, id: int, text: str, parse_mode: str |
None = None, text_entities:
list[MessageEntity] | None = None,
**extra_data: Any)

Describes a task to add to a checklist.

Source: https://core.telegram.org/bots/api#inputchecklisttask

id: int

Unique identifier of the task; must be positive and unique among all task identifiers currently present in the
checklist

text: str

Text of the task; 1-100 characters after entities parsing

parse_mode: str | None

Optional. Mode for parsing entities in the text. See formatting options for more details.

text_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the text, which can be specified instead of parse_mode.
Currently, only bold, italic, underline, strikethrough, spoiler, and custom_emoji entities are allowed.

InputFile

class aiogram.types.input_file.InputFile(filename: str | None = None, chunk_size: int = 65536)
This object represents the contents of a file to be uploaded. Must be posted using multipart/form-data in the usual
way that files are uploaded via the browser.

Source: https://core.telegram.org/bots/api#inputfile

abstract async read(bot: Bot)→ AsyncGenerator[bytes, None]

class aiogram.types.input_file.BufferedInputFile(file: bytes, filename: str, chunk_size: int = 65536)

classmethod from_file(path: str | Path, filename: str | None = None, chunk_size: int = 65536)→
BufferedInputFile

Create buffer from file

Parameters

• path – Path to file

• filename – Filename to be propagated to telegram. By default, will be parsed from path

• chunk_size – Uploading chunk size

Returns
instance of BufferedInputFile

200 Chapter 2. Contents

https://core.telegram.org/bots/api#inputchecklisttask
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#inputfile

aiogram Documentation, Release 3.23.0

async read(bot: Bot)→ AsyncGenerator[bytes, None]

class aiogram.types.input_file.FSInputFile(path: str | Path, filename: str | None = None, chunk_size: int
= 65536)

async read(bot: Bot)→ AsyncGenerator[bytes, None]

class aiogram.types.input_file.URLInputFile(url: str, headers: Dict[str, Any] | None = None, filename:
str | None = None, chunk_size: int = 65536, timeout: int =
30, bot: 'Bot' | None = None)

async read(bot: Bot)→ AsyncGenerator[bytes, None]

InputMedia

class aiogram.types.input_media.InputMedia(**extra_data: Any)
This object represents the content of a media message to be sent. It should be one of

• aiogram.types.input_media_animation.InputMediaAnimation

• aiogram.types.input_media_document.InputMediaDocument

• aiogram.types.input_media_audio.InputMediaAudio

• aiogram.types.input_media_photo.InputMediaPhoto

• aiogram.types.input_media_video.InputMediaVideo

Source: https://core.telegram.org/bots/api#inputmedia

InputMediaAnimation

class aiogram.types.input_media_animation.InputMediaAnimation(*, type: ~typ-
ing.Literal[InputMediaType.ANIMATION]
= InputMediaType.ANIMATION ,
media: str |
~aiogram.types.input_file.InputFile,
thumbnail:
~aiogram.types.input_file.InputFile
| None = None, caption: str | None
= None, parse_mode: str |
~aiogram.client.default.Default |
None = <Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
show_caption_above_media: bool |
~aiogram.client.default.Default |
None = <De-
fault('show_caption_above_media')>,
width: int | None = None, height:
int | None = None, duration: int |
None = None, has_spoiler: bool |
None = None, **extra_data:
~typing.Any)

2.3. Bot API 201

https://core.telegram.org/bots/api#inputmedia

aiogram Documentation, Release 3.23.0

Represents an animation file (GIF or H.264/MPEG-4 AVC video without sound) to be sent.

Source: https://core.telegram.org/bots/api#inputmediaanimation

type: Literal[InputMediaType.ANIMATION]

Type of the result, must be animation

media: InputFileUnion

File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP
URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name. More information on Sending Files »

thumbnail: InputFile | None

Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-
side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and
height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails
can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if
the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on
Sending Files »

caption: str | None

Optional. Caption of the animation to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the animation caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

width: int | None

Optional. Animation width

height: int | None

Optional. Animation height

duration: int | None

Optional. Animation duration in seconds

has_spoiler: bool | None

Optional. Pass True if the animation needs to be covered with a spoiler animation

InputMediaAudio

202 Chapter 2. Contents

https://core.telegram.org/bots/api#inputmediaanimation
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

class aiogram.types.input_media_audio.InputMediaAudio(*, type:
~typing.Literal[InputMediaType.AUDIO] =
InputMediaType.AUDIO, media: str |
~aiogram.types.input_file.InputFile,
thumbnail:
~aiogram.types.input_file.InputFile | None =
None, caption: str | None = None,
parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, duration: int | None = None,
performer: str | None = None, title: str | None
= None, **extra_data: ~typing.Any)

Represents an audio file to be treated as music to be sent.

Source: https://core.telegram.org/bots/api#inputmediaaudio

type: Literal[InputMediaType.AUDIO]

Type of the result, must be audio

media: InputFileUnion

File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP
URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name. More information on Sending Files »

thumbnail: InputFile | None

Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-
side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and
height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails
can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if
the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on
Sending Files »

caption: str | None

Optional. Caption of the audio to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the audio caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

duration: int | None

Optional. Duration of the audio in seconds

performer: str | None

Optional. Performer of the audio

title: str | None

Optional. Title of the audio

2.3. Bot API 203

https://core.telegram.org/bots/api#inputmediaaudio
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

InputMediaDocument

class aiogram.types.input_media_document.InputMediaDocument(*, type: ~typ-
ing.Literal[InputMediaType.DOCUMENT]
= InputMediaType.DOCUMENT ,
media: str |
~aiogram.types.input_file.InputFile,
thumbnail:
~aiogram.types.input_file.InputFile |
None = None, caption: str | None =
None, parse_mode: str |
~aiogram.client.default.Default | None
= <Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
disable_content_type_detection: bool
| None = None, **extra_data:
~typing.Any)

Represents a general file to be sent.

Source: https://core.telegram.org/bots/api#inputmediadocument

type: Literal[InputMediaType.DOCUMENT]

Type of the result, must be document

media: InputFileUnion

File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP
URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name. More information on Sending Files »

thumbnail: InputFile | None

Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-
side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and
height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails
can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if
the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on
Sending Files »

caption: str | None

Optional. Caption of the document to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the document caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

disable_content_type_detection: bool | None

Optional. Disables automatic server-side content type detection for files uploaded using multipart/form-
data. Always True, if the document is sent as part of an album.

204 Chapter 2. Contents

https://core.telegram.org/bots/api#inputmediadocument
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

InputMediaPhoto

class aiogram.types.input_media_photo.InputMediaPhoto(*, type:
~typing.Literal[InputMediaType.PHOTO] =
InputMediaType.PHOTO, media: str |
~aiogram.types.input_file.InputFile, caption:
str | None = None, parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, show_caption_above_media:
bool | ~aiogram.client.default.Default | None
= <Default('show_caption_above_media')>,
has_spoiler: bool | None = None,
**extra_data: ~typing.Any)

Represents a photo to be sent.

Source: https://core.telegram.org/bots/api#inputmediaphoto

type: Literal[InputMediaType.PHOTO]

Type of the result, must be photo

media: InputFileUnion

File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP
URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name. More information on Sending Files »

caption: str | None

Optional. Caption of the photo to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the photo caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

has_spoiler: bool | None

Optional. Pass True if the photo needs to be covered with a spoiler animation

InputMediaVideo

2.3. Bot API 205

https://core.telegram.org/bots/api#inputmediaphoto
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

class aiogram.types.input_media_video.InputMediaVideo(*, type:
~typing.Literal[InputMediaType.VIDEO] =
InputMediaType.VIDEO, media: str |
~aiogram.types.input_file.InputFile,
thumbnail:
~aiogram.types.input_file.InputFile | None =
None, cover: str |
~aiogram.types.input_file.InputFile | None =
None, start_timestamp: ~datetime.datetime |
~datetime.timedelta | int | None = None,
caption: str | None = None, parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, show_caption_above_media:
bool | ~aiogram.client.default.Default | None
= <Default('show_caption_above_media')>,
width: int | None = None, height: int | None =
None, duration: int | None = None,
supports_streaming: bool | None = None,
has_spoiler: bool | None = None,
**extra_data: ~typing.Any)

Represents a video to be sent.

Source: https://core.telegram.org/bots/api#inputmediavideo

type: Literal[InputMediaType.VIDEO]

Type of the result, must be video

media: InputFileUnion

File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP
URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name. More information on Sending Files »

thumbnail: InputFile | None

Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-
side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and
height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails
can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if
the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on
Sending Files »

cover: InputFileUnion | None

Optional. Cover for the video in the message. Pass a file_id to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘at-
tach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name.
More information on Sending Files »

start_timestamp: DateTimeUnion | None

Optional. Start timestamp for the video in the message

caption: str | None

Optional. Caption of the video to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the video caption. See formatting options for more details.

206 Chapter 2. Contents

https://core.telegram.org/bots/api#inputmediavideo
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

width: int | None

Optional. Video width

height: int | None

Optional. Video height

duration: int | None

Optional. Video duration in seconds

supports_streaming: bool | None

Optional. Pass True if the uploaded video is suitable for streaming

has_spoiler: bool | None

Optional. Pass True if the video needs to be covered with a spoiler animation

InputPaidMedia

class aiogram.types.input_paid_media.InputPaidMedia(**extra_data: Any)
This object describes the paid media to be sent. Currently, it can be one of

• aiogram.types.input_paid_media_photo.InputPaidMediaPhoto

• aiogram.types.input_paid_media_video.InputPaidMediaVideo

Source: https://core.telegram.org/bots/api#inputpaidmedia

InputPaidMediaPhoto

class aiogram.types.input_paid_media_photo.InputPaidMediaPhoto(*, type: Lit-
eral[InputPaidMediaType.PHOTO]
= InputPaidMediaType.PHOTO,
media: str | InputFile,
**extra_data: Any)

The paid media to send is a photo.

Source: https://core.telegram.org/bots/api#inputpaidmediaphoto

type: Literal[InputPaidMediaType.PHOTO]

Type of the media, must be photo

media: InputFileUnion

File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP
URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name. More information on Sending Files »

2.3. Bot API 207

https://core.telegram.org/bots/api#inputpaidmedia
https://core.telegram.org/bots/api#inputpaidmediaphoto

aiogram Documentation, Release 3.23.0

InputPaidMediaVideo

class aiogram.types.input_paid_media_video.InputPaidMediaVideo(*, type: Lit-
eral[InputPaidMediaType.VIDEO]
= InputPaidMediaType.VIDEO,
media: str | InputFile, thumbnail:
InputFile | None = None, cover:
str | InputFile | None = None,
start_timestamp: datetime |
timedelta | int | None = None,
width: int | None = None, height:
int | None = None, duration: int |
None = None,
supports_streaming: bool | None
= None, **extra_data: Any)

The paid media to send is a video.

Source: https://core.telegram.org/bots/api#inputpaidmediavideo

type: Literal[InputPaidMediaType.VIDEO]

Type of the media, must be video

media: InputFileUnion

File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP
URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name. More information on Sending Files »

thumbnail: InputFile | None

Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-
side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and
height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails
can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if
the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on
Sending Files »

cover: InputFileUnion | None

Optional. Cover for the video in the message. Pass a file_id to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘at-
tach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name.
More information on Sending Files »

start_timestamp: DateTimeUnion | None

Optional. Start timestamp for the video in the message

width: int | None

Optional. Video width

height: int | None

Optional. Video height

duration: int | None

Optional. Video duration in seconds

supports_streaming: bool | None

Optional. Pass True if the uploaded video is suitable for streaming

208 Chapter 2. Contents

https://core.telegram.org/bots/api#inputpaidmediavideo

aiogram Documentation, Release 3.23.0

InputPollOption

class aiogram.types.input_poll_option.InputPollOption(*, text: str, text_parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, text_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, **extra_data: ~typing.Any)

This object contains information about one answer option in a poll to be sent.

Source: https://core.telegram.org/bots/api#inputpolloption

text: str

Option text, 1-100 characters

text_parse_mode: str | Default | None

Optional. Mode for parsing entities in the text. See formatting options for more details. Currently, only
custom emoji entities are allowed

text_entities: list[MessageEntity] | None

Optional. A JSON-serialized list of special entities that appear in the poll option text. It can be specified
instead of text_parse_mode

InputProfilePhoto

class aiogram.types.input_profile_photo.InputProfilePhoto(**extra_data: Any)
This object describes a profile photo to set. Currently, it can be one of

• aiogram.types.input_profile_photo_static.InputProfilePhotoStatic

• aiogram.types.input_profile_photo_animated.InputProfilePhotoAnimated

Source: https://core.telegram.org/bots/api#inputprofilephoto

InputProfilePhotoAnimated

class aiogram.types.input_profile_photo_animated.InputProfilePhotoAnimated(*, type: Lit-
eral[InputProfilePhotoType.ANIMATED]
=
InputProfilePhoto-
Type.ANIMATED,
animation: str |
InputFile,
main_frame_timestamp:
float | None =
None,
**extra_data:
Any)

An animated profile photo in the MPEG4 format.

Source: https://core.telegram.org/bots/api#inputprofilephotoanimated

type: Literal[InputProfilePhotoType.ANIMATED]

Type of the profile photo, must be animated

2.3. Bot API 209

https://core.telegram.org/bots/api#inputpolloption
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#inputprofilephoto
https://core.telegram.org/bots/api#inputprofilephotoanimated

aiogram Documentation, Release 3.23.0

animation: InputFileUnion

The animated profile photo. Profile photos can’t be reused and can only be uploaded as a new file, so
you can pass ‘attach://<file_attach_name>’ if the photo was uploaded using multipart/form-data under
<file_attach_name>. More information on Sending Files »

main_frame_timestamp: float | None

Optional. Timestamp in seconds of the frame that will be used as the static profile photo. Defaults to 0.0.

InputProfilePhotoStatic

class aiogram.types.input_profile_photo_static.InputProfilePhotoStatic(*, type: Lit-
eral[InputProfilePhotoType.STATIC]
= InputProfilePhoto-
Type.STATIC, photo:
str | InputFile,
**extra_data: Any)

A static profile photo in the .JPG format.

Source: https://core.telegram.org/bots/api#inputprofilephotostatic

type: Literal[InputProfilePhotoType.STATIC]

Type of the profile photo, must be static

photo: InputFileUnion

The static profile photo. Profile photos can’t be reused and can only be uploaded as a new file, so
you can pass ‘attach://<file_attach_name>’ if the photo was uploaded using multipart/form-data under
<file_attach_name>. More information on Sending Files »

InputStoryContent

class aiogram.types.input_story_content.InputStoryContent(**extra_data: Any)
This object describes the content of a story to post. Currently, it can be one of

• aiogram.types.input_story_content_photo.InputStoryContentPhoto

• aiogram.types.input_story_content_video.InputStoryContentVideo

Source: https://core.telegram.org/bots/api#inputstorycontent

InputStoryContentPhoto

class aiogram.types.input_story_content_photo.InputStoryContentPhoto(*, type: Lit-
eral[InputStoryContentType.PHOTO]
= InputStoryContent-
Type.PHOTO, photo: str,
**extra_data: Any)

Describes a photo to post as a story.

Source: https://core.telegram.org/bots/api#inputstorycontentphoto

type: Literal[InputStoryContentType.PHOTO]

Type of the content, must be photo

210 Chapter 2. Contents

https://core.telegram.org/bots/api#inputprofilephotostatic
https://core.telegram.org/bots/api#inputstorycontent
https://core.telegram.org/bots/api#inputstorycontentphoto

aiogram Documentation, Release 3.23.0

photo: str

The photo to post as a story. The photo must be of the size 1080x1920 and must not exceed 10 MB. The
photo can’t be reused and can only be uploaded as a new file, so you can pass ‘attach://<file_attach_name>’
if the photo was uploaded using multipart/form-data under <file_attach_name>. More information on Send-
ing Files »

InputStoryContentVideo

class aiogram.types.input_story_content_video.InputStoryContentVideo(*, type: Lit-
eral[InputStoryContentType.VIDEO]
= InputStoryContent-
Type.VIDEO, video: str,
duration: float | None =
None,
cover_frame_timestamp:
float | None = None,
is_animation: bool | None
= None, **extra_data:
Any)

Describes a video to post as a story.

Source: https://core.telegram.org/bots/api#inputstorycontentvideo

type: Literal[InputStoryContentType.VIDEO]

Type of the content, must be video

video: str

The video to post as a story. The video must be of the size 720x1280, streamable, encoded with H.265
codec, with key frames added each second in the MPEG4 format, and must not exceed 30 MB. The video
can’t be reused and can only be uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the
video was uploaded using multipart/form-data under <file_attach_name>. More information on Sending
Files »

duration: float | None

Optional. Precise duration of the video in seconds; 0-60

cover_frame_timestamp: float | None

Optional. Timestamp in seconds of the frame that will be used as the static cover for the story. Defaults to
0.0.

is_animation: bool | None

Optional. Pass True if the video has no sound

KeyboardButton

class aiogram.types.keyboard_button.KeyboardButton(*, text: str, request_users:
KeyboardButtonRequestUsers | None = None,
request_chat: KeyboardButtonRequestChat |
None = None, request_contact: bool | None =
None, request_location: bool | None = None,
request_poll: KeyboardButtonPollType | None =
None, web_app: WebAppInfo | None = None,
request_user: KeyboardButtonRequestUser |
None = None, **extra_data: Any)

2.3. Bot API 211

https://core.telegram.org/bots/api#inputstorycontentvideo

aiogram Documentation, Release 3.23.0

This object represents one button of the reply keyboard. At most one of the optional fields must be used to specify
type of the button. For simple text buttons, String can be used instead of this object to specify the button text.
Note: request_users and request_chat options will only work in Telegram versions released after 3 February,
2023. Older clients will display unsupported message.

Source: https://core.telegram.org/bots/api#keyboardbutton

text: str

Text of the button. If none of the optional fields are used, it will be sent as a message when the button is
pressed

request_users: KeyboardButtonRequestUsers | None

Optional. If specified, pressing the button will open a list of suitable users. Identifiers of selected users
will be sent to the bot in a ‘users_shared’ service message. Available in private chats only.

request_chat: KeyboardButtonRequestChat | None

Optional. If specified, pressing the button will open a list of suitable chats. Tapping on a chat will send its
identifier to the bot in a ‘chat_shared’ service message. Available in private chats only.

request_contact: bool | None

Optional. If True, the user’s phone number will be sent as a contact when the button is pressed. Available
in private chats only.

request_location: bool | None

Optional. If True, the user’s current location will be sent when the button is pressed. Available in private
chats only.

request_poll: KeyboardButtonPollType | None

Optional. If specified, the user will be asked to create a poll and send it to the bot when the button is
pressed. Available in private chats only.

web_app: WebAppInfo | None

Optional. If specified, the described Web App will be launched when the button is pressed. The Web App
will be able to send a ‘web_app_data’ service message. Available in private chats only.

request_user: KeyboardButtonRequestUser | None

Optional. If specified, pressing the button will open a list of suitable users. Tapping on any user will send
their identifier to the bot in a ‘user_shared’ service message. Available in private chats only.

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

KeyboardButtonPollType

class aiogram.types.keyboard_button_poll_type.KeyboardButtonPollType(*, type: str | None = None,
**extra_data: Any)

This object represents type of a poll, which is allowed to be created and sent when the corresponding button is
pressed.

Source: https://core.telegram.org/bots/api#keyboardbuttonpolltype

type: str | None

Optional. If quiz is passed, the user will be allowed to create only polls in the quiz mode. If regular is
passed, only regular polls will be allowed. Otherwise, the user will be allowed to create a poll of any type.

212 Chapter 2. Contents

https://core.telegram.org/bots/api#keyboardbutton
https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api#keyboardbuttonpolltype

aiogram Documentation, Release 3.23.0

KeyboardButtonRequestChat

class aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat(*, request_id: int,
chat_is_channel:
bool,
chat_is_forum:
bool | None =
None,
chat_has_username:
bool | None =
None,
chat_is_created:
bool | None =
None,
user_administrator_rights:
ChatAdministra-
torRights | None =
None,
bot_administrator_rights:
ChatAdministra-
torRights | None =
None,
bot_is_member:
bool | None =
None,
request_title: bool
| None = None, re-
quest_username:
bool | None =
None,
request_photo:
bool | None =
None,
**extra_data:
Any)

This object defines the criteria used to request a suitable chat. Information about the selected chat will be shared
with the bot when the corresponding button is pressed. The bot will be granted requested rights in the chat if
appropriate. More about requesting chats ».

Source: https://core.telegram.org/bots/api#keyboardbuttonrequestchat

request_id: int

Signed 32-bit identifier of the request, which will be received back in the aiogram.types.chat_shared.
ChatShared object. Must be unique within the message

chat_is_channel: bool

Pass True to request a channel chat, pass False to request a group or a supergroup chat.

chat_is_forum: bool | None

Optional. Pass True to request a forum supergroup, pass False to request a non-forum chat. If not speci-
fied, no additional restrictions are applied.

chat_has_username: bool | None

Optional. Pass True to request a supergroup or a channel with a username, pass False to request a chat
without a username. If not specified, no additional restrictions are applied.

2.3. Bot API 213

https://core.telegram.org/bots/features#chat-and-user-selection
https://core.telegram.org/bots/api#keyboardbuttonrequestchat

aiogram Documentation, Release 3.23.0

chat_is_created: bool | None

Optional. Pass True to request a chat owned by the user. Otherwise, no additional restrictions are applied.

user_administrator_rights: ChatAdministratorRights | None

Optional. A JSON-serialized object listing the required administrator rights of the user in the chat. The
rights must be a superset of bot_administrator_rights. If not specified, no additional restrictions are applied.

bot_administrator_rights: ChatAdministratorRights | None

Optional. A JSON-serialized object listing the required administrator rights of the bot in the chat. The rights
must be a subset of user_administrator_rights. If not specified, no additional restrictions are applied.

bot_is_member: bool | None

Optional. Pass True to request a chat with the bot as a member. Otherwise, no additional restrictions are
applied.

request_title: bool | None

Optional. Pass True to request the chat’s title

request_username: bool | None

Optional. Pass True to request the chat’s username

request_photo: bool | None

Optional. Pass True to request the chat’s photo

KeyboardButtonRequestUser

class aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser(*, request_id: int,
user_is_bot: bool |
None = None,
user_is_premium:
bool | None =
None,
**extra_data:
Any)

This object defines the criteria used to request a suitable user. The identifier of the selected user will be shared
with the bot when the corresponding button is pressed. More about requesting users »

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Source: https://core.telegram.org/bots/api#keyboardbuttonrequestuser

request_id: int

Signed 32-bit identifier of the request, which will be received back in the aiogram.types.user_shared.
UserShared object. Must be unique within the message

user_is_bot: bool | None

Optional. Pass True to request a bot, pass False to request a regular user. If not specified, no additional
restrictions are applied.

user_is_premium: bool | None

Optional. Pass True to request a premium user, pass False to request a non-premium user. If not specified,
no additional restrictions are applied.

214 Chapter 2. Contents

https://core.telegram.org/bots/features#chat-and-user-selection
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api#keyboardbuttonrequestuser

aiogram Documentation, Release 3.23.0

KeyboardButtonRequestUsers

class aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers(*, request_id:
int, user_is_bot:
bool | None =
None,
user_is_premium:
bool | None =
None,
max_quantity:
int | None =
None,
request_name:
bool | None =
None, re-
quest_username:
bool | None =
None,
request_photo:
bool | None =
None,
**extra_data:
Any)

This object defines the criteria used to request suitable users. Information about the selected users will be shared
with the bot when the corresponding button is pressed. More about requesting users »

Source: https://core.telegram.org/bots/api#keyboardbuttonrequestusers

request_id: int

Signed 32-bit identifier of the request that will be received back in the aiogram.types.users_shared.
UsersShared object. Must be unique within the message

user_is_bot: bool | None

Optional. Pass True to request bots, pass False to request regular users. If not specified, no additional
restrictions are applied.

user_is_premium: bool | None

Optional. Pass True to request premium users, pass False to request non-premium users. If not specified,
no additional restrictions are applied.

max_quantity: int | None

Optional. The maximum number of users to be selected; 1-10. Defaults to 1.

request_name: bool | None

Optional. Pass True to request the users’ first and last names

request_username: bool | None

Optional. Pass True to request the users’ usernames

request_photo: bool | None

Optional. Pass True to request the users’ photos

2.3. Bot API 215

https://core.telegram.org/bots/features#chat-and-user-selection
https://core.telegram.org/bots/api#keyboardbuttonrequestusers

aiogram Documentation, Release 3.23.0

LinkPreviewOptions

class aiogram.types.link_preview_options.LinkPreviewOptions(*, is_disabled: bool |
~aiogram.client.default.Default | None
= <De-
fault('link_preview_is_disabled')>,
url: str | None = None,
prefer_small_media: bool |
~aiogram.client.default.Default | None
= <De-
fault('link_preview_prefer_small_media')>,
prefer_large_media: bool |
~aiogram.client.default.Default | None
= <De-
fault('link_preview_prefer_large_media')>,
show_above_text: bool |
~aiogram.client.default.Default | None
= <De-
fault('link_preview_show_above_text')>,
**extra_data: ~typing.Any)

Describes the options used for link preview generation.

Source: https://core.telegram.org/bots/api#linkpreviewoptions

is_disabled: bool | Default | None

Optional. True, if the link preview is disabled

url: str | None

Optional. URL to use for the link preview. If empty, then the first URL found in the message text will be
used

prefer_small_media: bool | Default | None

Optional. True, if the media in the link preview is supposed to be shrunk; ignored if the URL isn’t explicitly
specified or media size change isn’t supported for the preview

prefer_large_media: bool | Default | None

Optional. True, if the media in the link preview is supposed to be enlarged; ignored if the URL isn’t
explicitly specified or media size change isn’t supported for the preview

show_above_text: bool | Default | None

Optional. True, if the link preview must be shown above the message text; otherwise, the link preview will
be shown below the message text

Location

class aiogram.types.location.Location(*, latitude: float, longitude: float, horizontal_accuracy: float |
None = None, live_period: int | None = None, heading: int | None
= None, proximity_alert_radius: int | None = None, **extra_data:
Any)

This object represents a point on the map.

Source: https://core.telegram.org/bots/api#location

216 Chapter 2. Contents

https://core.telegram.org/bots/api#linkpreviewoptions
https://core.telegram.org/bots/api#location

aiogram Documentation, Release 3.23.0

latitude: float

Latitude as defined by the sender

longitude: float

Longitude as defined by the sender

horizontal_accuracy: float | None

Optional. The radius of uncertainty for the location, measured in meters; 0-1500

live_period: int | None

Optional. Time relative to the message sending date, during which the location can be updated; in seconds.
For active live locations only.

heading: int | None

Optional. The direction in which user is moving, in degrees; 1-360. For active live locations only.

proximity_alert_radius: int | None

Optional. The maximum distance for proximity alerts about approaching another chat member, in meters.
For sent live locations only.

LocationAddress

class aiogram.types.location_address.LocationAddress(*, country_code: str, state: str | None = None,
city: str | None = None, street: str | None =
None, **extra_data: Any)

Describes the physical address of a location.

Source: https://core.telegram.org/bots/api#locationaddress

country_code: str

The two-letter ISO 3166-1 alpha-2 country code of the country where the location is located

state: str | None

Optional. State of the location

city: str | None

Optional. City of the location

street: str | None

Optional. Street address of the location

LoginUrl

class aiogram.types.login_url.LoginUrl(*, url: str, forward_text: str | None = None, bot_username: str |
None = None, request_write_access: bool | None = None,
**extra_data: Any)

This object represents a parameter of the inline keyboard button used to automatically authorize a user. Serves as
a great replacement for the Telegram Login Widget when the user is coming from Telegram. All the user needs
to do is tap/click a button and confirm that they want to log in: Telegram apps support these buttons as of version
5.7.

Sample bot: @discussbot

Source: https://core.telegram.org/bots/api#loginurl

2.3. Bot API 217

https://core.telegram.org/bots/api#locationaddress
https://core.telegram.org/widgets/login
https://telegram.org/blog/privacy-discussions-web-bots#meet-seamless-web-bots
https://telegram.org/blog/privacy-discussions-web-bots#meet-seamless-web-bots
https://t.me/discussbot
https://core.telegram.org/bots/api#loginurl

aiogram Documentation, Release 3.23.0

url: str

An HTTPS URL to be opened with user authorization data added to the query string when the button is
pressed. If the user refuses to provide authorization data, the original URL without information about the
user will be opened. The data added is the same as described in Receiving authorization data.

forward_text: str | None

Optional. New text of the button in forwarded messages.

bot_username: str | None

Optional. Username of a bot, which will be used for user authorization. See Setting up a bot for more
details. If not specified, the current bot’s username will be assumed. The url’s domain must be the same
as the domain linked with the bot. See Linking your domain to the bot for more details.

request_write_access: bool | None

Optional. Pass True to request the permission for your bot to send messages to the user.

MaybeInaccessibleMessage

class aiogram.types.maybe_inaccessible_message.MaybeInaccessibleMessage(**extra_data: Any)
This object describes a message that can be inaccessible to the bot. It can be one of

• aiogram.types.message.Message

• aiogram.types.inaccessible_message.InaccessibleMessage

Source: https://core.telegram.org/bots/api#maybeinaccessiblemessage

MenuButton

class aiogram.types.menu_button.MenuButton(*, type: str, text: str | None = None, web_app: WebAppInfo
| None = None, **extra_data: Any)

This object describes the bot’s menu button in a private chat. It should be one of

• aiogram.types.menu_button_commands.MenuButtonCommands

• aiogram.types.menu_button_web_app.MenuButtonWebApp

• aiogram.types.menu_button_default.MenuButtonDefault

If a menu button other than aiogram.types.menu_button_default.MenuButtonDefault is set for a private
chat, then it is applied in the chat. Otherwise the default menu button is applied. By default, the menu button
opens the list of bot commands.

Source: https://core.telegram.org/bots/api#menubutton

type: str

Type of the button

text: str | None

Optional. Text on the button

web_app: WebAppInfo | None

Optional. Description of the Web App that will be launched when the user presses the button. The Web
App will be able to send an arbitrary message on behalf of the user using the method aiogram.methods.
answer_web_app_query.AnswerWebAppQuery. Alternatively, a t.me link to a Web App of the bot can
be specified in the object instead of the Web App’s URL, in which case the Web App will be opened as if
the user pressed the link.

218 Chapter 2. Contents

https://core.telegram.org/widgets/login#receiving-authorization-data
https://core.telegram.org/widgets/login#setting-up-a-bot
https://core.telegram.org/widgets/login#linking-your-domain-to-the-bot
https://core.telegram.org/bots/api#maybeinaccessiblemessage
https://core.telegram.org/bots/api#menubutton

aiogram Documentation, Release 3.23.0

MenuButtonCommands

class aiogram.types.menu_button_commands.MenuButtonCommands(*, type: Lit-
eral[MenuButtonType.COMMANDS]
= MenuButtonType.COMMANDS,
text: str | None = None, web_app:
WebAppInfo | None = None,
**extra_data: Any)

Represents a menu button, which opens the bot’s list of commands.

Source: https://core.telegram.org/bots/api#menubuttoncommands

type: Literal[MenuButtonType.COMMANDS]

Type of the button, must be commands

MenuButtonDefault

class aiogram.types.menu_button_default.MenuButtonDefault(*, type:
Literal[MenuButtonType.DEFAULT] =
MenuButtonType.DEFAULT , text: str |
None = None, web_app: WebAppInfo |
None = None, **extra_data: Any)

Describes that no specific value for the menu button was set.

Source: https://core.telegram.org/bots/api#menubuttondefault

type: Literal[MenuButtonType.DEFAULT]

Type of the button, must be default

MenuButtonWebApp

class aiogram.types.menu_button_web_app.MenuButtonWebApp(*, type:
Literal[MenuButtonType.WEB_APP] =
MenuButtonType.WEB_APP, text: str,
web_app: WebAppInfo, **extra_data:
Any)

Represents a menu button, which launches a Web App.

Source: https://core.telegram.org/bots/api#menubuttonwebapp

type: Literal[MenuButtonType.WEB_APP]

Type of the button, must be web_app

text: str

Text on the button

web_app: WebAppInfo

Description of the Web App that will be launched when the user presses the button. The Web App
will be able to send an arbitrary message on behalf of the user using the method aiogram.methods.
answer_web_app_query.AnswerWebAppQuery. Alternatively, a t.me link to a Web App of the bot can
be specified in the object instead of the Web App’s URL, in which case the Web App will be opened as if
the user pressed the link.

2.3. Bot API 219

https://core.telegram.org/bots/api#menubuttoncommands
https://core.telegram.org/bots/api#menubuttondefault
https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/api#menubuttonwebapp

aiogram Documentation, Release 3.23.0

Message

220 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

class aiogram.types.message.Message(*, message_id: int, date: _datetime_serializer, return_type=int,
when_used=unless - none)], chat: Chat, message_thread_id: int |
None = None, direct_messages_topic: DirectMessagesTopic | None =
None, from_user: User | None = None, sender_chat: Chat | None =
None, sender_boost_count: int | None = None, sender_business_bot:
User | None = None, business_connection_id: str | None = None,
forward_origin: MessageOriginUser | MessageOriginHiddenUser |
MessageOriginChat | MessageOriginChannel | None = None,
is_topic_message: bool | None = None, is_automatic_forward: bool |
None = None, reply_to_message: Message | None = None,
external_reply: ExternalReplyInfo | None = None, quote: TextQuote |
None = None, reply_to_story: Story | None = None,
reply_to_checklist_task_id: int | None = None, via_bot: User | None
= None, edit_date: int | None = None, has_protected_content: bool |
None = None, is_from_offline: bool | None = None, is_paid_post:
bool | None = None, media_group_id: str | None = None,
author_signature: str | None = None, paid_star_count: int | None =
None, text: str | None = None, entities: list[MessageEntity] | None =
None, link_preview_options: LinkPreviewOptions | None = None,
suggested_post_info: SuggestedPostInfo | None = None, effect_id: str
| None = None, animation: Animation | None = None, audio: Audio |
None = None, document: Document | None = None, paid_media:
PaidMediaInfo | None = None, photo: list[PhotoSize] | None = None,
sticker: Sticker | None = None, story: Story | None = None, video:
Video | None = None, video_note: VideoNote | None = None, voice:
Voice | None = None, caption: str | None = None, caption_entities:
list[MessageEntity] | None = None, show_caption_above_media:
bool | None = None, has_media_spoiler: bool | None = None,
checklist: Checklist | None = None, contact: Contact | None = None,
dice: Dice | None = None, game: Game | None = None, poll: Poll |
None = None, venue: Venue | None = None, location: Location |
None = None, new_chat_members: list[User] | None = None,
left_chat_member: User | None = None, new_chat_title: str | None =
None, new_chat_photo: list[PhotoSize] | None = None,
delete_chat_photo: bool | None = None, group_chat_created: bool |
None = None, supergroup_chat_created: bool | None = None,
channel_chat_created: bool | None = None,
message_auto_delete_timer_changed:
MessageAutoDeleteTimerChanged | None = None,
migrate_to_chat_id: int | None = None, migrate_from_chat_id: int |
None = None, pinned_message: Message | InaccessibleMessage |
None = None, invoice: Invoice | None = None, successful_payment:
SuccessfulPayment | None = None, refunded_payment:
RefundedPayment | None = None, users_shared: UsersShared | None
= None, chat_shared: ChatShared | None = None, gift: GiftInfo |
None = None, unique_gift: UniqueGiftInfo | None = None,
connected_website: str | None = None, write_access_allowed:
WriteAccessAllowed | None = None, passport_data: PassportData |
None = None, proximity_alert_triggered: ProximityAlertTriggered |
None = None, boost_added: ChatBoostAdded | None = None,
chat_background_set: ChatBackground | None = None,
checklist_tasks_done: ChecklistTasksDone | None = None,
checklist_tasks_added: ChecklistTasksAdded | None = None,
direct_message_price_changed: DirectMessagePriceChanged | None
= None, forum_topic_created: ForumTopicCreated | None = None,
forum_topic_edited: ForumTopicEdited | None = None,
forum_topic_closed: ForumTopicClosed | None = None,
forum_topic_reopened: ForumTopicReopened | None = None,
general_forum_topic_hidden: GeneralForumTopicHidden | None =
None, general_forum_topic_unhidden: GeneralForumTopicUnhidden
| None = None, giveaway_created: GiveawayCreated | None = None,
giveaway: Giveaway | None = None, giveaway_winners:
GiveawayWinners | None = None, giveaway_completed:
GiveawayCompleted | None = None, paid_message_price_changed:
PaidMessagePriceChanged | None = None, suggested_post_approved:
SuggestedPostApproved | None = None,
suggested_post_approval_failed: SuggestedPostApprovalFailed |
None = None, suggested_post_declined: SuggestedPostDeclined |
None = None, suggested_post_paid: SuggestedPostPaid | None =
None, suggested_post_refunded: SuggestedPostRefunded | None =
None, video_chat_scheduled: VideoChatScheduled | None = None,
video_chat_started: VideoChatStarted | None = None,
video_chat_ended: VideoChatEnded | None = None,
video_chat_participants_invited: VideoChatParticipantsInvited |
None = None, web_app_data: WebAppData | None = None,
reply_markup: InlineKeyboardMarkup | None = None, forward_date:
_datetime_serializer, return_type=int, when_used=unless - none)] |
None = None, forward_from: User | None = None,
forward_from_chat: Chat | None = None, forward_from_message_id:
int | None = None, forward_sender_name: str | None = None,
forward_signature: str | None = None, user_shared: UserShared |
None = None, **extra_data: Any)

2.3. Bot API 221

aiogram Documentation, Release 3.23.0

This object represents a message.

Source: https://core.telegram.org/bots/api#message

message_id: int

Unique message identifier inside this chat. In specific instances (e.g., message containing a video sent to
a big chat), the server might automatically schedule a message instead of sending it immediately. In such
cases, this field will be 0 and the relevant message will be unusable until it is actually sent

date: DateTime

Date the message was sent in Unix time. It is always a positive number, representing a valid date.

chat: Chat

Chat the message belongs to

message_thread_id: int | None

Optional. Unique identifier of a message thread to which the message belongs; for supergroups only

direct_messages_topic: DirectMessagesTopic | None

Optional. Information about the direct messages chat topic that contains the message

from_user: User | None

Optional. Sender of the message; may be empty for messages sent to channels. For backward compatibility,
if the message was sent on behalf of a chat, the field contains a fake sender user in non-channel chats

sender_chat: Chat | None

Optional. Sender of the message when sent on behalf of a chat. For example, the supergroup itself for
messages sent by its anonymous administrators or a linked channel for messages automatically forwarded
to the channel’s discussion group. For backward compatibility, if the message was sent on behalf of a chat,
the field from contains a fake sender user in non-channel chats.

sender_boost_count: int | None

Optional. If the sender of the message boosted the chat, the number of boosts added by the user

sender_business_bot: User | None

Optional. The bot that actually sent the message on behalf of the business account. Available only for
outgoing messages sent on behalf of the connected business account.

business_connection_id: str | None

Optional. Unique identifier of the business connection from which the message was received. If non-empty,
the message belongs to a chat of the corresponding business account that is independent from any potential
bot chat which might share the same identifier.

forward_origin: MessageOriginUnion | None

Optional. Information about the original message for forwarded messages

is_topic_message: bool | None

Optional. True, if the message is sent to a forum topic

is_automatic_forward: bool | None

Optional. True, if the message is a channel post that was automatically forwarded to the connected discus-
sion group

reply_to_message: Message | None

Optional. For replies in the same chat and message thread, the original message. Note that the aiogram.
types.message.Message object in this field will not contain further reply_to_message fields even if it
itself is a reply.

222 Chapter 2. Contents

https://core.telegram.org/bots/api#message

aiogram Documentation, Release 3.23.0

external_reply: ExternalReplyInfo | None

Optional. Information about the message that is being replied to, which may come from another chat or
forum topic

quote: TextQuote | None

Optional. For replies that quote part of the original message, the quoted part of the message

reply_to_story: Story | None

Optional. For replies to a story, the original story

reply_to_checklist_task_id: int | None

Optional. Identifier of the specific checklist task that is being replied to

via_bot: User | None

Optional. Bot through which the message was sent

edit_date: int | None

Optional. Date the message was last edited in Unix time

has_protected_content: bool | None

Optional. True, if the message can’t be forwarded

is_from_offline: bool | None

Optional. True, if the message was sent by an implicit action, for example, as an away or a greeting business
message, or as a scheduled message

is_paid_post: bool | None

Optional. True, if the message is a paid post. Note that such posts must not be deleted for 24 hours to
receive the payment and can’t be edited.

media_group_id: str | None

Optional. The unique identifier of a media message group this message belongs to

author_signature: str | None

Optional. Signature of the post author for messages in channels, or the custom title of an anonymous group
administrator

paid_star_count: int | None

Optional. The number of Telegram Stars that were paid by the sender of the message to send it

text: str | None

Optional. For text messages, the actual UTF-8 text of the message

entities: list[MessageEntity] | None

Optional. For text messages, special entities like usernames, URLs, bot commands, etc. that appear in the
text

link_preview_options: LinkPreviewOptions | None

Optional. Options used for link preview generation for the message, if it is a text message and link preview
options were changed

suggested_post_info: SuggestedPostInfo | None

Optional. Information about suggested post parameters if the message is a suggested post in a channel
direct messages chat. If the message is an approved or declined suggested post, then it can’t be edited.

effect_id: str | None

Optional. Unique identifier of the message effect added to the message

2.3. Bot API 223

aiogram Documentation, Release 3.23.0

animation: Animation | None

Optional. Message is an animation, information about the animation. For backward compatibility, when
this field is set, the document field will also be set

audio: Audio | None

Optional. Message is an audio file, information about the file

document: Document | None

Optional. Message is a general file, information about the file

paid_media: PaidMediaInfo | None

Optional. Message contains paid media; information about the paid media

photo: list[PhotoSize] | None

Optional. Message is a photo, available sizes of the photo

sticker: Sticker | None

Optional. Message is a sticker, information about the sticker

story: Story | None

Optional. Message is a forwarded story

video: Video | None

Optional. Message is a video, information about the video

video_note: VideoNote | None

Optional. Message is a video note, information about the video message

voice: Voice | None

Optional. Message is a voice message, information about the file

caption: str | None

Optional. Caption for the animation, audio, document, paid media, photo, video or voice

caption_entities: list[MessageEntity] | None

Optional. For messages with a caption, special entities like usernames, URLs, bot commands, etc. that
appear in the caption

show_caption_above_media: bool | None

Optional. True, if the caption must be shown above the message media

has_media_spoiler: bool | None

Optional. True, if the message media is covered by a spoiler animation

checklist: Checklist | None

Optional. Message is a checklist

contact: Contact | None

Optional. Message is a shared contact, information about the contact

dice: Dice | None

Optional. Message is a dice with random value

game: Game | None

Optional. Message is a game, information about the game. More about games »

poll: Poll | None

Optional. Message is a native poll, information about the poll

224 Chapter 2. Contents

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#games

aiogram Documentation, Release 3.23.0

venue: Venue | None

Optional. Message is a venue, information about the venue. For backward compatibility, when this field is
set, the location field will also be set

location: Location | None

Optional. Message is a shared location, information about the location

new_chat_members: list[User] | None

Optional. New members that were added to the group or supergroup and information about them (the bot
itself may be one of these members)

left_chat_member: User | None

Optional. A member was removed from the group, information about them (this member may be the bot
itself)

new_chat_title: str | None

Optional. A chat title was changed to this value

new_chat_photo: list[PhotoSize] | None

Optional. A chat photo was change to this value

delete_chat_photo: bool | None

Optional. Service message: the chat photo was deleted

group_chat_created: bool | None

Optional. Service message: the group has been created

supergroup_chat_created: bool | None

Optional. Service message: the supergroup has been created. This field can’t be received in a message
coming through updates, because bot can’t be a member of a supergroup when it is created. It can only be
found in reply_to_message if someone replies to a very first message in a directly created supergroup.

channel_chat_created: bool | None

Optional. Service message: the channel has been created. This field can’t be received in a message coming
through updates, because bot can’t be a member of a channel when it is created. It can only be found in
reply_to_message if someone replies to a very first message in a channel.

message_auto_delete_timer_changed: MessageAutoDeleteTimerChanged | None

Optional. Service message: auto-delete timer settings changed in the chat

migrate_to_chat_id: int | None

Optional. The group has been migrated to a supergroup with the specified identifier. This number may
have more than 32 significant bits and some programming languages may have difficulty/silent defects in
interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float
type are safe for storing this identifier.

migrate_from_chat_id: int | None

Optional. The supergroup has been migrated from a group with the specified identifier. This number may
have more than 32 significant bits and some programming languages may have difficulty/silent defects in
interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float
type are safe for storing this identifier.

pinned_message: MaybeInaccessibleMessageUnion | None

Optional. Specified message was pinned. Note that the aiogram.types.message.Message object in
this field will not contain further reply_to_message fields even if it itself is a reply.

2.3. Bot API 225

aiogram Documentation, Release 3.23.0

invoice: Invoice | None

Optional. Message is an invoice for a payment, information about the invoice. More about payments »

successful_payment: SuccessfulPayment | None

Optional. Message is a service message about a successful payment, information about the payment. More
about payments »

refunded_payment: RefundedPayment | None

Optional. Message is a service message about a refunded payment, information about the payment. More
about payments »

users_shared: UsersShared | None

Optional. Service message: users were shared with the bot

chat_shared: ChatShared | None

Optional. Service message: a chat was shared with the bot

gift: GiftInfo | None

Optional. Service message: a regular gift was sent or received

unique_gift: UniqueGiftInfo | None

Optional. Service message: a unique gift was sent or received

connected_website: str | None

Optional. The domain name of the website on which the user has logged in. More about Telegram Login »

write_access_allowed: WriteAccessAllowed | None

Optional. Service message: the user allowed the bot to write messages after adding it to the attachment or
side menu, launching a Web App from a link, or accepting an explicit request from a Web App sent by the
method requestWriteAccess

passport_data: PassportData | None

Optional. Telegram Passport data

proximity_alert_triggered: ProximityAlertTriggered | None

Optional. Service message. A user in the chat triggered another user’s proximity alert while sharing Live
Location.

boost_added: ChatBoostAdded | None

Optional. Service message: user boosted the chat

chat_background_set: ChatBackground | None

Optional. Service message: chat background set

checklist_tasks_done: ChecklistTasksDone | None

Optional. Service message: some tasks in a checklist were marked as done or not done

checklist_tasks_added: ChecklistTasksAdded | None

Optional. Service message: tasks were added to a checklist

direct_message_price_changed: DirectMessagePriceChanged | None

Optional. Service message: the price for paid messages in the corresponding direct messages chat of a
channel has changed

forum_topic_created: ForumTopicCreated | None

Optional. Service message: forum topic created

226 Chapter 2. Contents

https://core.telegram.org/bots/api#payments
https://core.telegram.org/bots/api#payments
https://core.telegram.org/bots/api#payments
https://core.telegram.org/bots/api#payments
https://core.telegram.org/bots/api#payments
https://core.telegram.org/bots/api#payments
https://core.telegram.org/widgets/login
https://core.telegram.org/bots/webapps#initializing-mini-apps

aiogram Documentation, Release 3.23.0

forum_topic_edited: ForumTopicEdited | None

Optional. Service message: forum topic edited

forum_topic_closed: ForumTopicClosed | None

Optional. Service message: forum topic closed

forum_topic_reopened: ForumTopicReopened | None

Optional. Service message: forum topic reopened

general_forum_topic_hidden: GeneralForumTopicHidden | None

Optional. Service message: the ‘General’ forum topic hidden

general_forum_topic_unhidden: GeneralForumTopicUnhidden | None

Optional. Service message: the ‘General’ forum topic unhidden

giveaway_created: GiveawayCreated | None

Optional. Service message: a scheduled giveaway was created

giveaway: Giveaway | None

Optional. The message is a scheduled giveaway message

giveaway_winners: GiveawayWinners | None

Optional. A giveaway with public winners was completed

giveaway_completed: GiveawayCompleted | None

Optional. Service message: a giveaway without public winners was completed

paid_message_price_changed: PaidMessagePriceChanged | None

Optional. Service message: the price for paid messages has changed in the chat

suggested_post_approved: SuggestedPostApproved | None

Optional. Service message: a suggested post was approved

suggested_post_approval_failed: SuggestedPostApprovalFailed | None

Optional. Service message: approval of a suggested post has failed

suggested_post_declined: SuggestedPostDeclined | None

Optional. Service message: a suggested post was declined

suggested_post_paid: SuggestedPostPaid | None

Optional. Service message: payment for a suggested post was received

suggested_post_refunded: SuggestedPostRefunded | None

Optional. Service message: payment for a suggested post was refunded

video_chat_scheduled: VideoChatScheduled | None

Optional. Service message: video chat scheduled

video_chat_started: VideoChatStarted | None

Optional. Service message: video chat started

video_chat_ended: VideoChatEnded | None

Optional. Service message: video chat ended

video_chat_participants_invited: VideoChatParticipantsInvited | None

Optional. Service message: new participants invited to a video chat

2.3. Bot API 227

aiogram Documentation, Release 3.23.0

web_app_data: WebAppData | None

Optional. Service message: data sent by a Web App

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message. login_url buttons are represented as ordinary url
buttons.

forward_date: DateTime | None

Optional. For forwarded messages, date the original message was sent in Unix time

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

forward_from: User | None

Optional. For forwarded messages, sender of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

forward_from_chat: Chat | None

Optional. For messages forwarded from channels or from anonymous administrators, information about
the original sender chat

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

forward_from_message_id: int | None

Optional. For messages forwarded from channels, identifier of the original message in the channel

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

forward_sender_name: str | None

Optional. Sender’s name for messages forwarded from users who disallow adding a link to their account
in forwarded messages

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

forward_signature: str | None

Optional. For forwarded messages that were originally sent in channels or by an anonymous chat adminis-
trator, signature of the message sender if present

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

user_shared: UserShared | None

Optional. Service message: a user was shared with the bot

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

property content_type: str

property html_text: str

property md_text: str

as_reply_parameters(allow_sending_without_reply: Optional[Union[bool, Default]] =
<Default('allow_sending_without_reply')>, quote: Optional[str] = None,
quote_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
quote_entities: Optional[List[MessageEntity]] = None, quote_position:
Optional[int] = None)→ ReplyParameters

228 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

reply_animation(animation: InputFileUnion, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None,
thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>,
has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, **kwargs: Any)→ SendAnimation

Shortcut for method aiogram.methods.send_animation.SendAnimation will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success,
the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to
50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

Parameters

• animation – Animation to send. Pass a file_id as String to send an animation that exists
on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an animation from the Internet, or upload a new animation using multipart/form-data.
More information on Sending Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent animation in seconds

• width – Animation width

• height – Animation height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Animation caption (may also be used when resending animation by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the animation caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

2.3. Bot API 229

https://core.telegram.org/bots/api#sendanimation
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_animation.SendAnimation

answer_animation(animation: InputFileUnion, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None,
thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>,
has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendAnimation

Shortcut for method aiogram.methods.send_animation.SendAnimation will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success,
the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to
50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

Parameters

230 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendanimation

aiogram Documentation, Release 3.23.0

• animation – Animation to send. Pass a file_id as String to send an animation that exists
on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an animation from the Internet, or upload a new animation using multipart/form-data.
More information on Sending Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent animation in seconds

• width – Animation width

• height – Animation height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Animation caption (may also be used when resending animation by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the animation caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

2.3. Bot API 231

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.send_animation.SendAnimation

reply_audio(audio: InputFileUnion, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None,
thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
**kwargs: Any)→ SendAudio

Shortcut for method aiogram.methods.send_audio.SendAudio will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your
audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is
returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

Parameters

• audio – Audio file to send. Pass a file_id as String to send an audio file that exists on
the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an audio file from the Internet, or upload a new one using multipart/form-data. More
information on Sending Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Audio caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the audio caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the audio in seconds

• performer – Performer

• title – Track name

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

232 Chapter 2. Contents

https://core.telegram.org/bots/api#sendaudio
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_audio.SendAudio

answer_audio(audio: InputFileUnion, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None,
thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendAudio

Shortcut for method aiogram.methods.send_audio.SendAudio will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your
audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is
returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

Parameters

• audio – Audio file to send. Pass a file_id as String to send an audio file that exists on
the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to
get an audio file from the Internet, or upload a new one using multipart/form-data. More
information on Sending Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

2.3. Bot API 233

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendaudio

aiogram Documentation, Release 3.23.0

• caption – Audio caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the audio caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the audio in seconds

• performer – Performer

• title – Track name

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_audio.SendAudio

reply_contact(phone_number: str, first_name: str, direct_messages_topic_id: Optional[int] = None,
last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion]
= None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→
SendContact

Shortcut for method aiogram.methods.send_contact.SendContact will automatically fill method
attributes:

234 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendcontact

Parameters

• phone_number – Contact’s phone number

• first_name – Contact’s first name

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• last_name – Contact’s last name

• vcard – Additional data about the contact in the form of a vCard, 0-2048 bytes

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_contact.SendContact

answer_contact(phone_number: str, first_name: str, direct_messages_topic_id: Optional[int] = None,
last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendContact

Shortcut for method aiogram.methods.send_contact.SendContact will automatically fill method
attributes:

2.3. Bot API 235

https://core.telegram.org/bots/api#sendcontact
https://en.wikipedia.org/wiki/VCard
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• chat_id

• message_thread_id

• business_connection_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendcontact

Parameters

• phone_number – Contact’s phone number

• first_name – Contact’s first name

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• last_name – Contact’s last name

• vcard – Additional data about the contact in the form of a vCard, 0-2048 bytes

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_contact.SendContact

reply_document(document: InputFileUnion, direct_messages_topic_id: Optional[int] = None, thumbnail:
Optional[InputFile] = None, caption: Optional[str] = None, parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, disable_content_type_detection: Optional[bool] =
None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendDocument

236 Chapter 2. Contents

https://core.telegram.org/bots/api#sendcontact
https://en.wikipedia.org/wiki/VCard
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Shortcut for method aiogram.methods.send_document.SendDocument will automatically fill method
attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send general files. On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#senddocument

Parameters

• document – File to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from
the Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Document caption (may also be used when resending documents by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the document caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• disable_content_type_detection – Disables automatic server-side content type de-
tection for files uploaded using multipart/form-data

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

2.3. Bot API 237

https://core.telegram.org/bots/api#senddocument
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_document.SendDocument

answer_document(document: InputFileUnion, direct_messages_topic_id: Optional[int] = None, thumbnail:
Optional[InputFile] = None, caption: Optional[str] = None, parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, disable_content_type_detection: Optional[bool]
= None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendDocument

Shortcut for method aiogram.methods.send_document.SendDocument will automatically fill method
attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#senddocument

Parameters

• document – File to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from
the Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• caption – Document caption (may also be used when resending documents by file_id),
0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the document caption. See formatting options
for more details.

238 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddocument
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• disable_content_type_detection – Disables automatic server-side content type de-
tection for files uploaded using multipart/form-data

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_document.SendDocument

reply_game(game_short_name: str, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, reply_markup:
Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendGame

Shortcut for method aiogram.methods.send_game.SendGame will automatically fill method attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

Parameters

• game_short_name – Short name of the game, serves as the unique identifier for the game.
Set up your games via @BotFather.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

2.3. Bot API 239

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Play
game_title’ button will be shown. If not empty, the first button must launch the game.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_game.SendGame

answer_game(game_short_name: str, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendGame

Shortcut for method aiogram.methods.send_game.SendGame will automatically fill method attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

Parameters

• game_short_name – Short name of the game, serves as the unique identifier for the game.
Set up your games via @BotFather.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Play
game_title’ button will be shown. If not empty, the first button must launch the game.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_game.SendGame

240 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

reply_invoice(title: str, description: str, payload: str, currency: str, prices: list[LabeledPrice],
direct_messages_topic_id: Optional[int] = None, provider_token: Optional[str] = None,
max_tip_amount: Optional[int] = None, suggested_tip_amounts: Optional[list[int]] =
None, start_parameter: Optional[str] = None, provider_data: Optional[str] = None,
photo_url: Optional[str] = None, photo_size: Optional[int] = None, photo_width:
Optional[int] = None, photo_height: Optional[int] = None, need_name: Optional[bool] =
None, need_phone_number: Optional[bool] = None, need_email: Optional[bool] = None,
need_shipping_address: Optional[bool] = None, send_phone_number_to_provider:
Optional[bool] = None, send_email_to_provider: Optional[bool] = None, is_flexible:
Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendInvoice

Shortcut for method aiogram.methods.send_invoice.SendInvoice will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

Parameters

• title – Product name, 1-32 characters

• description – Product description, 1-255 characters

• payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user,
use it for your internal processes.

• currency – Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for
payments in Telegram Stars.

• prices – Price breakdown, a JSON-serialized list of components (e.g. product price,
tax, discount, delivery cost, delivery tax, bonus, etc.). Must contain exactly one item for
payments in Telegram Stars.

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• provider_token – Payment provider token, obtained via @BotFather. Pass an empty
string for payments in Telegram Stars.

• max_tip_amount – The maximum accepted amount for tips in the smallest units of the
currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass
max_tip_amount = 145. See the exp parameter in currencies.json, it shows the number
of digits past the decimal point for each currency (2 for the majority of currencies). Defaults
to 0. Not supported for payments in Telegram Stars.

• suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the
smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts
can be specified. The suggested tip amounts must be positive, passed in a strictly increased
order and must not exceed max_tip_amount.

2.3. Bot API 241

https://core.telegram.org/bots/api#sendinvoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

• start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of
the sent message will have a Pay button, allowing multiple users to pay directly from the
forwarded message, using the same invoice. If non-empty, forwarded copies of the sent
message will have a URL button with a deep link to the bot (instead of a Pay button), with
the value used as the start parameter

• provider_data – JSON-serialized data about the invoice, which will be shared with the
payment provider. A detailed description of required fields should be provided by the pay-
ment provider.

• photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a
marketing image for a service. People like it better when they see what they are paying for.

• photo_size – Photo size in bytes

• photo_width – Photo width

• photo_height – Photo height

• need_name – Pass True if you require the user’s full name to complete the order. Ignored
for payments in Telegram Stars.

• need_phone_number – Pass True if you require the user’s phone number to complete the
order. Ignored for payments in Telegram Stars.

• need_email – Pass True if you require the user’s email address to complete the order.
Ignored for payments in Telegram Stars.

• need_shipping_address – Pass True if you require the user’s shipping address to com-
plete the order. Ignored for payments in Telegram Stars.

• send_phone_number_to_provider – Pass True if the user’s phone number should be
sent to the provider. Ignored for payments in Telegram Stars.

• send_email_to_provider – Pass True if the user’s email address should be sent to the
provider. Ignored for payments in Telegram Stars.

• is_flexible – Pass True if the final price depends on the shipping method. Ignored for
payments in Telegram Stars.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Pay
total price’ button will be shown. If not empty, the first button must be a Pay button.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_invoice.SendInvoice

242 Chapter 2. Contents

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

answer_invoice(title: str, description: str, payload: str, currency: str, prices: list[LabeledPrice],
direct_messages_topic_id: Optional[int] = None, provider_token: Optional[str] = None,
max_tip_amount: Optional[int] = None, suggested_tip_amounts: Optional[list[int]] =
None, start_parameter: Optional[str] = None, provider_data: Optional[str] = None,
photo_url: Optional[str] = None, photo_size: Optional[int] = None, photo_width:
Optional[int] = None, photo_height: Optional[int] = None, need_name: Optional[bool] =
None, need_phone_number: Optional[bool] = None, need_email: Optional[bool] = None,
need_shipping_address: Optional[bool] = None, send_phone_number_to_provider:
Optional[bool] = None, send_email_to_provider: Optional[bool] = None, is_flexible:
Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool]
= None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendInvoice

Shortcut for method aiogram.methods.send_invoice.SendInvoice will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

Parameters

• title – Product name, 1-32 characters

• description – Product description, 1-255 characters

• payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user,
use it for your internal processes.

• currency – Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for
payments in Telegram Stars.

• prices – Price breakdown, a JSON-serialized list of components (e.g. product price,
tax, discount, delivery cost, delivery tax, bonus, etc.). Must contain exactly one item for
payments in Telegram Stars.

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• provider_token – Payment provider token, obtained via @BotFather. Pass an empty
string for payments in Telegram Stars.

• max_tip_amount – The maximum accepted amount for tips in the smallest units of the
currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass
max_tip_amount = 145. See the exp parameter in currencies.json, it shows the number
of digits past the decimal point for each currency (2 for the majority of currencies). Defaults
to 0. Not supported for payments in Telegram Stars.

• suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the
smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts
can be specified. The suggested tip amounts must be positive, passed in a strictly increased
order and must not exceed max_tip_amount.

2.3. Bot API 243

https://core.telegram.org/bots/api#sendinvoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

• start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of
the sent message will have a Pay button, allowing multiple users to pay directly from the
forwarded message, using the same invoice. If non-empty, forwarded copies of the sent
message will have a URL button with a deep link to the bot (instead of a Pay button), with
the value used as the start parameter

• provider_data – JSON-serialized data about the invoice, which will be shared with the
payment provider. A detailed description of required fields should be provided by the pay-
ment provider.

• photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a
marketing image for a service. People like it better when they see what they are paying for.

• photo_size – Photo size in bytes

• photo_width – Photo width

• photo_height – Photo height

• need_name – Pass True if you require the user’s full name to complete the order. Ignored
for payments in Telegram Stars.

• need_phone_number – Pass True if you require the user’s phone number to complete the
order. Ignored for payments in Telegram Stars.

• need_email – Pass True if you require the user’s email address to complete the order.
Ignored for payments in Telegram Stars.

• need_shipping_address – Pass True if you require the user’s shipping address to com-
plete the order. Ignored for payments in Telegram Stars.

• send_phone_number_to_provider – Pass True if the user’s phone number should be
sent to the provider. Ignored for payments in Telegram Stars.

• send_email_to_provider – Pass True if the user’s email address should be sent to the
provider. Ignored for payments in Telegram Stars.

• is_flexible – Pass True if the final price depends on the shipping method. Ignored for
payments in Telegram Stars.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – A JSON-serialized object for an inline keyboard. If empty, one ‘Pay
total price’ button will be shown. If not empty, the first button must be a Pay button.

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

244 Chapter 2. Contents

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_invoice.SendInvoice

reply_location(latitude: float, longitude: float, direct_messages_topic_id: Optional[int] = None,
horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None, heading:
Optional[int] = None, proximity_alert_radius: Optional[int] = None, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendLocation

Shortcut for method aiogram.methods.send_location.SendLocation will automatically fill method
attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendlocation

Parameters

• latitude – Latitude of the location

• longitude – Longitude of the location

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• live_period – Period in seconds during which the location will be updated (see Live
Locations, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be
edited indefinitely.

• heading – For live locations, a direction in which the user is moving, in degrees. Must be
between 1 and 360 if specified.

• proximity_alert_radius – For live locations, a maximum distance for proximity alerts
about approaching another chat member, in meters. Must be between 1 and 100000 if
specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

2.3. Bot API 245

https://core.telegram.org/bots/api#sendlocation
https://telegram.org/blog/live-locations
https://telegram.org/blog/live-locations
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_location.SendLocation

answer_location(latitude: float, longitude: float, direct_messages_topic_id: Optional[int] = None,
horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None,
heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id:
Optional[int] = None, **kwargs: Any)→ SendLocation

Shortcut for method aiogram.methods.send_location.SendLocation will automatically fill method
attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is
returned.

Source: https://core.telegram.org/bots/api#sendlocation

Parameters

• latitude – Latitude of the location

• longitude – Longitude of the location

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• live_period – Period in seconds during which the location will be updated (see Live
Locations, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be
edited indefinitely.

• heading – For live locations, a direction in which the user is moving, in degrees. Must be
between 1 and 360 if specified.

• proximity_alert_radius – For live locations, a maximum distance for proximity alerts
about approaching another chat member, in meters. Must be between 1 and 100000 if
specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

246 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendlocation
https://telegram.org/blog/live-locations
https://telegram.org/blog/live-locations
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_location.SendLocation

reply_media_group(media: list[MediaUnion], direct_messages_topic_id: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, allow_sending_without_reply:
Optional[bool] = None, **kwargs: Any)→ SendMediaGroup

Shortcut for method aiogram.methods.send_media_group.SendMediaGroup will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send a group of photos, videos, documents or audios as an album. Documents and
audio files can be only grouped in an album with messages of the same type. On success, an array of
aiogram.types.message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

Parameters

• media – A JSON-serialized array describing messages to be sent, must include 2-10 items

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sages will be sent; required if the messages are sent to a direct messages chat

• disable_notification – Sends messages silently. Users will receive a notification with
no sound.

• protect_content – Protects the contents of the sent messages from forwarding and sav-
ing

2.3. Bot API 247

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_media_group.SendMediaGroup

answer_media_group(media: list[MediaUnion], direct_messages_topic_id: Optional[int] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] =
None, message_effect_id: Optional[str] = None, reply_parameters:
Optional[ReplyParameters] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendMediaGroup

Shortcut for method aiogram.methods.send_media_group.SendMediaGroup will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and
audio files can be only grouped in an album with messages of the same type. On success, an array of
aiogram.types.message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

Parameters

• media – A JSON-serialized array describing messages to be sent, must include 2-10 items

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sages will be sent; required if the messages are sent to a direct messages chat

• disable_notification – Sends messages silently. Users will receive a notification with
no sound.

• protect_content – Protects the contents of the sent messages from forwarding and sav-
ing

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the messages are a reply, ID of the original message

Returns
instance of method aiogram.methods.send_media_group.SendMediaGroup

248 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

reply(text: str, direct_messages_topic_id: Optional[int] = None, parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None,
link_preview_options: Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None, message_effect_id:
Optional[str] = None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool]
= None, disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, **kwargs: Any)→ SendMessage

Shortcut for method aiogram.methods.send_message.SendMessage will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send text messages. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendmessage

Parameters

• text – Text of the message to be sent, 1-4096 characters after entities parsing

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• disable_web_page_preview – Disables link previews for links in this message

2.3. Bot API 249

https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.send_message.SendMessage

answer(text: str, direct_messages_topic_id: Optional[int] = None, parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None,
link_preview_options: Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None, message_effect_id:
Optional[str] = None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs:
Any)→ SendMessage

Shortcut for method aiogram.methods.send_message.SendMessage will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendmessage

Parameters

• text – Text of the message to be sent, 1-4096 characters after entities parsing

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

250 Chapter 2. Contents

https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• disable_web_page_preview – Disables link previews for links in this message

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_message.SendMessage

reply_photo(photo: InputFileUnion, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendPhoto

Shortcut for method aiogram.methods.send_photo.SendPhoto will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

Parameters

• photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from
the Internet, or upload a new photo using multipart/form-data. The photo must be at most
10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and
height ratio must be at most 20. More information on Sending Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Photo caption (may also be used when resending photos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the photo caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

2.3. Bot API 251

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendphoto
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_photo.SendPhoto

answer_photo(photo: InputFileUnion, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None,
show_caption_above_media: Optional[Union[bool, Default]] =
<Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendPhoto

Shortcut for method aiogram.methods.send_photo.SendPhoto will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

Parameters

• photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from
the Internet, or upload a new photo using multipart/form-data. The photo must be at most
10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and
height ratio must be at most 20. More information on Sending Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

252 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendphoto

aiogram Documentation, Release 3.23.0

• caption – Photo caption (may also be used when resending photos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the photo caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_photo.SendPhoto

reply_poll(question: str, options: list[InputPollOptionUnion], question_parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, question_entities: Optional[list[MessageEntity]] = None,
is_anonymous: Optional[bool] = None, type: Optional[str] = None, allows_multiple_answers:
Optional[bool] = None, correct_option_id: Optional[int] = None, explanation: Optional[str] =
None, explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
explanation_entities: Optional[list[MessageEntity]] = None, open_period: Optional[int] =
None, close_date: Optional[DateTimeUnion] = None, is_closed: Optional[bool] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendPoll

Shortcut for method aiogram.methods.send_poll.SendPoll will automatically fill method attributes:

• chat_id

• message_thread_id

• business_connection_id

2.3. Bot API 253

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• reply_parameters

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendpoll

Parameters

• question – Poll question, 1-300 characters

• options – A JSON-serialized list of 2-12 answer options

• question_parse_mode – Mode for parsing entities in the question. See formatting op-
tions for more details. Currently, only custom emoji entities are allowed

• question_entities – A JSON-serialized list of special entities that appear in the poll
question. It can be specified instead of question_parse_mode

• is_anonymous – True, if the poll needs to be anonymous, defaults to True

• type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

• allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls
in quiz mode, defaults to False

• correct_option_id – 0-based identifier of the correct answer option, required for polls
in quiz mode

• explanation – Text that is shown when a user chooses an incorrect answer or taps on
the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities
parsing

• explanation_parse_mode – Mode for parsing entities in the explanation. See formatting
options for more details.

• explanation_entities – A JSON-serialized list of special entities that appear in the
poll explanation. It can be specified instead of explanation_parse_mode

• open_period – Amount of time in seconds the poll will be active after creation, 5-600.
Can’t be used together with close_date.

• close_date – Point in time (Unix timestamp) when the poll will be automatically closed.
Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with
open_period.

• is_closed – Pass True if the poll needs to be immediately closed. This can be useful for
poll preview.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

254 Chapter 2. Contents

https://core.telegram.org/bots/api#sendpoll
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_poll.SendPoll

answer_poll(question: str, options: list[InputPollOptionUnion], question_parse_mode: Optional[Union[str,
Default]] = <Default('parse_mode')>, question_entities: Optional[list[MessageEntity]] =
None, is_anonymous: Optional[bool] = None, type: Optional[str] = None,
allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None,
explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, explanation_entities: Optional[list[MessageEntity]] = None,
open_period: Optional[int] = None, close_date: Optional[DateTimeUnion] = None,
is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendPoll

Shortcut for method aiogram.methods.send_poll.SendPoll will automatically fill method attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is re-
turned.

Source: https://core.telegram.org/bots/api#sendpoll

Parameters

• question – Poll question, 1-300 characters

• options – A JSON-serialized list of 2-12 answer options

• question_parse_mode – Mode for parsing entities in the question. See formatting op-
tions for more details. Currently, only custom emoji entities are allowed

• question_entities – A JSON-serialized list of special entities that appear in the poll
question. It can be specified instead of question_parse_mode

• is_anonymous – True, if the poll needs to be anonymous, defaults to True

• type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

• allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls
in quiz mode, defaults to False

• correct_option_id – 0-based identifier of the correct answer option, required for polls
in quiz mode

• explanation – Text that is shown when a user chooses an incorrect answer or taps on
the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities
parsing

• explanation_parse_mode – Mode for parsing entities in the explanation. See formatting
options for more details.

• explanation_entities – A JSON-serialized list of special entities that appear in the
poll explanation. It can be specified instead of explanation_parse_mode

2.3. Bot API 255

https://core.telegram.org/bots/api#sendpoll
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• open_period – Amount of time in seconds the poll will be active after creation, 5-600.
Can’t be used together with close_date.

• close_date – Point in time (Unix timestamp) when the poll will be automatically closed.
Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with
open_period.

• is_closed – Pass True if the poll needs to be immediately closed. This can be useful for
poll preview.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_poll.SendPoll

reply_dice(direct_messages_topic_id: Optional[int] = None, emoji: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendDice

Shortcut for method aiogram.methods.send_dice.SendDice will automatically fill method attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

Parameters

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

256 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddice

aiogram Documentation, Release 3.23.0

• emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘’,
‘’, ‘’, ‘’, ‘’, or ‘’. Dice can have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values
1-64 for ‘’. Defaults to ‘’

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_dice.SendDice

answer_dice(direct_messages_topic_id: Optional[int] = None, emoji: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters] =
None, reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendDice

Shortcut for method aiogram.methods.send_dice.SendDice will automatically fill method attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

Parameters

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘’,
‘’, ‘’, ‘’, ‘’, or ‘’. Dice can have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values
1-64 for ‘’. Defaults to ‘’

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

2.3. Bot API 257

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#senddice
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• protect_content – Protects the contents of the sent message from forwarding

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_dice.SendDice

reply_sticker(sticker: InputFileUnion, direct_messages_topic_id: Optional[int] = None, emoji:
Optional[str] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, **kwargs: Any)→ SendSticker

Shortcut for method aiogram.methods.send_sticker.SendSticker will automatically fill method
attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent
aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

Parameters

• sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker
from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-
data. More information on Sending Files ». Video and animated stickers can’t be sent via
an HTTP URL.

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji associated with the sticker; only for just uploaded stickers

258 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker

aiogram Documentation, Release 3.23.0

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_sticker.SendSticker

answer_sticker(sticker: InputFileUnion, direct_messages_topic_id: Optional[int] = None, emoji:
Optional[str] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] =
None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→ SendSticker

Shortcut for method aiogram.methods.send_sticker.SendSticker will automatically fill method
attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent
aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

Parameters

• sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker
from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-
data. More information on Sending Files ». Video and animated stickers can’t be sent via
an HTTP URL.

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• emoji – Emoji associated with the sticker; only for just uploaded stickers

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

2.3. Bot API 259

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_sticker.SendSticker

reply_venue(latitude: float, longitude: float, title: str, address: str, direct_messages_topic_id:
Optional[int] = None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] =
None, google_place_id: Optional[str] = None, google_place_type: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]]
= <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendVenue

Shortcut for method aiogram.methods.send_venue.SendVenue will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send information about a venue. On success, the sent aiogram.types.message.
Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

Parameters

• latitude – Latitude of the venue

• longitude – Longitude of the venue

• title – Name of the venue

• address – Address of the venue

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• foursquare_id – Foursquare identifier of the venue

260 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvenue

aiogram Documentation, Release 3.23.0

• foursquare_type – Foursquare type of the venue, if known. (For example,
‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

• google_place_id – Google Places identifier of the venue

• google_place_type – Google Places type of the venue. (See supported types.)

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_venue.SendVenue

answer_venue(latitude: float, longitude: float, title: str, address: str, direct_messages_topic_id:
Optional[int] = None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str]
= None, google_place_id: Optional[str] = None, google_place_type: Optional[str] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool,
Default]] = <Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_parameters: Optional[ReplyParameters]
= None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVenue

Shortcut for method aiogram.methods.send_venue.SendVenue will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.
Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

Parameters

• latitude – Latitude of the venue

• longitude – Longitude of the venue

• title – Name of the venue

2.3. Bot API 261

https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvenue

aiogram Documentation, Release 3.23.0

• address – Address of the venue

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• foursquare_id – Foursquare identifier of the venue

• foursquare_type – Foursquare type of the venue, if known. (For example,
‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

• google_place_id – Google Places identifier of the venue

• google_place_type – Google Places type of the venue. (See supported types.)

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_venue.SendVenue

reply_video(video: InputFileUnion, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail:
Optional[InputFile] = None, cover: Optional[InputFileUnion] = None, start_timestamp:
Optional[DateTimeUnion] = None, caption: Optional[str] = None, parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media: Optional[Union[bool,
Default]] = <Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool] = None,
**kwargs: Any)→ SendVideo

Shortcut for method aiogram.methods.send_video.SendVideo will automatically fill method at-
tributes:

• chat_id

• message_thread_id

262 Chapter 2. Contents

https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

• business_connection_id

• reply_parameters

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent
as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message
is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#sendvideo

Parameters

• video – Video to send. Pass a file_id as String to send a video that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the
Internet, or upload a new video using multipart/form-data. More information on Sending
Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• width – Video width

• height – Video height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• cover – Cover for the video in the message. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the
Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-
data under <file_attach_name> name. More information on Sending Files »

• start_timestamp – Start timestamp for the video in the message

• caption – Video caption (may also be used when resending videos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the video caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the video needs to be covered with a spoiler animation

• supports_streaming – Pass True if the uploaded video is suitable for streaming

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

2.3. Bot API 263

https://core.telegram.org/bots/api#sendvideo
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_video.SendVideo

answer_video(video: InputFileUnion, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None,
thumbnail: Optional[InputFile] = None, cover: Optional[InputFileUnion] = None,
start_timestamp: Optional[DateTimeUnion] = None, caption: Optional[str] = None,
parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media: Optional[Union[bool,
Default]] = <Default('show_caption_above_media')>, has_spoiler: Optional[bool] = None,
supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVideo

Shortcut for method aiogram.methods.send_video.SendVideo will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent
as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message
is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the
future.

Source: https://core.telegram.org/bots/api#sendvideo

Parameters

• video – Video to send. Pass a file_id as String to send a video that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the
Internet, or upload a new video using multipart/form-data. More information on Sending
Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

264 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvideo

aiogram Documentation, Release 3.23.0

• duration – Duration of sent video in seconds

• width – Video width

• height – Video height

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• cover – Cover for the video in the message. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the
Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-
data under <file_attach_name> name. More information on Sending Files »

• start_timestamp – Start timestamp for the video in the message

• caption – Video caption (may also be used when resending videos by file_id), 0-1024
characters after entities parsing

• parse_mode – Mode for parsing entities in the video caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• has_spoiler – Pass True if the video needs to be covered with a spoiler animation

• supports_streaming – Pass True if the uploaded video is suitable for streaming

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

2.3. Bot API 265

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.send_video.SendVideo

reply_video_note(video_note: InputFileUnion, direct_messages_topic_id: Optional[int] = None, duration:
Optional[int] = None, length: Optional[int] = None, thumbnail: Optional[InputFile] =
None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_markup: Optional[ReplyMarkupUnion] = None, allow_sending_without_reply:
Optional[bool] = None, **kwargs: Any)→ SendVideoNote

Shortcut for method aiogram.methods.send_video_note.SendVideoNote will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this
method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

Parameters

• video_note – Video note to send. Pass a file_id as String to send a video note that exists
on the Telegram servers (recommended) or upload a new video using multipart/form-data.
More information on Sending Files ». Sending video notes by a URL is currently unsup-
ported

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• length – Video width and height, i.e. diameter of the video message

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

266 Chapter 2. Contents

https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_video_note.SendVideoNote

answer_video_note(video_note: InputFileUnion, direct_messages_topic_id: Optional[int] = None,
duration: Optional[int] = None, length: Optional[int] = None, thumbnail:
Optional[InputFile] = None, disable_notification: Optional[bool] = None,
protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>,
allow_paid_broadcast: Optional[bool] = None, message_effect_id: Optional[str] =
None, suggested_post_parameters: Optional[SuggestedPostParameters] = None,
reply_parameters: Optional[ReplyParameters] = None, reply_markup:
Optional[ReplyMarkupUnion] = None, allow_sending_without_reply: Optional[bool]
= None, reply_to_message_id: Optional[int] = None, **kwargs: Any)→
SendVideoNote

Shortcut for method aiogram.methods.send_video_note.SendVideoNote will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this
method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

Parameters

• video_note – Video note to send. Pass a file_id as String to send a video note that exists
on the Telegram servers (recommended) or upload a new video using multipart/form-data.
More information on Sending Files ». Sending video notes by a URL is currently unsup-
ported

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• duration – Duration of sent video in seconds

• length – Video width and height, i.e. diameter of the video message

• thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file
is supported server-side. The thumbnail should be in JPEG format and less than 200 kB
in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not
uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded
as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>. More information on Sending Files
»

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

2.3. Bot API 267

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_video_note.SendVideoNote

reply_voice(voice: InputFileUnion, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None, suggested_post_parameters:
Optional[SuggestedPostParameters] = None, reply_markup: Optional[ReplyMarkupUnion] =
None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any)→ SendVoice

Shortcut for method aiogram.methods.send_voice.SendVoice will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice
message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format,
or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.
document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can
currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

Parameters

• voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the
Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

268 Chapter 2. Contents

https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvoice

aiogram Documentation, Release 3.23.0

• caption – Voice message caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the voice message caption. See formatting
options for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the voice message in seconds

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

Returns
instance of method aiogram.methods.send_voice.SendVoice

answer_voice(voice: InputFileUnion, direct_messages_topic_id: Optional[int] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] =
<Default('parse_mode')>, caption_entities: Optional[list[MessageEntity]] = None, duration:
Optional[int] = None, disable_notification: Optional[bool] = None, protect_content:
Optional[Union[bool, Default]] = <Default('protect_content')>, allow_paid_broadcast:
Optional[bool] = None, message_effect_id: Optional[str] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] =
None, **kwargs: Any)→ SendVoice

Shortcut for method aiogram.methods.send_voice.SendVoice will automatically fill method at-
tributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice
message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format,
or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.
document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can
currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

2.3. Bot API 269

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendvoice

aiogram Documentation, Release 3.23.0

Parameters

• voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the
Internet, or upload a new one using multipart/form-data. More information on Sending
Files »

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• caption – Voice message caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the voice message caption. See formatting
options for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• duration – Duration of the voice message in seconds

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• message_effect_id – Unique identifier of the message effect to be added to the message;
for private chats only

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.send_voice.SendVoice

send_copy(chat_id: str | int, disable_notification: bool | None = None, reply_to_message_id: int | None =
None, reply_parameters: ReplyParameters | None = None, reply_markup: InlineKeyboardMarkup
| ReplyKeyboardMarkup | None = None, allow_sending_without_reply: bool | None = None,
message_thread_id: int | None = None, business_connection_id: str | None = None, parse_mode:
str | None = None, message_effect_id: str | None = None)→ ForwardMessage | SendAnimation |
SendAudio | SendContact | SendDocument | SendLocation | SendMessage | SendPhoto | SendPoll |
SendDice | SendSticker | SendVenue | SendVideo | SendVideoNote | SendVoice

Send copy of a message.

Is similar to aiogram.client.bot.Bot.copy_message() but returning the sent message instead of
aiogram.types.message_id.MessageId

270 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

ò Note

This method doesn’t use the API method named copyMessage and historically implemented before the
similar method is added to API

Parameters

• chat_id

• disable_notification

• reply_to_message_id

• reply_parameters

• reply_markup

• allow_sending_without_reply

• message_thread_id

• business_connection_id

• parse_mode

• message_effect_id

Returns

copy_to(chat_id: ChatIdUnion, message_thread_id: Optional[int] = None, direct_messages_topic_id:
Optional[int] = None, video_start_timestamp: Optional[DateTimeUnion] = None, caption:
Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>,
caption_entities: Optional[list[MessageEntity]] = None, show_caption_above_media:
Optional[Union[bool, Default]] = <Default('show_caption_above_media')>, disable_notification:
Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, allow_paid_broadcast: Optional[bool] = None,
suggested_post_parameters: Optional[SuggestedPostParameters] = None, reply_parameters:
Optional[ReplyParameters] = None, reply_markup: Optional[ReplyMarkupUnion] = None,
allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None,
**kwargs: Any)→ CopyMessage

Shortcut for method aiogram.methods.copy_message.CopyMessage will automatically fill method at-
tributes:

• from_chat_id

• message_id

Use this method to copy messages of any kind. Service messages, paid media messages, giveaway mes-
sages, giveaway winners messages, and invoice messages can’t be copied. A quiz aiogram.methods.
poll.Poll can be copied only if the value of the field correct_option_id is known to the bot. The method is
analogous to the method aiogram.methods.forward_message.ForwardMessage, but the copied mes-
sage doesn’t have a link to the original message. Returns the aiogram.types.message_id.MessageId
of the sent message on success.

Source: https://core.telegram.org/bots/api#copymessage

Parameters

• chat_id – Unique identifier for the target chat or username of the target channel (in the
format @channelusername)

2.3. Bot API 271

https://core.telegram.org/bots/api#copymessage

aiogram Documentation, Release 3.23.0

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• video_start_timestamp – New start timestamp for the copied video in the message

• caption – New caption for media, 0-1024 characters after entities parsing. If not specified,
the original caption is kept

• parse_mode – Mode for parsing entities in the new caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the new
caption, which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media. Ignored if a new caption isn’t specified.

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

• allow_sending_without_reply – Pass True if the message should be sent even if the
specified replied-to message is not found

• reply_to_message_id – If the message is a reply, ID of the original message

Returns
instance of method aiogram.methods.copy_message.CopyMessage

edit_text(text: str, inline_message_id: Optional[str] = None, parse_mode: Optional[Union[str, Default]]
= <Default('parse_mode')>, entities: Optional[list[MessageEntity]] = None,
link_preview_options: Optional[Union[LinkPreviewOptions, Default]] =
<Default('link_preview')>, reply_markup: Optional[InlineKeyboardMarkup] = None,
disable_web_page_preview: Optional[Union[bool, Default]] =
<Default('link_preview_is_disabled')>, **kwargs: Any)→ EditMessageText

Shortcut for method aiogram.methods.edit_message_text.EditMessageText will automatically
fill method attributes:

• chat_id

• message_id

• business_connection_id

272 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

Use this method to edit text and game messages. On success, if the edited message is not an inline message,
the edited aiogram.types.message.Message is returned, otherwise True is returned. Note that business
messages that were not sent by the bot and do not contain an inline keyboard can only be edited within 48
hours from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagetext

Parameters

• text – New text of the message, 1-4096 characters after entities parsing

• inline_message_id – Required if chat_id and message_id are not specified. Identifier
of the inline message

• parse_mode – Mode for parsing entities in the message text. See formatting options for
more details.

• entities – A JSON-serialized list of special entities that appear in message text, which
can be specified instead of parse_mode

• link_preview_options – Link preview generation options for the message

• reply_markup – A JSON-serialized object for an inline keyboard.

• disable_web_page_preview – Disables link previews for links in this message

Returns
instance of method aiogram.methods.edit_message_text.EditMessageText

forward(chat_id: ChatIdUnion, message_thread_id: Optional[int] = None, direct_messages_topic_id:
Optional[int] = None, video_start_timestamp: Optional[DateTimeUnion] = None,
disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] =
<Default('protect_content')>, suggested_post_parameters: Optional[SuggestedPostParameters] =
None, **kwargs: Any)→ ForwardMessage

Shortcut for method aiogram.methods.forward_message.ForwardMessage will automatically fill
method attributes:

• from_chat_id

• message_id

Use this method to forward messages of any kind. Service messages and messages with protected content
can’t be forwarded. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#forwardmessage

Parameters

• chat_id – Unique identifier for the target chat or username of the target channel (in the
format @channelusername)

• message_thread_id – Unique identifier for the target message thread (topic) of the forum;
for forum supergroups only

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be forwarded; required if the message is forwarded to a direct messages chat

• video_start_timestamp – New start timestamp for the forwarded video in the message

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the forwarded message from forwarding and
saving

2.3. Bot API 273

https://core.telegram.org/bots/api#games
https://core.telegram.org/bots/api#editmessagetext
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#forwardmessage
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only

Returns
instance of method aiogram.methods.forward_message.ForwardMessage

edit_media(media: InputMediaUnion, inline_message_id: str | None = None, reply_markup:
InlineKeyboardMarkup | None = None, **kwargs: Any)→ EditMessageMedia

Shortcut for method aiogram.methods.edit_message_media.EditMessageMedia will automatically
fill method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to edit animation, audio, document, photo, or video messages, or to add media to text
messages. If a message is part of a message album, then it can be edited only to an audio for audio albums,
only to a document for document albums and to a photo or a video otherwise. When an inline message
is edited, a new file can’t be uploaded; use a previously uploaded file via its file_id or specify a URL. On
success, if the edited message is not an inline message, the edited aiogram.types.message.Message is
returned, otherwise True is returned. Note that business messages that were not sent by the bot and do not
contain an inline keyboard can only be edited within 48 hours from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagemedia

Parameters

• media – A JSON-serialized object for a new media content of the message

• inline_message_id – Required if chat_id and message_id are not specified. Identifier
of the inline message

• reply_markup – A JSON-serialized object for a new inline keyboard.

Returns
instance of method aiogram.methods.edit_message_media.EditMessageMedia

edit_reply_markup(inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None
= None, **kwargs: Any)→ EditMessageReplyMarkup

Shortcut for method aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup
will automatically fill method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to edit only the reply markup of messages. On success, if the edited message is not an
inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.
Note that business messages that were not sent by the bot and do not contain an inline keyboard can only
be edited within 48 hours from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagereplymarkup

Parameters

• inline_message_id – Required if chat_id and message_id are not specified. Identifier
of the inline message

• reply_markup – A JSON-serialized object for an inline keyboard.

274 Chapter 2. Contents

https://core.telegram.org/bots/api#editmessagemedia
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#editmessagereplymarkup
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Returns
instance of method aiogram.methods.edit_message_reply_markup.
EditMessageReplyMarkup

delete_reply_markup(inline_message_id: str | None = None, **kwargs: Any)→
EditMessageReplyMarkup

Shortcut for method aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup
will automatically fill method attributes:

• chat_id

• message_id

• business_connection_id

• reply_markup

Use this method to edit only the reply markup of messages. On success, if the edited message is not an
inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.
Note that business messages that were not sent by the bot and do not contain an inline keyboard can only
be edited within 48 hours from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagereplymarkup

Parameters
inline_message_id – Required if chat_id and message_id are not specified. Identifier of
the inline message

Returns
instance of method aiogram.methods.edit_message_reply_markup.
EditMessageReplyMarkup

edit_live_location(latitude: float, longitude: float, inline_message_id: str | None = None, live_period:
int | None = None, horizontal_accuracy: float | None = None, heading: int | None =
None, proximity_alert_radius: int | None = None, reply_markup:
InlineKeyboardMarkup | None = None, **kwargs: Any)→ EditMessageLiveLocation

Shortcut for method aiogram.methods.edit_message_live_location.
EditMessageLiveLocation will automatically fill method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to edit live location messages. A location can be edited until its live_period ex-
pires or editing is explicitly disabled by a call to aiogram.methods.stop_message_live_location.
StopMessageLiveLocation. On success, if the edited message is not an inline message, the edited
aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagelivelocation

Parameters

• latitude – Latitude of new location

• longitude – Longitude of new location

• inline_message_id – Required if chat_id and message_id are not specified. Identifier
of the inline message

• live_period – New period in seconds during which the location can be updated, starting
from the message send date. If 0x7FFFFFFF is specified, then the location can be updated

2.3. Bot API 275

https://core.telegram.org/bots/api#editmessagereplymarkup
https://core.telegram.org/bots/api#editmessagelivelocation

aiogram Documentation, Release 3.23.0

forever. Otherwise, the new value must not exceed the current live_period by more than
a day, and the live location expiration date must remain within the next 90 days. If not
specified, then live_period remains unchanged

• horizontal_accuracy – The radius of uncertainty for the location, measured in meters;
0-1500

• heading – Direction in which the user is moving, in degrees. Must be between 1 and 360
if specified.

• proximity_alert_radius – The maximum distance for proximity alerts about ap-
proaching another chat member, in meters. Must be between 1 and 100000 if specified.

• reply_markup – A JSON-serialized object for a new inline keyboard.

Returns
instance of method aiogram.methods.edit_message_live_location.
EditMessageLiveLocation

stop_live_location(inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None
= None, **kwargs: Any)→ StopMessageLiveLocation

Shortcut for method aiogram.methods.stop_message_live_location.
StopMessageLiveLocation will automatically fill method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to stop updating a live location message before live_period expires. On success, if the
message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise
True is returned.

Source: https://core.telegram.org/bots/api#stopmessagelivelocation

Parameters

• inline_message_id – Required if chat_id and message_id are not specified. Identifier
of the inline message

• reply_markup – A JSON-serialized object for a new inline keyboard.

Returns
instance of method aiogram.methods.stop_message_live_location.
StopMessageLiveLocation

edit_caption(inline_message_id: Optional[str] = None, caption: Optional[str] = None, parse_mode:
Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities:
Optional[list[MessageEntity]] = None, show_caption_above_media: Optional[Union[bool,
Default]] = <Default('show_caption_above_media')>, reply_markup:
Optional[InlineKeyboardMarkup] = None, **kwargs: Any)→ EditMessageCaption

Shortcut for method aiogram.methods.edit_message_caption.EditMessageCaption will auto-
matically fill method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to edit captions of messages. On success, if the edited message is not an inline message, the
edited aiogram.types.message.Message is returned, otherwise True is returned. Note that business

276 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#stopmessagelivelocation
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

messages that were not sent by the bot and do not contain an inline keyboard can only be edited within 48
hours from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagecaption

Parameters

• inline_message_id – Required if chat_id and message_id are not specified. Identifier
of the inline message

• caption – New caption of the message, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the message caption. See formatting options
for more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media. Supported only for animation, photo and video messages.

• reply_markup – A JSON-serialized object for an inline keyboard.

Returns
instance of method aiogram.methods.edit_message_caption.EditMessageCaption

delete(**kwargs: Any)→ DeleteMessage
Shortcut for method aiogram.methods.delete_message.DeleteMessage will automatically fill
method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to delete a message, including service messages, with the following limitations:

• A message can only be deleted if it was sent less than 48 hours ago.

• Service messages about a supergroup, channel, or forum topic creation can’t be deleted.

• A dice message in a private chat can only be deleted if it was sent more than 24 hours ago.

• Bots can delete outgoing messages in private chats, groups, and supergroups.

• Bots can delete incoming messages in private chats.

• Bots granted can_post_messages permissions can delete outgoing messages in channels.

• If the bot is an administrator of a group, it can delete any message there.

• If the bot has can_delete_messages administrator right in a supergroup or a channel, it can delete any
message there.

• If the bot has can_manage_direct_messages administrator right in a channel, it can delete any message
in the corresponding direct messages chat.

Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessage

Returns
instance of method aiogram.methods.delete_message.DeleteMessage

2.3. Bot API 277

https://core.telegram.org/bots/api#editmessagecaption
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#deletemessage

aiogram Documentation, Release 3.23.0

pin(disable_notification: bool | None = None, **kwargs: Any)→ PinChatMessage
Shortcut for method aiogram.methods.pin_chat_message.PinChatMessage will automatically fill
method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to add a message to the list of pinned messages in a chat. In private chats and channel
direct messages chats, all non-service messages can be pinned. Conversely, the bot must be an administrator
with the ‘can_pin_messages’ right or the ‘can_edit_messages’ right to pin messages in groups and channels
respectively. Returns True on success.

Source: https://core.telegram.org/bots/api#pinchatmessage

Parameters
disable_notification – Pass True if it is not necessary to send a notification to all chat
members about the new pinned message. Notifications are always disabled in channels and
private chats.

Returns
instance of method aiogram.methods.pin_chat_message.PinChatMessage

unpin(**kwargs: Any)→ UnpinChatMessage
Shortcut for method aiogram.methods.unpin_chat_message.UnpinChatMessagewill automatically
fill method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to remove a message from the list of pinned messages in a chat. In private chats and channel
direct messages chats, all messages can be unpinned. Conversely, the bot must be an administrator with
the ‘can_pin_messages’ right or the ‘can_edit_messages’ right to unpin messages in groups and channels
respectively. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinchatmessage

Returns
instance of method aiogram.methods.unpin_chat_message.UnpinChatMessage

get_url(force_private: bool = False, include_thread_id: bool = False)→ str | None
Returns message URL. Cannot be used in private (one-to-one) chats. If chat has a username, returns URL
like https://t.me/username/message_id Otherwise (or if {force_private} flag is set), returns https://t.me/c/
shifted_chat_id/message_id

Parameters

• force_private – if set, a private URL is returned even for a public chat

• include_thread_id – if set, adds chat thread id to URL and returns like https://t.me/
username/thread_id/message_id

Returns
string with full message URL

react(reaction: list[ReactionTypeUnion] | None = None, is_big: bool | None = None, **kwargs: Any)→
SetMessageReaction

278 Chapter 2. Contents

https://core.telegram.org/bots/api#pinchatmessage
https://core.telegram.org/bots/api#unpinchatmessage
https://t.me/username/message_id
https://t.me/c/shifted_chat_id/message_id
https://t.me/c/shifted_chat_id/message_id
https://t.me/username/thread_id/message_id
https://t.me/username/thread_id/message_id

aiogram Documentation, Release 3.23.0

Shortcut for method aiogram.methods.set_message_reaction.SetMessageReaction will auto-
matically fill method attributes:

• chat_id

• message_id

• business_connection_id

Use this method to change the chosen reactions on a message. Service messages of some types can’t
be reacted to. Automatically forwarded messages from a channel to its discussion group have the same
available reactions as messages in the channel. Bots can’t use paid reactions. Returns True on success.

Source: https://core.telegram.org/bots/api#setmessagereaction

Parameters

• reaction – A JSON-serialized list of reaction types to set on the message. Currently, as
non-premium users, bots can set up to one reaction per message. A custom emoji reaction
can be used if it is either already present on the message or explicitly allowed by chat
administrators. Paid reactions can’t be used by bots.

• is_big – Pass True to set the reaction with a big animation

Returns
instance of method aiogram.methods.set_message_reaction.SetMessageReaction

answer_paid_media(star_count: int, media: list[InputPaidMediaUnion], direct_messages_topic_id: int |
None = None, payload: str | None = None, caption: str | None = None, parse_mode:
str | None = None, caption_entities: list[MessageEntity] | None = None,
show_caption_above_media: bool | None = None, disable_notification: bool | None =
None, protect_content: bool | None = None, allow_paid_broadcast: bool | None =
None, suggested_post_parameters: SuggestedPostParameters | None = None,
reply_parameters: ReplyParameters | None = None, reply_markup:
ReplyMarkupUnion | None = None, **kwargs: Any)→ SendPaidMedia

Shortcut for method aiogram.methods.send_paid_media.SendPaidMedia will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

Use this method to send paid media. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpaidmedia

Parameters

• star_count – The number of Telegram Stars that must be paid to buy access to the media;
1-10000

• media – A JSON-serialized array describing the media to be sent; up to 10 items

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

• payload – Bot-defined paid media payload, 0-128 bytes. This will not be displayed to the
user, use it for your internal processes.

• caption – Media caption, 0-1024 characters after entities parsing

2.3. Bot API 279

https://core.telegram.org/bots/api#setmessagereaction
https://core.telegram.org/bots/api#sendpaidmedia

aiogram Documentation, Release 3.23.0

• parse_mode – Mode for parsing entities in the media caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_parameters – Description of the message to reply to

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

Returns
instance of method aiogram.methods.send_paid_media.SendPaidMedia

reply_paid_media(star_count: int, media: list[InputPaidMediaUnion], direct_messages_topic_id: int |
None = None, payload: str | None = None, caption: str | None = None, parse_mode: str
| None = None, caption_entities: list[MessageEntity] | None = None,
show_caption_above_media: bool | None = None, disable_notification: bool | None =
None, protect_content: bool | None = None, allow_paid_broadcast: bool | None = None,
suggested_post_parameters: SuggestedPostParameters | None = None, reply_markup:
ReplyMarkupUnion | None = None, **kwargs: Any)→ SendPaidMedia

Shortcut for method aiogram.methods.send_paid_media.SendPaidMedia will automatically fill
method attributes:

• chat_id

• message_thread_id

• business_connection_id

• reply_parameters

Use this method to send paid media. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpaidmedia

Parameters

• star_count – The number of Telegram Stars that must be paid to buy access to the media;
1-10000

• media – A JSON-serialized array describing the media to be sent; up to 10 items

• direct_messages_topic_id – Identifier of the direct messages topic to which the mes-
sage will be sent; required if the message is sent to a direct messages chat

280 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#sendpaidmedia

aiogram Documentation, Release 3.23.0

• payload – Bot-defined paid media payload, 0-128 bytes. This will not be displayed to the
user, use it for your internal processes.

• caption – Media caption, 0-1024 characters after entities parsing

• parse_mode – Mode for parsing entities in the media caption. See formatting options for
more details.

• caption_entities – A JSON-serialized list of special entities that appear in the caption,
which can be specified instead of parse_mode

• show_caption_above_media – Pass True, if the caption must be shown above the mes-
sage media

• disable_notification – Sends the message silently. Users will receive a notification
with no sound.

• protect_content – Protects the contents of the sent message from forwarding and saving

• allow_paid_broadcast – Pass True to allow up to 1000 messages per second, ignoring
broadcasting limits for a fee of 0.1 Telegram Stars per message. The relevant Stars will be
withdrawn from the bot’s balance

• suggested_post_parameters – A JSON-serialized object containing the parameters of
the suggested post to send; for direct messages chats only. If the message is sent as a reply
to another suggested post, then that suggested post is automatically declined.

• reply_markup – Additional interface options. A JSON-serialized object for an inline
keyboard, custom reply keyboard, instructions to remove a reply keyboard or to force a
reply from the user

Returns
instance of method aiogram.methods.send_paid_media.SendPaidMedia

MessageAutoDeleteTimerChanged

class aiogram.types.message_auto_delete_timer_changed.MessageAutoDeleteTimerChanged(*,
mes-
sage_auto_delete_time:
int,
**ex-
tra_data:
Any)

This object represents a service message about a change in auto-delete timer settings.

Source: https://core.telegram.org/bots/api#messageautodeletetimerchanged

message_auto_delete_time: int

New auto-delete time for messages in the chat; in seconds

2.3. Bot API 281

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#messageautodeletetimerchanged

aiogram Documentation, Release 3.23.0

MessageEntity

class aiogram.types.message_entity.MessageEntity(*, type: str, offset: int, length: int, url: str | None =
None, user: User | None = None, language: str |
None = None, custom_emoji_id: str | None = None,
**extra_data: Any)

This object represents one special entity in a text message. For example, hashtags, usernames, URLs, etc.

Source: https://core.telegram.org/bots/api#messageentity

type: str

Type of the entity. Currently, can be ‘mention’ (@username), ‘hashtag’ (#hashtag or
#hashtag@chatusername), ‘cashtag’ ($USD or $USD@chatusername), ‘bot_command’ (/
start@jobs_bot), ‘url’ (https://telegram.org), ‘email’ (do-not-reply@telegram.org),
‘phone_number’ (+1-212-555-0123), ‘bold’ (bold text), ‘italic’ (italic text), ‘underline’ (underlined
text), ‘strikethrough’ (strikethrough text), ‘spoiler’ (spoiler message), ‘blockquote’ (block quotation),
‘expandable_blockquote’ (collapsed-by-default block quotation), ‘code’ (monowidth string), ‘pre’
(monowidth block), ‘text_link’ (for clickable text URLs), ‘text_mention’ (for users without usernames),
‘custom_emoji’ (for inline custom emoji stickers)

offset: int

Offset in UTF-16 code units to the start of the entity

length: int

Length of the entity in UTF-16 code units

url: str | None

Optional. For ‘text_link’ only, URL that will be opened after user taps on the text

user: User | None

Optional. For ‘text_mention’ only, the mentioned user

language: str | None

Optional. For ‘pre’ only, the programming language of the entity text

custom_emoji_id: str | None

Optional. For ‘custom_emoji’ only, unique identifier of the custom emoji. Use aiogram.methods.
get_custom_emoji_stickers.GetCustomEmojiStickers to get full information about the sticker

extract_from(text: str)→ str

MessageId

class aiogram.types.message_id.MessageId(*, message_id: int, **extra_data: Any)
This object represents a unique message identifier.

Source: https://core.telegram.org/bots/api#messageid

message_id: int

Unique message identifier. In specific instances (e.g., message containing a video sent to a big chat), the
server might automatically schedule a message instead of sending it immediately. In such cases, this field
will be 0 and the relevant message will be unusable until it is actually sent

282 Chapter 2. Contents

https://core.telegram.org/bots/api#messageentity
https://telegram.org/blog/edit#new-mentions
https://core.telegram.org/api/entities#entity-length
https://core.telegram.org/api/entities#entity-length
https://core.telegram.org/bots/api#messageid

aiogram Documentation, Release 3.23.0

MessageOrigin

class aiogram.types.message_origin.MessageOrigin(**extra_data: Any)
This object describes the origin of a message. It can be one of

• aiogram.types.message_origin_user.MessageOriginUser

• aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser

• aiogram.types.message_origin_chat.MessageOriginChat

• aiogram.types.message_origin_channel.MessageOriginChannel

Source: https://core.telegram.org/bots/api#messageorigin

MessageOriginChannel

class aiogram.types.message_origin_channel.MessageOriginChannel(*, type: Lit-
eral[MessageOriginType.CHANNEL]
=
MessageOriginType.CHANNEL,
date: _datetime_serializer,
return_type=int,
when_used=unless - none)],
chat: Chat, message_id: int,
author_signature: str | None =
None, **extra_data: Any)

The message was originally sent to a channel chat.

Source: https://core.telegram.org/bots/api#messageoriginchannel

type: Literal[MessageOriginType.CHANNEL]

Type of the message origin, always ‘channel’

date: DateTime

Date the message was sent originally in Unix time

chat: Chat

Channel chat to which the message was originally sent

message_id: int

Unique message identifier inside the chat

author_signature: str | None

Optional. Signature of the original post author

MessageOriginChat

class aiogram.types.message_origin_chat.MessageOriginChat(*, type:
Literal[MessageOriginType.CHAT] =
MessageOriginType.CHAT , date:
_datetime_serializer, return_type=int,
when_used=unless - none)],
sender_chat: Chat, author_signature: str
| None = None, **extra_data: Any)

2.3. Bot API 283

https://core.telegram.org/bots/api#messageorigin
https://core.telegram.org/bots/api#messageoriginchannel

aiogram Documentation, Release 3.23.0

The message was originally sent on behalf of a chat to a group chat.

Source: https://core.telegram.org/bots/api#messageoriginchat

type: Literal[MessageOriginType.CHAT]

Type of the message origin, always ‘chat’

date: DateTime

Date the message was sent originally in Unix time

sender_chat: Chat

Chat that sent the message originally

author_signature: str | None

Optional. For messages originally sent by an anonymous chat administrator, original message author sig-
nature

MessageOriginHiddenUser

class aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser(*, type: Lit-
eral[MessageOriginType.HIDDEN_USER]
= MessageOrigin-
Type.HIDDEN_USER,
date:
_datetime_serializer,
return_type=int,
when_used=unless -
none)],
sender_user_name: str,
**extra_data: Any)

The message was originally sent by an unknown user.

Source: https://core.telegram.org/bots/api#messageoriginhiddenuser

type: Literal[MessageOriginType.HIDDEN_USER]

Type of the message origin, always ‘hidden_user’

date: _datetime_serializer, return_type=int, when_used=unless-none)]

Date the message was sent originally in Unix time

sender_user_name: str

Name of the user that sent the message originally

MessageOriginUser

class aiogram.types.message_origin_user.MessageOriginUser(*, type:
Literal[MessageOriginType.USER] =
MessageOriginType.USER, date:
_datetime_serializer, return_type=int,
when_used=unless - none)],
sender_user: User, **extra_data: Any)

The message was originally sent by a known user.

Source: https://core.telegram.org/bots/api#messageoriginuser

284 Chapter 2. Contents

https://core.telegram.org/bots/api#messageoriginchat
https://core.telegram.org/bots/api#messageoriginhiddenuser
https://core.telegram.org/bots/api#messageoriginuser

aiogram Documentation, Release 3.23.0

type: Literal[MessageOriginType.USER]

Type of the message origin, always ‘user’

date: DateTime

Date the message was sent originally in Unix time

sender_user: User

User that sent the message originally

MessageReactionCountUpdated

class aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated(*, chat: Chat,
message_id:
int, date:
_date-
time_serializer,
re-
turn_type=int,
when_used=unless
- none)],
reactions:
list[ReactionCount],
**ex-
tra_data:
Any)

This object represents reaction changes on a message with anonymous reactions.

Source: https://core.telegram.org/bots/api#messagereactioncountupdated

chat: Chat

The chat containing the message

message_id: int

Unique message identifier inside the chat

date: DateTime

Date of the change in Unix time

reactions: list[ReactionCount]

List of reactions that are present on the message

MessageReactionUpdated

2.3. Bot API 285

https://core.telegram.org/bots/api#messagereactioncountupdated

aiogram Documentation, Release 3.23.0

class aiogram.types.message_reaction_updated.MessageReactionUpdated(*, chat: Chat, message_id:
int, date:
_datetime_serializer,
return_type=int,
when_used=unless -
none)], old_reaction:
list[ReactionTypeEmoji |
ReactionTypeCustomEmoji
| ReactionTypePaid],
new_reaction:
list[ReactionTypeEmoji |
ReactionTypeCustomEmoji
| ReactionTypePaid], user:
User | None = None,
actor_chat: Chat | None =
None, **extra_data: Any)

This object represents a change of a reaction on a message performed by a user.

Source: https://core.telegram.org/bots/api#messagereactionupdated

chat: Chat

The chat containing the message the user reacted to

message_id: int

Unique identifier of the message inside the chat

date: DateTime

Date of the change in Unix time

old_reaction: list[ReactionTypeUnion]

Previous list of reaction types that were set by the user

new_reaction: list[ReactionTypeUnion]

New list of reaction types that have been set by the user

user: User | None

Optional. The user that changed the reaction, if the user isn’t anonymous

actor_chat: Chat | None

Optional. The chat on behalf of which the reaction was changed, if the user is anonymous

OwnedGift

class aiogram.types.owned_gift.OwnedGift(**extra_data: Any)
This object describes a gift received and owned by a user or a chat. Currently, it can be one of

• aiogram.types.owned_gift_regular.OwnedGiftRegular

• aiogram.types.owned_gift_unique.OwnedGiftUnique

Source: https://core.telegram.org/bots/api#ownedgift

286 Chapter 2. Contents

https://core.telegram.org/bots/api#messagereactionupdated
https://core.telegram.org/bots/api#ownedgift

aiogram Documentation, Release 3.23.0

OwnedGiftRegular

class aiogram.types.owned_gift_regular.OwnedGiftRegular(*, type:
Literal[OwnedGiftType.REGULAR] =
OwnedGiftType.REGULAR, gift: Gift,
send_date: int, owned_gift_id: str | None =
None, sender_user: User | None = None,
text: str | None = None, entities:
list[MessageEntity] | None = None,
is_private: bool | None = None, is_saved:
bool | None = None, can_be_upgraded:
bool | None = None, was_refunded: bool |
None = None, convert_star_count: int |
None = None,
prepaid_upgrade_star_count: int | None =
None, **extra_data: Any)

Describes a regular gift owned by a user or a chat.

Source: https://core.telegram.org/bots/api#ownedgiftregular

type: Literal[OwnedGiftType.REGULAR]

Type of the gift, always ‘regular’

gift: Gift

Information about the regular gift

send_date: int

Date the gift was sent in Unix time

owned_gift_id: str | None

Optional. Unique identifier of the gift for the bot; for gifts received on behalf of business accounts only

sender_user: User | None

Optional. Sender of the gift if it is a known user

text: str | None

Optional. Text of the message that was added to the gift

entities: list[MessageEntity] | None

Optional. Special entities that appear in the text

is_private: bool | None

Optional. True, if the sender and gift text are shown only to the gift receiver; otherwise, everyone will be
able to see them

is_saved: bool | None

Optional. True, if the gift is displayed on the account’s profile page; for gifts received on behalf of business
accounts only

can_be_upgraded: bool | None

Optional. True, if the gift can be upgraded to a unique gift; for gifts received on behalf of business accounts
only

was_refunded: bool | None

Optional. True, if the gift was refunded and isn’t available anymore

2.3. Bot API 287

https://core.telegram.org/bots/api#ownedgiftregular

aiogram Documentation, Release 3.23.0

convert_star_count: int | None

Optional. Number of Telegram Stars that can be claimed by the receiver instead of the gift; omitted if the
gift cannot be converted to Telegram Stars

prepaid_upgrade_star_count: int | None

Optional. Number of Telegram Stars that were paid by the sender for the ability to upgrade the gift

OwnedGiftUnique

class aiogram.types.owned_gift_unique.OwnedGiftUnique(*, type: Literal[OwnedGiftType.UNIQUE] =
OwnedGiftType.UNIQUE, gift: UniqueGift,
send_date: int, owned_gift_id: str | None =
None, sender_user: User | None = None,
is_saved: bool | None = None,
can_be_transferred: bool | None = None,
transfer_star_count: int | None = None,
next_transfer_date: _datetime_serializer,
return_type=int, when_used=unless - none)] |
None = None, **extra_data: Any)

Describes a unique gift received and owned by a user or a chat.

Source: https://core.telegram.org/bots/api#ownedgiftunique

type: Literal[OwnedGiftType.UNIQUE]

Type of the gift, always ‘unique’

gift: UniqueGift

Information about the unique gift

send_date: int

Date the gift was sent in Unix time

owned_gift_id: str | None

Optional. Unique identifier of the received gift for the bot; for gifts received on behalf of business accounts
only

sender_user: User | None

Optional. Sender of the gift if it is a known user

is_saved: bool | None

Optional. True, if the gift is displayed on the account’s profile page; for gifts received on behalf of business
accounts only

can_be_transferred: bool | None

Optional. True, if the gift can be transferred to another owner; for gifts received on behalf of business
accounts only

transfer_star_count: int | None

Optional. Number of Telegram Stars that must be paid to transfer the gift; omitted if the bot cannot transfer
the gift

next_transfer_date: DateTime | None

Optional. Point in time (Unix timestamp) when the gift can be transferred. If it is in the past, then the gift
can be transferred now

288 Chapter 2. Contents

https://core.telegram.org/bots/api#ownedgiftunique

aiogram Documentation, Release 3.23.0

OwnedGifts

class aiogram.types.owned_gifts.OwnedGifts(*, total_count: int, gifts: list[OwnedGiftRegular |
OwnedGiftUnique], next_offset: str | None = None,
**extra_data: Any)

Contains the list of gifts received and owned by a user or a chat.

Source: https://core.telegram.org/bots/api#ownedgifts

total_count: int

The total number of gifts owned by the user or the chat

gifts: list[OwnedGiftUnion]

The list of gifts

next_offset: str | None

Optional. Offset for the next request. If empty, then there are no more results

PaidMedia

class aiogram.types.paid_media.PaidMedia(**extra_data: Any)
This object describes paid media. Currently, it can be one of

• aiogram.types.paid_media_preview.PaidMediaPreview

• aiogram.types.paid_media_photo.PaidMediaPhoto

• aiogram.types.paid_media_video.PaidMediaVideo

Source: https://core.telegram.org/bots/api#paidmedia

PaidMediaInfo

class aiogram.types.paid_media_info.PaidMediaInfo(*, star_count: int, paid_media:
list[PaidMediaPreview | PaidMediaPhoto |
PaidMediaVideo], **extra_data: Any)

Describes the paid media added to a message.

Source: https://core.telegram.org/bots/api#paidmediainfo

star_count: int

The number of Telegram Stars that must be paid to buy access to the media

paid_media: list[PaidMediaUnion]

Information about the paid media

2.3. Bot API 289

https://core.telegram.org/bots/api#ownedgifts
https://core.telegram.org/bots/api#paidmedia
https://core.telegram.org/bots/api#paidmediainfo

aiogram Documentation, Release 3.23.0

PaidMediaPhoto

class aiogram.types.paid_media_photo.PaidMediaPhoto(*, type: Literal[PaidMediaType.PHOTO] =
PaidMediaType.PHOTO, photo: list[PhotoSize],
**extra_data: Any)

The paid media is a photo.

Source: https://core.telegram.org/bots/api#paidmediaphoto

type: Literal[PaidMediaType.PHOTO]

Type of the paid media, always ‘photo’

photo: list[PhotoSize]

The photo

PaidMediaPreview

class aiogram.types.paid_media_preview.PaidMediaPreview(*, type: Literal[PaidMediaType.PREVIEW]
= PaidMediaType.PREVIEW , width: int |
None = None, height: int | None = None,
duration: int | None = None, **extra_data:
Any)

The paid media isn’t available before the payment.

Source: https://core.telegram.org/bots/api#paidmediapreview

type: Literal[PaidMediaType.PREVIEW]

Type of the paid media, always ‘preview’

width: int | None

Optional. Media width as defined by the sender

height: int | None

Optional. Media height as defined by the sender

duration: int | None

Optional. Duration of the media in seconds as defined by the sender

PaidMediaVideo

class aiogram.types.paid_media_video.PaidMediaVideo(*, type: Literal[PaidMediaType.VIDEO] =
PaidMediaType.VIDEO, video: Video,
**extra_data: Any)

The paid media is a video.

Source: https://core.telegram.org/bots/api#paidmediavideo

type: Literal[PaidMediaType.VIDEO]

Type of the paid media, always ‘video’

video: Video

The video

290 Chapter 2. Contents

https://core.telegram.org/bots/api#paidmediaphoto
https://core.telegram.org/bots/api#paidmediapreview
https://core.telegram.org/bots/api#paidmediavideo

aiogram Documentation, Release 3.23.0

PaidMessagePriceChanged

class aiogram.types.paid_message_price_changed.PaidMessagePriceChanged(*,
paid_message_star_count:
int, **extra_data: Any)

Describes a service message about a change in the price of paid messages within a chat.

Source: https://core.telegram.org/bots/api#paidmessagepricechanged

paid_message_star_count: int

The new number of Telegram Stars that must be paid by non-administrator users of the supergroup chat for
each sent message

PhotoSize

class aiogram.types.photo_size.PhotoSize(*, file_id: str, file_unique_id: str, width: int, height: int,
file_size: int | None = None, **extra_data: Any)

This object represents one size of a photo or a file / aiogram.methods.sticker.Sticker thumbnail.

Source: https://core.telegram.org/bots/api#photosize

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

width: int

Photo width

height: int

Photo height

file_size: int | None

Optional. File size in bytes

Poll

class aiogram.types.poll.Poll(*, id: str, question: str, options: list[PollOption], total_voter_count: int,
is_closed: bool, is_anonymous: bool, type: str, allows_multiple_answers:
bool, question_entities: list[MessageEntity] | None = None,
correct_option_id: int | None = None, explanation: str | None = None,
explanation_entities: list[MessageEntity] | None = None, open_period: int |
None = None, close_date: _datetime_serializer, return_type=int,
when_used=unless - none)] | None = None, **extra_data: Any)

This object contains information about a poll.

Source: https://core.telegram.org/bots/api#poll

id: str

Unique poll identifier

2.3. Bot API 291

https://core.telegram.org/bots/api#paidmessagepricechanged
https://core.telegram.org/bots/api#document
https://core.telegram.org/bots/api#photosize
https://core.telegram.org/bots/api#poll

aiogram Documentation, Release 3.23.0

question: str

Poll question, 1-300 characters

options: list[PollOption]

List of poll options

total_voter_count: int

Total number of users that voted in the poll

is_closed: bool

True, if the poll is closed

is_anonymous: bool

True, if the poll is anonymous

type: str

Poll type, currently can be ‘regular’ or ‘quiz’

allows_multiple_answers: bool

True, if the poll allows multiple answers

question_entities: list[MessageEntity] | None

Optional. Special entities that appear in the question. Currently, only custom emoji entities are allowed in
poll questions

correct_option_id: int | None

Optional. 0-based identifier of the correct answer option. Available only for polls in the quiz mode, which
are closed, or was sent (not forwarded) by the bot or to the private chat with the bot.

explanation: str | None

Optional. Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style
poll, 0-200 characters

explanation_entities: list[MessageEntity] | None

Optional. Special entities like usernames, URLs, bot commands, etc. that appear in the explanation

open_period: int | None

Optional. Amount of time in seconds the poll will be active after creation

close_date: DateTime | None

Optional. Point in time (Unix timestamp) when the poll will be automatically closed

PollAnswer

class aiogram.types.poll_answer.PollAnswer(*, poll_id: str, option_ids: list[int], voter_chat: Chat | None
= None, user: User | None = None, **extra_data: Any)

This object represents an answer of a user in a non-anonymous poll.

Source: https://core.telegram.org/bots/api#pollanswer

poll_id: str

Unique poll identifier

option_ids: list[int]

0-based identifiers of chosen answer options. May be empty if the vote was retracted.

292 Chapter 2. Contents

https://core.telegram.org/bots/api#pollanswer

aiogram Documentation, Release 3.23.0

voter_chat: Chat | None

Optional. The chat that changed the answer to the poll, if the voter is anonymous

user: User | None

Optional. The user that changed the answer to the poll, if the voter isn’t anonymous

PollOption

class aiogram.types.poll_option.PollOption(*, text: str, voter_count: int, text_entities:
list[MessageEntity] | None = None, **extra_data: Any)

This object contains information about one answer option in a poll.

Source: https://core.telegram.org/bots/api#polloption

text: str

Option text, 1-100 characters

voter_count: int

Number of users that voted for this option

text_entities: list[MessageEntity] | None

Optional. Special entities that appear in the option text. Currently, only custom emoji entities are allowed
in poll option texts

ProximityAlertTriggered

class aiogram.types.proximity_alert_triggered.ProximityAlertTriggered(*, traveler: User,
watcher: User, distance:
int, **extra_data: Any)

This object represents the content of a service message, sent whenever a user in the chat triggers a proximity
alert set by another user.

Source: https://core.telegram.org/bots/api#proximityalerttriggered

traveler: User

User that triggered the alert

watcher: User

User that set the alert

distance: int

The distance between the users

ReactionCount

class aiogram.types.reaction_count.ReactionCount(*, type: ReactionTypeEmoji |
ReactionTypeCustomEmoji | ReactionTypePaid,
total_count: int, **extra_data: Any)

Represents a reaction added to a message along with the number of times it was added.

Source: https://core.telegram.org/bots/api#reactioncount

2.3. Bot API 293

https://core.telegram.org/bots/api#polloption
https://core.telegram.org/bots/api#proximityalerttriggered
https://core.telegram.org/bots/api#reactioncount

aiogram Documentation, Release 3.23.0

type: ReactionTypeUnion

Type of the reaction

total_count: int

Number of times the reaction was added

ReactionType

class aiogram.types.reaction_type.ReactionType(**extra_data: Any)
This object describes the type of a reaction. Currently, it can be one of

• aiogram.types.reaction_type_emoji.ReactionTypeEmoji

• aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji

• aiogram.types.reaction_type_paid.ReactionTypePaid

Source: https://core.telegram.org/bots/api#reactiontype

ReactionTypeCustomEmoji

class aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji(*, type: Lit-
eral[ReactionTypeType.CUSTOM_EMOJI]
= ReactionType-
Type.CUSTOM_EMOJI ,
custom_emoji_id: str,
**extra_data: Any)

The reaction is based on a custom emoji.

Source: https://core.telegram.org/bots/api#reactiontypecustomemoji

type: Literal[ReactionTypeType.CUSTOM_EMOJI]

Type of the reaction, always ‘custom_emoji’

custom_emoji_id: str

Custom emoji identifier

ReactionTypeEmoji

class aiogram.types.reaction_type_emoji.ReactionTypeEmoji(*, type:
Literal[ReactionTypeType.EMOJI] =
ReactionTypeType.EMOJI , emoji: str,
**extra_data: Any)

The reaction is based on an emoji.

Source: https://core.telegram.org/bots/api#reactiontypeemoji

type: Literal[ReactionTypeType.EMOJI]

Type of the reaction, always ‘emoji’

emoji: str

Reaction emoji. Currently, it can be one of “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”,
“”, “”,
“”, “”

294 Chapter 2. Contents

https://core.telegram.org/bots/api#reactiontype
https://core.telegram.org/bots/api#reactiontypecustomemoji
https://core.telegram.org/bots/api#reactiontypeemoji

aiogram Documentation, Release 3.23.0

ReactionTypePaid

class aiogram.types.reaction_type_paid.ReactionTypePaid(*, type: Literal[ReactionTypeType.PAID] =
ReactionTypeType.PAID, **extra_data:
Any)

The reaction is paid.

Source: https://core.telegram.org/bots/api#reactiontypepaid

type: Literal[ReactionTypeType.PAID]

Type of the reaction, always ‘paid’

ReplyKeyboardMarkup

class aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup(*, keyboard:
list[list[KeyboardButton]],
is_persistent: bool | None = None,
resize_keyboard: bool | None =
None, one_time_keyboard: bool |
None = None,
input_field_placeholder: str | None
= None, selective: bool | None =
None, **extra_data: Any)

This object represents a custom keyboard with reply options (see Introduction to bots for details and examples).
Not supported in channels and for messages sent on behalf of a Telegram Business account.

Source: https://core.telegram.org/bots/api#replykeyboardmarkup

keyboard: list[list[KeyboardButton]]

Array of button rows, each represented by an Array of aiogram.types.keyboard_button.
KeyboardButton objects

is_persistent: bool | None

Optional. Requests clients to always show the keyboard when the regular keyboard is hidden. Defaults to
false, in which case the custom keyboard can be hidden and opened with a keyboard icon.

resize_keyboard: bool | None

Optional. Requests clients to resize the keyboard vertically for optimal fit (e.g., make the keyboard smaller
if there are just two rows of buttons). Defaults to false, in which case the custom keyboard is always of the
same height as the app’s standard keyboard.

one_time_keyboard: bool | None

Optional. Requests clients to hide the keyboard as soon as it’s been used. The keyboard will still be
available, but clients will automatically display the usual letter-keyboard in the chat - the user can press a
special button in the input field to see the custom keyboard again. Defaults to false.

input_field_placeholder: str | None

Optional. The placeholder to be shown in the input field when the keyboard is active; 1-64 characters

selective: bool | None

Optional. Use this parameter if you want to show the keyboard to specific users only. Targets: 1) users that
are @mentioned in the text of the aiogram.types.message.Message object; 2) if the bot’s message is
a reply to a message in the same chat and forum topic, sender of the original message.

2.3. Bot API 295

https://core.telegram.org/bots/api#reactiontypepaid
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api#replykeyboardmarkup

aiogram Documentation, Release 3.23.0

ReplyKeyboardRemove

class aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove(*, remove_keyboard: Literal[True]
= True, selective: bool | None =
None, **extra_data: Any)

Upon receiving a message with this object, Telegram clients will remove the current custom keyboard and dis-
play the default letter-keyboard. By default, custom keyboards are displayed until a new keyboard is sent by a
bot. An exception is made for one-time keyboards that are hidden immediately after the user presses a button
(see aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup). Not supported in channels and
for messages sent on behalf of a Telegram Business account.

Source: https://core.telegram.org/bots/api#replykeyboardremove

remove_keyboard: Literal[True]

Requests clients to remove the custom keyboard (user will not be able to summon this keyboard; if you
want to hide the keyboard from sight but keep it accessible, use one_time_keyboard in aiogram.types.
reply_keyboard_markup.ReplyKeyboardMarkup)

selective: bool | None

Optional. Use this parameter if you want to remove the keyboard for specific users only. Targets: 1) users
that are @mentioned in the text of the aiogram.types.message.Message object; 2) if the bot’s message
is a reply to a message in the same chat and forum topic, sender of the original message.

ReplyParameters

class aiogram.types.reply_parameters.ReplyParameters(*, message_id: int, chat_id: int | str | None =
None, allow_sending_without_reply: bool |
~aiogram.client.default.Default | None =
<Default('allow_sending_without_reply')>,
quote: str | None = None, quote_parse_mode:
str | ~aiogram.client.default.Default | None =
<Default('parse_mode')>, quote_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, quote_position: int | None =
None, checklist_task_id: int | None = None,
**extra_data: ~typing.Any)

Describes reply parameters for the message that is being sent.

Source: https://core.telegram.org/bots/api#replyparameters

message_id: int

Identifier of the message that will be replied to in the current chat, or in the chat chat_id if it is specified

chat_id: ChatIdUnion | None

Optional. If the message to be replied to is from a different chat, unique identifier for the chat or username of
the channel (in the format @channelusername). Not supported for messages sent on behalf of a business
account and messages from channel direct messages chats.

allow_sending_without_reply: bool | Default | None

Optional. Pass True if the message should be sent even if the specified message to be replied to is not
found. Always False for replies in another chat or forum topic. Always True for messages sent on behalf
of a business account.

296 Chapter 2. Contents

https://core.telegram.org/bots/api#replykeyboardremove
https://core.telegram.org/bots/api#replyparameters

aiogram Documentation, Release 3.23.0

quote: str | None

Optional. Quoted part of the message to be replied to; 0-1024 characters after entities parsing. The quote
must be an exact substring of the message to be replied to, including bold, italic, underline, strikethrough,
spoiler, and custom_emoji entities. The message will fail to send if the quote isn’t found in the original
message.

quote_parse_mode: str | Default | None

Optional. Mode for parsing entities in the quote. See formatting options for more details.

quote_entities: list[MessageEntity] | None

Optional. A JSON-serialized list of special entities that appear in the quote. It can be specified instead of
quote_parse_mode.

quote_position: int | None

Optional. Position of the quote in the original message in UTF-16 code units

checklist_task_id: int | None

Optional. Identifier of the specific checklist task to be replied to

ResponseParameters

class aiogram.types.response_parameters.ResponseParameters(*, migrate_to_chat_id: int | None =
None, retry_after: int | None = None,
**extra_data: Any)

Describes why a request was unsuccessful.

Source: https://core.telegram.org/bots/api#responseparameters

migrate_to_chat_id: int | None

Optional. The group has been migrated to a supergroup with the specified identifier. This number may
have more than 32 significant bits and some programming languages may have difficulty/silent defects in
interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float
type are safe for storing this identifier.

retry_after: int | None

Optional. In case of exceeding flood control, the number of seconds left to wait before the request can be
repeated

SharedUser

class aiogram.types.shared_user.SharedUser(*, user_id: int, first_name: str | None = None, last_name:
str | None = None, username: str | None = None, photo:
list[PhotoSize] | None = None, **extra_data: Any)

This object contains information about a user that was shared with the bot using a aiogram.types.
keyboard_button_request_users.KeyboardButtonRequestUsers button.

Source: https://core.telegram.org/bots/api#shareduser

user_id: int

Identifier of the shared user. This number may have more than 32 significant bits and some programming
languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so 64-bit
integers or double-precision float types are safe for storing these identifiers. The bot may not have access
to the user and could be unable to use this identifier, unless the user is already known to the bot by some
other means.

2.3. Bot API 297

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#responseparameters
https://core.telegram.org/bots/api#shareduser

aiogram Documentation, Release 3.23.0

first_name: str | None

Optional. First name of the user, if the name was requested by the bot

last_name: str | None

Optional. Last name of the user, if the name was requested by the bot

username: str | None

Optional. Username of the user, if the username was requested by the bot

photo: list[PhotoSize] | None

Optional. Available sizes of the chat photo, if the photo was requested by the bot

StarAmount

class aiogram.types.star_amount.StarAmount(*, amount: int, nanostar_amount: int | None = None,
**extra_data: Any)

Describes an amount of Telegram Stars.

Source: https://core.telegram.org/bots/api#staramount

amount: int

Integer amount of Telegram Stars, rounded to 0; can be negative

nanostar_amount: int | None

Optional. The number of 1/1000000000 shares of Telegram Stars; from -999999999 to 999999999; can be
negative if and only if amount is non-positive

Story

class aiogram.types.story.Story(*, chat: Chat, id: int, **extra_data: Any)
This object represents a story.

Source: https://core.telegram.org/bots/api#story

chat: Chat

Chat that posted the story

id: int

Unique identifier for the story in the chat

StoryArea

class aiogram.types.story_area.StoryArea(*, position: StoryAreaPosition, type: StoryAreaTypeLocation |
StoryAreaTypeSuggestedReaction | StoryAreaTypeLink |
StoryAreaTypeWeather | StoryAreaTypeUniqueGift,
**extra_data: Any)

Describes a clickable area on a story media.

Source: https://core.telegram.org/bots/api#storyarea

position: StoryAreaPosition

Position of the area

type: StoryAreaTypeUnion

Type of the area

298 Chapter 2. Contents

https://core.telegram.org/bots/api#staramount
https://core.telegram.org/bots/api#story
https://core.telegram.org/bots/api#storyarea

aiogram Documentation, Release 3.23.0

StoryAreaPosition

class aiogram.types.story_area_position.StoryAreaPosition(*, x_percentage: float, y_percentage:
float, width_percentage: float,
height_percentage: float, rotation_angle:
float, corner_radius_percentage: float,
**extra_data: Any)

Describes the position of a clickable area within a story.

Source: https://core.telegram.org/bots/api#storyareaposition

x_percentage: float

The abscissa of the area’s center, as a percentage of the media width

y_percentage: float

The ordinate of the area’s center, as a percentage of the media height

width_percentage: float

The width of the area’s rectangle, as a percentage of the media width

height_percentage: float

The height of the area’s rectangle, as a percentage of the media height

rotation_angle: float

The clockwise rotation angle of the rectangle, in degrees; 0-360

corner_radius_percentage: float

The radius of the rectangle corner rounding, as a percentage of the media width

StoryAreaType

class aiogram.types.story_area_type.StoryAreaType(**extra_data: Any)
Describes the type of a clickable area on a story. Currently, it can be one of

• aiogram.types.story_area_type_location.StoryAreaTypeLocation

• aiogram.types.story_area_type_suggested_reaction.StoryAreaTypeSuggestedReaction

• aiogram.types.story_area_type_link.StoryAreaTypeLink

• aiogram.types.story_area_type_weather.StoryAreaTypeWeather

• aiogram.types.story_area_type_unique_gift.StoryAreaTypeUniqueGift

Source: https://core.telegram.org/bots/api#storyareatype

StoryAreaTypeLink

class aiogram.types.story_area_type_link.StoryAreaTypeLink(*, type:
Literal[StoryAreaTypeType.LINK] =
StoryAreaTypeType.LINK , url: str,
**extra_data: Any)

Describes a story area pointing to an HTTP or tg:// link. Currently, a story can have up to 3 link areas.

Source: https://core.telegram.org/bots/api#storyareatypelink

2.3. Bot API 299

https://core.telegram.org/bots/api#storyareaposition
https://core.telegram.org/bots/api#storyareatype
https://core.telegram.org/bots/api#storyareatypelink

aiogram Documentation, Release 3.23.0

type: Literal[StoryAreaTypeType.LINK]

Type of the area, always ‘link’

url: str

HTTP or tg:// URL to be opened when the area is clicked

StoryAreaTypeLocation

class aiogram.types.story_area_type_location.StoryAreaTypeLocation(*, type: Lit-
eral[StoryAreaTypeType.LOCATION]
= StoryAreaType-
Type.LOCATION , latitude:
float, longitude: float,
address: LocationAddress |
None = None, **extra_data:
Any)

Describes a story area pointing to a location. Currently, a story can have up to 10 location areas.

Source: https://core.telegram.org/bots/api#storyareatypelocation

type: Literal[StoryAreaTypeType.LOCATION]

Type of the area, always ‘location’

latitude: float

Location latitude in degrees

longitude: float

Location longitude in degrees

address: LocationAddress | None

Optional. Address of the location

300 Chapter 2. Contents

https://core.telegram.org/bots/api#storyareatypelocation

aiogram Documentation, Release 3.23.0

StoryAreaTypeSuggestedReaction

class aiogram.types.story_area_type_suggested_reaction.StoryAreaTypeSuggestedReaction(*,
type:
Lit-
eral[StoryAreaTypeType.SUGGESTED_REACTION]
=
Sto-
r-
yAreaType-
Type.SUGGESTED_REACTION ,
re-
ac-
tion_type:
Re-
ac-
tion-
Type-
Emoji
|
Re-
ac-
tion-
Type-
Cus-
tomEm-
oji |
Re-
ac-
tion-
Type-
Paid,
is_dark:
bool
|
None
=
None,
is_flipped:
bool
|
None
=
None,
**ex-
tra_data:
Any)

Describes a story area pointing to a suggested reaction. Currently, a story can have up to 5 suggested reaction
areas.

Source: https://core.telegram.org/bots/api#storyareatypesuggestedreaction

type: Literal[StoryAreaTypeType.SUGGESTED_REACTION]

Type of the area, always ‘suggested_reaction’

2.3. Bot API 301

https://core.telegram.org/bots/api#storyareatypesuggestedreaction

aiogram Documentation, Release 3.23.0

reaction_type: ReactionTypeUnion

Type of the reaction

is_dark: bool | None

Optional. Pass True if the reaction area has a dark background

is_flipped: bool | None

Optional. Pass True if reaction area corner is flipped

StoryAreaTypeUniqueGift

class aiogram.types.story_area_type_unique_gift.StoryAreaTypeUniqueGift(*, type: Lit-
eral[StoryAreaTypeType.UNIQUE_GIFT]
= StoryAreaType-
Type.UNIQUE_GIFT ,
name: str,
**extra_data: Any)

Describes a story area pointing to a unique gift. Currently, a story can have at most 1 unique gift area.

Source: https://core.telegram.org/bots/api#storyareatypeuniquegift

type: Literal[StoryAreaTypeType.UNIQUE_GIFT]

Type of the area, always ‘unique_gift’

name: str

Unique name of the gift

StoryAreaTypeWeather

class aiogram.types.story_area_type_weather.StoryAreaTypeWeather(*, type: Lit-
eral[StoryAreaTypeType.WEATHER]
=
StoryAreaTypeType.WEATHER,
temperature: float, emoji: str,
background_color: int,
**extra_data: Any)

Describes a story area containing weather information. Currently, a story can have up to 3 weather areas.

Source: https://core.telegram.org/bots/api#storyareatypeweather

type: Literal[StoryAreaTypeType.WEATHER]

Type of the area, always ‘weather’

temperature: float

Temperature, in degree Celsius

emoji: str

Emoji representing the weather

background_color: int

A color of the area background in the ARGB format

302 Chapter 2. Contents

https://core.telegram.org/bots/api#storyareatypeuniquegift
https://core.telegram.org/bots/api#storyareatypeweather

aiogram Documentation, Release 3.23.0

SuggestedPostApprovalFailed

class aiogram.types.suggested_post_approval_failed.SuggestedPostApprovalFailed(*, price:
Suggested-
PostPrice,
sug-
gested_post_message:
Message |
None =
None, **ex-
tra_data:
Any)

Describes a service message about the failed approval of a suggested post. Currently, only caused by insufficient
user funds at the time of approval.

Source: https://core.telegram.org/bots/api#suggestedpostapprovalfailed

price: SuggestedPostPrice

Expected price of the post

suggested_post_message: Message | None

Optional. Message containing the suggested post whose approval has failed. Note that the aiogram.
types.message.Message object in this field will not contain the reply_to_message field even if it itself
is a reply.

SuggestedPostApproved

class aiogram.types.suggested_post_approved.SuggestedPostApproved(*, send_date:
_datetime_serializer,
return_type=int,
when_used=unless - none)],
suggested_post_message:
Message | None = None,
price: SuggestedPostPrice |
None = None, **extra_data:
Any)

Describes a service message about the approval of a suggested post.

Source: https://core.telegram.org/bots/api#suggestedpostapproved

send_date: DateTime

Date when the post will be published

suggested_post_message: Message | None

Optional. Message containing the suggested post. Note that the aiogram.types.message.Message
object in this field will not contain the reply_to_message field even if it itself is a reply.

price: SuggestedPostPrice | None

Optional. Amount paid for the post

2.3. Bot API 303

https://core.telegram.org/bots/api#suggestedpostapprovalfailed
https://core.telegram.org/bots/api#suggestedpostapproved

aiogram Documentation, Release 3.23.0

SuggestedPostDeclined

class aiogram.types.suggested_post_declined.SuggestedPostDeclined(*, suggested_post_message:
Message | None = None,
comment: str | None = None,
**extra_data: Any)

Describes a service message about the rejection of a suggested post.

Source: https://core.telegram.org/bots/api#suggestedpostdeclined

suggested_post_message: Message | None

Optional. Message containing the suggested post. Note that the aiogram.types.message.Message
object in this field will not contain the reply_to_message field even if it itself is a reply.

comment: str | None

Optional. Comment with which the post was declined

SuggestedPostInfo

class aiogram.types.suggested_post_info.SuggestedPostInfo(*, state: str, price: SuggestedPostPrice |
None = None, send_date:
_datetime_serializer, return_type=int,
when_used=unless - none)] | None =
None, **extra_data: Any)

Contains information about a suggested post.

Source: https://core.telegram.org/bots/api#suggestedpostinfo

state: str

State of the suggested post. Currently, it can be one of ‘pending’, ‘approved’, ‘declined’.

price: SuggestedPostPrice | None

Optional. Proposed price of the post. If the field is omitted, then the post is unpaid.

send_date: DateTime | None

Optional. Proposed send date of the post. If the field is omitted, then the post can be published at any time
within 30 days at the sole discretion of the user or administrator who approves it.

SuggestedPostPaid

class aiogram.types.suggested_post_paid.SuggestedPostPaid(*, currency: str,
suggested_post_message: Message |
None = None, amount: int | None =
None, star_amount: StarAmount | None
= None, **extra_data: Any)

Describes a service message about a successful payment for a suggested post.

Source: https://core.telegram.org/bots/api#suggestedpostpaid

currency: str

Currency in which the payment was made. Currently, one of ‘XTR’ for Telegram Stars or ‘TON’ for
toncoins

304 Chapter 2. Contents

https://core.telegram.org/bots/api#suggestedpostdeclined
https://core.telegram.org/bots/api#suggestedpostinfo
https://core.telegram.org/bots/api#suggestedpostpaid

aiogram Documentation, Release 3.23.0

suggested_post_message: Message | None

Optional. Message containing the suggested post. Note that the aiogram.types.message.Message
object in this field will not contain the reply_to_message field even if it itself is a reply.

amount: int | None

Optional. The amount of the currency that was received by the channel in nanotoncoins; for payments in
toncoins only

star_amount: StarAmount | None

Optional. The amount of Telegram Stars that was received by the channel; for payments in Telegram Stars
only

SuggestedPostParameters

class aiogram.types.suggested_post_parameters.SuggestedPostParameters(*, price:
SuggestedPostPrice |
None = None, send_date:
_datetime_serializer,
return_type=int,
when_used=unless -
none)] | None = None,
**extra_data: Any)

Contains parameters of a post that is being suggested by the bot.

Source: https://core.telegram.org/bots/api#suggestedpostparameters

price: SuggestedPostPrice | None

Optional. Proposed price for the post. If the field is omitted, then the post is unpaid.

send_date: DateTime | None

Optional. Proposed send date of the post. If specified, then the date must be between 300 second and
2678400 seconds (30 days) in the future. If the field is omitted, then the post can be published at any time
within 30 days at the sole discretion of the user who approves it.

SuggestedPostPrice

class aiogram.types.suggested_post_price.SuggestedPostPrice(*, currency: str, amount: int,
**extra_data: Any)

Desribes price of a suggested post.

Source: https://core.telegram.org/bots/api#suggestedpostprice

currency: str

Currency in which the post will be paid. Currently, must be one of ‘XTR’ for Telegram Stars or ‘TON’ for
toncoins

amount: int

The amount of the currency that will be paid for the post in the smallest units of the currency, i.e. Telegram
Stars or nanotoncoins. Currently, price in Telegram Stars must be between 5 and 100000, and price in
nanotoncoins must be between 10000000 and 10000000000000.

2.3. Bot API 305

https://core.telegram.org/bots/api#suggestedpostparameters
https://core.telegram.org/bots/api#suggestedpostprice

aiogram Documentation, Release 3.23.0

SuggestedPostRefunded

class aiogram.types.suggested_post_refunded.SuggestedPostRefunded(*, reason: str,
suggested_post_message:
Message | None = None,
**extra_data: Any)

Describes a service message about a payment refund for a suggested post.

Source: https://core.telegram.org/bots/api#suggestedpostrefunded

reason: str

Reason for the refund. Currently, one of ‘post_deleted’ if the post was deleted within 24 hours of being
posted or removed from scheduled messages without being posted, or ‘payment_refunded’ if the payer
refunded their payment.

suggested_post_message: Message | None

Optional. Message containing the suggested post. Note that the aiogram.types.message.Message
object in this field will not contain the reply_to_message field even if it itself is a reply.

SwitchInlineQueryChosenChat

class aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat(*, query: str
| None =
None, al-
low_user_chats:
bool | None
= None, al-
low_bot_chats:
bool | None
= None, al-
low_group_chats:
bool | None
= None, al-
low_channel_chats:
bool | None
= None,
**ex-
tra_data:
Any)

This object represents an inline button that switches the current user to inline mode in a chosen chat, with an
optional default inline query.

Source: https://core.telegram.org/bots/api#switchinlinequerychosenchat

query: str | None

Optional. The default inline query to be inserted in the input field. If left empty, only the bot’s username
will be inserted

allow_user_chats: bool | None

Optional. True, if private chats with users can be chosen

allow_bot_chats: bool | None

Optional. True, if private chats with bots can be chosen

306 Chapter 2. Contents

https://core.telegram.org/bots/api#suggestedpostrefunded
https://core.telegram.org/bots/api#switchinlinequerychosenchat

aiogram Documentation, Release 3.23.0

allow_group_chats: bool | None

Optional. True, if group and supergroup chats can be chosen

allow_channel_chats: bool | None

Optional. True, if channel chats can be chosen

TextQuote

class aiogram.types.text_quote.TextQuote(*, text: str, position: int, entities: list[MessageEntity] | None =
None, is_manual: bool | None = None, **extra_data: Any)

This object contains information about the quoted part of a message that is replied to by the given message.

Source: https://core.telegram.org/bots/api#textquote

text: str

Text of the quoted part of a message that is replied to by the given message

position: int

Approximate quote position in the original message in UTF-16 code units as specified by the sender

entities: list[MessageEntity] | None

Optional. Special entities that appear in the quote. Currently, only bold, italic, underline, strikethrough,
spoiler, and custom_emoji entities are kept in quotes.

is_manual: bool | None

Optional. True, if the quote was chosen manually by the message sender. Otherwise, the quote was added
automatically by the server.

UniqueGift

class aiogram.types.unique_gift.UniqueGift(*, base_name: str, name: str, number: int, model:
UniqueGiftModel, symbol: UniqueGiftSymbol, backdrop:
UniqueGiftBackdrop, publisher_chat: Chat | None = None,
**extra_data: Any)

This object describes a unique gift that was upgraded from a regular gift.

Source: https://core.telegram.org/bots/api#uniquegift

base_name: str

Human-readable name of the regular gift from which this unique gift was upgraded

name: str

Unique name of the gift. This name can be used in https://t.me/nft/... links and story areas

number: int

Unique number of the upgraded gift among gifts upgraded from the same regular gift

model: UniqueGiftModel

Model of the gift

symbol: UniqueGiftSymbol

Symbol of the gift

backdrop: UniqueGiftBackdrop

Backdrop of the gift

2.3. Bot API 307

https://core.telegram.org/bots/api#textquote
https://core.telegram.org/bots/api#uniquegift

aiogram Documentation, Release 3.23.0

publisher_chat: Chat | None

Optional. Information about the chat that published the gift

UniqueGiftBackdrop

class aiogram.types.unique_gift_backdrop.UniqueGiftBackdrop(*, name: str, colors:
UniqueGiftBackdropColors,
rarity_per_mille: int, **extra_data:
Any)

This object describes the backdrop of a unique gift.

Source: https://core.telegram.org/bots/api#uniquegiftbackdrop

name: str

Name of the backdrop

colors: UniqueGiftBackdropColors

Colors of the backdrop

rarity_per_mille: int

The number of unique gifts that receive this backdrop for every 1000 gifts upgraded

UniqueGiftBackdropColors

class aiogram.types.unique_gift_backdrop_colors.UniqueGiftBackdropColors(*, center_color: int,
edge_color: int,
symbol_color: int,
text_color: int,
**extra_data: Any)

This object describes the colors of the backdrop of a unique gift.

Source: https://core.telegram.org/bots/api#uniquegiftbackdropcolors

center_color: int

The color in the center of the backdrop in RGB format

edge_color: int

The color on the edges of the backdrop in RGB format

symbol_color: int

The color to be applied to the symbol in RGB format

text_color: int

The color for the text on the backdrop in RGB format

308 Chapter 2. Contents

https://core.telegram.org/bots/api#uniquegiftbackdrop
https://core.telegram.org/bots/api#uniquegiftbackdropcolors

aiogram Documentation, Release 3.23.0

UniqueGiftInfo

class aiogram.types.unique_gift_info.UniqueGiftInfo(*, gift: UniqueGift, origin: str,
last_resale_star_count: int | None = None,
owned_gift_id: str | None = None,
transfer_star_count: int | None = None,
next_transfer_date: _datetime_serializer,
return_type=int, when_used=unless - none)] |
None = None, **extra_data: Any)

Describes a service message about a unique gift that was sent or received.

Source: https://core.telegram.org/bots/api#uniquegiftinfo

gift: UniqueGift

Information about the gift

origin: str

Origin of the gift. Currently, either ‘upgrade’ for gifts upgraded from regular gifts, ‘transfer’ for gifts
transferred from other users or channels, or ‘resale’ for gifts bought from other users

last_resale_star_count: int | None

Optional. For gifts bought from other users, the price paid for the gift

owned_gift_id: str | None

Optional. Unique identifier of the received gift for the bot; only present for gifts received on behalf of
business accounts

transfer_star_count: int | None

Optional. Number of Telegram Stars that must be paid to transfer the gift; omitted if the bot cannot transfer
the gift

next_transfer_date: DateTime | None

Optional. Point in time (Unix timestamp) when the gift can be transferred. If it is in the past, then the gift
can be transferred now

UniqueGiftModel

class aiogram.types.unique_gift_model.UniqueGiftModel(*, name: str, sticker: Sticker,
rarity_per_mille: int, **extra_data: Any)

This object describes the model of a unique gift.

Source: https://core.telegram.org/bots/api#uniquegiftmodel

name: str

Name of the model

sticker: Sticker

The sticker that represents the unique gift

rarity_per_mille: int

The number of unique gifts that receive this model for every 1000 gifts upgraded

2.3. Bot API 309

https://core.telegram.org/bots/api#uniquegiftinfo
https://core.telegram.org/bots/api#uniquegiftmodel

aiogram Documentation, Release 3.23.0

UniqueGiftSymbol

class aiogram.types.unique_gift_symbol.UniqueGiftSymbol(*, name: str, sticker: Sticker,
rarity_per_mille: int, **extra_data: Any)

This object describes the symbol shown on the pattern of a unique gift.

Source: https://core.telegram.org/bots/api#uniquegiftsymbol

name: str

Name of the symbol

sticker: Sticker

The sticker that represents the unique gift

rarity_per_mille: int

The number of unique gifts that receive this model for every 1000 gifts upgraded

User

class aiogram.types.user.User(*, id: int, is_bot: bool, first_name: str, last_name: str | None = None,
username: str | None = None, language_code: str | None = None,
is_premium: bool | None = None, added_to_attachment_menu: bool | None =
None, can_join_groups: bool | None = None, can_read_all_group_messages:
bool | None = None, supports_inline_queries: bool | None = None,
can_connect_to_business: bool | None = None, has_main_web_app: bool |
None = None, **extra_data: Any)

This object represents a Telegram user or bot.

Source: https://core.telegram.org/bots/api#user

id: int

Unique identifier for this user or bot. This number may have more than 32 significant bits and some pro-
gramming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant
bits, so a 64-bit integer or double-precision float type are safe for storing this identifier.

is_bot: bool

True, if this user is a bot

first_name: str

User’s or bot’s first name

last_name: str | None

Optional. User’s or bot’s last name

username: str | None

Optional. User’s or bot’s username

language_code: str | None

Optional. IETF language tag of the user’s language

is_premium: bool | None

Optional. True, if this user is a Telegram Premium user

added_to_attachment_menu: bool | None

Optional. True, if this user added the bot to the attachment menu

310 Chapter 2. Contents

https://core.telegram.org/bots/api#uniquegiftsymbol
https://core.telegram.org/bots/api#user
https://en.wikipedia.org/wiki/IETF_language_tag

aiogram Documentation, Release 3.23.0

can_join_groups: bool | None

Optional. True, if the bot can be invited to groups. Returned only in aiogram.methods.get_me.GetMe.

can_read_all_group_messages: bool | None

Optional. True, if privacy mode is disabled for the bot. Returned only in aiogram.methods.get_me.
GetMe.

supports_inline_queries: bool | None

Optional. True, if the bot supports inline queries. Returned only in aiogram.methods.get_me.GetMe.

can_connect_to_business: bool | None

Optional. True, if the bot can be connected to a Telegram Business account to receive its messages. Re-
turned only in aiogram.methods.get_me.GetMe.

has_main_web_app: bool | None

Optional. True, if the bot has a main Web App. Returned only in aiogram.methods.get_me.GetMe.

property full_name: str

property url: str

mention_markdown(name: str | None = None)→ str

mention_html(name: str | None = None)→ str

get_profile_photos(offset: int | None = None, limit: int | None = None, **kwargs: Any)→
GetUserProfilePhotos

Shortcut for method aiogram.methods.get_user_profile_photos.GetUserProfilePhotos will
automatically fill method attributes:

• user_id

Use this method to get a list of profile pictures for a user. Returns a aiogram.types.
user_profile_photos.UserProfilePhotos object.

Source: https://core.telegram.org/bots/api#getuserprofilephotos

Parameters

• offset – Sequential number of the first photo to be returned. By default, all photos are
returned.

• limit – Limits the number of photos to be retrieved. Values between 1-100 are accepted.
Defaults to 100.

Returns
instance of method aiogram.methods.get_user_profile_photos.
GetUserProfilePhotos

UserChatBoosts

class aiogram.types.user_chat_boosts.UserChatBoosts(*, boosts: list[ChatBoost], **extra_data: Any)
This object represents a list of boosts added to a chat by a user.

Source: https://core.telegram.org/bots/api#userchatboosts

boosts: list[ChatBoost]

The list of boosts added to the chat by the user

2.3. Bot API 311

https://core.telegram.org/bots/features#privacy-mode
https://core.telegram.org/bots/api#getuserprofilephotos
https://core.telegram.org/bots/api#userchatboosts

aiogram Documentation, Release 3.23.0

UserProfilePhotos

class aiogram.types.user_profile_photos.UserProfilePhotos(*, total_count: int, photos:
list[list[PhotoSize]], **extra_data:
Any)

This object represent a user’s profile pictures.

Source: https://core.telegram.org/bots/api#userprofilephotos

total_count: int

Total number of profile pictures the target user has

photos: list[list[PhotoSize]]

Requested profile pictures (in up to 4 sizes each)

UserShared

class aiogram.types.user_shared.UserShared(*, request_id: int, user_id: int, **extra_data: Any)
This object contains information about the user whose identifier was shared with the bot using a aiogram.
types.keyboard_button_request_user.KeyboardButtonRequestUser button.

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Source: https://core.telegram.org/bots/api#usershared

request_id: int

Identifier of the request

user_id: int

Identifier of the shared user. This number may have more than 32 significant bits and some programming
languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a
64-bit integer or double-precision float type are safe for storing this identifier. The bot may not have access
to the user and could be unable to use this identifier, unless the user is already known to the bot by some
other means.

UsersShared

class aiogram.types.users_shared.UsersShared(*, request_id: int, users: list[SharedUser], user_ids:
list[int] | None = None, **extra_data: Any)

This object contains information about the users whose identifiers were shared with the bot using a aiogram.
types.keyboard_button_request_users.KeyboardButtonRequestUsers button.

Source: https://core.telegram.org/bots/api#usersshared

request_id: int

Identifier of the request

users: list[SharedUser]

Information about users shared with the bot.

user_ids: list[int] | None

Identifiers of the shared users. These numbers may have more than 32 significant bits and some program-
ming languages may have difficulty/silent defects in interpreting them. But they have at most 52 significant
bits, so 64-bit integers or double-precision float types are safe for storing these identifiers. The bot may not

312 Chapter 2. Contents

https://core.telegram.org/bots/api#userprofilephotos
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api#usershared
https://core.telegram.org/bots/api#usersshared

aiogram Documentation, Release 3.23.0

have access to the users and could be unable to use these identifiers, unless the users are already known to
the bot by some other means.

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

Venue

class aiogram.types.venue.Venue(*, location: Location, title: str, address: str, foursquare_id: str | None =
None, foursquare_type: str | None = None, google_place_id: str | None =
None, google_place_type: str | None = None, **extra_data: Any)

This object represents a venue.

Source: https://core.telegram.org/bots/api#venue

location: Location

Venue location. Can’t be a live location

title: str

Name of the venue

address: str

Address of the venue

foursquare_id: str | None

Optional. Foursquare identifier of the venue

foursquare_type: str | None

Optional. Foursquare type of the venue. (For example, ‘arts_entertainment/default’,
‘arts_entertainment/aquarium’ or ‘food/icecream’.)

google_place_id: str | None

Optional. Google Places identifier of the venue

google_place_type: str | None

Optional. Google Places type of the venue. (See supported types.)

Video

class aiogram.types.video.Video(*, file_id: str, file_unique_id: str, width: int, height: int, duration: int,
thumbnail: PhotoSize | None = None, cover: list[PhotoSize] | None =
None, start_timestamp: datetime | None = None, file_name: str | None =
None, mime_type: str | None = None, file_size: int | None = None,
**extra_data: Any)

This object represents a video file.

Source: https://core.telegram.org/bots/api#video

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

2.3. Bot API 313

https://core.telegram.org/bots/api-changelog#march-31-2024
https://core.telegram.org/bots/api#venue
https://developers.google.com/places/web-service/supported_types
https://core.telegram.org/bots/api#video

aiogram Documentation, Release 3.23.0

width: int

Video width as defined by the sender

height: int

Video height as defined by the sender

duration: int

Duration of the video in seconds as defined by the sender

thumbnail: PhotoSize | None

Optional. Video thumbnail

cover: list[PhotoSize] | None

Optional. Available sizes of the cover of the video in the message

start_timestamp: datetime.datetime | None

Optional. Timestamp in seconds from which the video will play in the message

file_name: str | None

Optional. Original filename as defined by the sender

mime_type: str | None

Optional. MIME type of the file as defined by the sender

file_size: int | None

Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have
difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or
double-precision float type are safe for storing this value.

VideoChatEnded

class aiogram.types.video_chat_ended.VideoChatEnded(*, duration: int, **extra_data: Any)
This object represents a service message about a video chat ended in the chat.

Source: https://core.telegram.org/bots/api#videochatended

duration: int

Video chat duration in seconds

VideoChatParticipantsInvited

class aiogram.types.video_chat_participants_invited.VideoChatParticipantsInvited(*, users:
list[User],
**ex-
tra_data:
Any)

This object represents a service message about new members invited to a video chat.

Source: https://core.telegram.org/bots/api#videochatparticipantsinvited

users: list[User]

New members that were invited to the video chat

314 Chapter 2. Contents

https://core.telegram.org/bots/api#videochatended
https://core.telegram.org/bots/api#videochatparticipantsinvited

aiogram Documentation, Release 3.23.0

VideoChatScheduled

class aiogram.types.video_chat_scheduled.VideoChatScheduled(*, start_date: _datetime_serializer,
return_type=int, when_used=unless -
none)], **extra_data: Any)

This object represents a service message about a video chat scheduled in the chat.

Source: https://core.telegram.org/bots/api#videochatscheduled

start_date: DateTime

Point in time (Unix timestamp) when the video chat is supposed to be started by a chat administrator

VideoChatStarted

class aiogram.types.video_chat_started.VideoChatStarted(**extra_data: Any)
This object represents a service message about a video chat started in the chat. Currently holds no information.

Source: https://core.telegram.org/bots/api#videochatstarted

VideoNote

class aiogram.types.video_note.VideoNote(*, file_id: str, file_unique_id: str, length: int, duration: int,
thumbnail: PhotoSize | None = None, file_size: int | None =
None, **extra_data: Any)

This object represents a video message (available in Telegram apps as of v.4.0).

Source: https://core.telegram.org/bots/api#videonote

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

length: int

Video width and height (diameter of the video message) as defined by the sender

duration: int

Duration of the video in seconds as defined by the sender

thumbnail: PhotoSize | None

Optional. Video thumbnail

file_size: int | None

Optional. File size in bytes

2.3. Bot API 315

https://core.telegram.org/bots/api#videochatscheduled
https://core.telegram.org/bots/api#videochatstarted
https://telegram.org/blog/video-messages-and-telescope
https://telegram.org/blog/video-messages-and-telescope
https://core.telegram.org/bots/api#videonote

aiogram Documentation, Release 3.23.0

Voice

class aiogram.types.voice.Voice(*, file_id: str, file_unique_id: str, duration: int, mime_type: str | None =
None, file_size: int | None = None, **extra_data: Any)

This object represents a voice note.

Source: https://core.telegram.org/bots/api#voice

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

duration: int

Duration of the audio in seconds as defined by the sender

mime_type: str | None

Optional. MIME type of the file as defined by the sender

file_size: int | None

Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have
difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or
double-precision float type are safe for storing this value.

WebAppData

class aiogram.types.web_app_data.WebAppData(*, data: str, button_text: str, **extra_data: Any)
Describes data sent from a Web App to the bot.

Source: https://core.telegram.org/bots/api#webappdata

data: str

The data. Be aware that a bad client can send arbitrary data in this field.

button_text: str

Text of the web_app keyboard button from which the Web App was opened. Be aware that a bad client can
send arbitrary data in this field.

WebAppInfo

class aiogram.types.web_app_info.WebAppInfo(*, url: str, **extra_data: Any)
Describes a Web App.

Source: https://core.telegram.org/bots/api#webappinfo

url: str

An HTTPS URL of a Web App to be opened with additional data as specified in Initializing Web Apps

316 Chapter 2. Contents

https://core.telegram.org/bots/api#voice
https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/api#webappdata
https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/api#webappinfo
https://core.telegram.org/bots/webapps#initializing-mini-apps

aiogram Documentation, Release 3.23.0

WriteAccessAllowed

class aiogram.types.write_access_allowed.WriteAccessAllowed(*, from_request: bool | None = None,
web_app_name: str | None = None,
from_attachment_menu: bool | None
= None, **extra_data: Any)

This object represents a service message about a user allowing a bot to write messages after adding it to the
attachment menu, launching a Web App from a link, or accepting an explicit request from a Web App sent by
the method requestWriteAccess.

Source: https://core.telegram.org/bots/api#writeaccessallowed

from_request: bool | None

Optional. True, if the access was granted after the user accepted an explicit request from a Web App sent
by the method requestWriteAccess

web_app_name: str | None

Optional. Name of the Web App, if the access was granted when the Web App was launched from a link

from_attachment_menu: bool | None

Optional. True, if the access was granted when the bot was added to the attachment or side menu

Inline mode

ChosenInlineResult

class aiogram.types.chosen_inline_result.ChosenInlineResult(*, result_id: str, from_user: User,
query: str, location: Location | None
= None, inline_message_id: str | None
= None, **extra_data: Any)

Represents a result of an inline query that was chosen by the user and sent to their chat partner. Note: It is
necessary to enable inline feedback via @BotFather in order to receive these objects in updates.

Source: https://core.telegram.org/bots/api#choseninlineresult

result_id: str

The unique identifier for the result that was chosen

from_user: User

The user that chose the result

query: str

The query that was used to obtain the result

location: Location | None

Optional. Sender location, only for bots that require user location

inline_message_id: str | None

Optional. Identifier of the sent inline message. Available only if there is an inline keyboard attached to the
message. Will be also received in callback queries and can be used to edit the message.

2.3. Bot API 317

https://core.telegram.org/bots/webapps#initializing-mini-apps
https://core.telegram.org/bots/api#writeaccessallowed
https://core.telegram.org/bots/webapps#initializing-mini-apps
https://core.telegram.org/bots/api#inlinequeryresult
https://core.telegram.org/bots/inline#collecting-feedback
https://t.me/botfather
https://core.telegram.org/bots/api#choseninlineresult
https://core.telegram.org/bots/api#inlinekeyboardmarkup
https://core.telegram.org/bots/api#callbackquery
https://core.telegram.org/bots/api#updating-messages

aiogram Documentation, Release 3.23.0

InlineQuery

class aiogram.types.inline_query.InlineQuery(*, id: str, from_user: User, query: str, offset: str,
chat_type: str | None = None, location: Location | None
= None, **extra_data: Any)

This object represents an incoming inline query. When the user sends an empty query, your bot could return
some default or trending results.

Source: https://core.telegram.org/bots/api#inlinequery

id: str

Unique identifier for this query

from_user: User

Sender

query: str

Text of the query (up to 256 characters)

offset: str

Offset of the results to be returned, can be controlled by the bot

chat_type: str | None

Optional. Type of the chat from which the inline query was sent. Can be either ‘sender’ for a private chat
with the inline query sender, ‘private’, ‘group’, ‘supergroup’, or ‘channel’. The chat type should be always
known for requests sent from official clients and most third-party clients, unless the request was sent from
a secret chat

location: Location | None

Optional. Sender location, only for bots that request user location

answer(results: list[InlineQueryResultUnion], cache_time: int | None = None, is_personal: bool | None =
None, next_offset: str | None = None, button: InlineQueryResultsButton | None = None,
switch_pm_parameter: str | None = None, switch_pm_text: str | None = None, **kwargs: Any)→
AnswerInlineQuery

Shortcut for method aiogram.methods.answer_inline_query.AnswerInlineQuery will automati-
cally fill method attributes:

• inline_query_id

Use this method to send answers to an inline query. On success, True is returned.

No more than 50 results per query are allowed.

Source: https://core.telegram.org/bots/api#answerinlinequery

Parameters

• results – A JSON-serialized array of results for the inline query

• cache_time – The maximum amount of time in seconds that the result of the inline query
may be cached on the server. Defaults to 300.

• is_personal – Pass True if results may be cached on the server side only for the user that
sent the query. By default, results may be returned to any user who sends the same query.

• next_offset – Pass the offset that a client should send in the next query with the same
text to receive more results. Pass an empty string if there are no more results or if you don’t
support pagination. Offset length can’t exceed 64 bytes.

318 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequery
https://core.telegram.org/bots/api#answerinlinequery

aiogram Documentation, Release 3.23.0

• button – A JSON-serialized object describing a button to be shown above inline query
results

• switch_pm_parameter – Deep-linking parameter for the /start message sent to the bot
when user presses the switch button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are
allowed.

• switch_pm_text – If passed, clients will display a button with specified text that switches
the user to a private chat with the bot and sends the bot a start message with the parameter
switch_pm_parameter

Returns
instance of method aiogram.methods.answer_inline_query.AnswerInlineQuery

InlineQueryResult

class aiogram.types.inline_query_result.InlineQueryResult(**extra_data: Any)
This object represents one result of an inline query. Telegram clients currently support results of the following
20 types:

• aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio

• aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

• aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif

• aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif

• aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

• aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker

• aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo

• aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice

• aiogram.types.inline_query_result_article.InlineQueryResultArticle

• aiogram.types.inline_query_result_audio.InlineQueryResultAudio

• aiogram.types.inline_query_result_contact.InlineQueryResultContact

• aiogram.types.inline_query_result_game.InlineQueryResultGame

• aiogram.types.inline_query_result_document.InlineQueryResultDocument

• aiogram.types.inline_query_result_gif.InlineQueryResultGif

• aiogram.types.inline_query_result_location.InlineQueryResultLocation

• aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

• aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

• aiogram.types.inline_query_result_venue.InlineQueryResultVenue

• aiogram.types.inline_query_result_video.InlineQueryResultVideo

• aiogram.types.inline_query_result_voice.InlineQueryResultVoice

Note: All URLs passed in inline query results will be available to end users and therefore must be assumed to
be public.

Source: https://core.telegram.org/bots/api#inlinequeryresult

2.3. Bot API 319

https://core.telegram.org/bots/features#deep-linking
https://core.telegram.org/bots/api#inlinequeryresult

aiogram Documentation, Release 3.23.0

InlineQueryResultArticle

class aiogram.types.inline_query_result_article.InlineQueryResultArticle(*, type: Lit-
eral[InlineQueryResultType.ARTICLE]
= InlineQueryResult-
Type.ARTICLE, id:
str, title: str, in-
put_message_content:
InputTextMessage-
Content |
InputLocationMes-
sageContent |
InputVenueMessage-
Content |
InputContactMes-
sageContent |
InputInvoiceMes-
sageContent,
reply_markup: In-
lineKeyboardMarkup
| None = None, url:
str | None = None,
description: str |
None = None,
thumbnail_url: str |
None = None,
thumbnail_width: int
| None = None,
thumbnail_height:
int | None = None,
hide_url: bool | None
= None,
**extra_data: Any)

Represents a link to an article or web page.

Source: https://core.telegram.org/bots/api#inlinequeryresultarticle

type: Literal[InlineQueryResultType.ARTICLE]

Type of the result, must be article

id: str

Unique identifier for this result, 1-64 Bytes

title: str

Title of the result

input_message_content: InputMessageContentUnion

Content of the message to be sent

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

url: str | None

Optional. URL of the result

320 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultarticle
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

description: str | None

Optional. Short description of the result

thumbnail_url: str | None

Optional. Url of the thumbnail for the result

thumbnail_width: int | None

Optional. Thumbnail width

thumbnail_height: int | None

Optional. Thumbnail height

hide_url: bool | None

Optional. Pass True if you don’t want the URL to be shown in the message

Deprecated since version API:8.2: https://core.telegram.org/bots/api-changelog#january-1-2025

InlineQueryResultAudio

class aiogram.types.inline_query_result_audio.InlineQueryResultAudio(*, type: ~typ-
ing.Literal[InlineQueryResultType.AUDIO]
= InlineQueryResult-
Type.AUDIO, id: str,
audio_url: str, title: str,
caption: str | None =
None, parse_mode: str |
~aiogram.client.default.Default
| None =
<Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, performer:
str | None = None,
audio_duration: int | None
= None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None,
input_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None = None,
**extra_data:
~typing.Any)

Represents a link to an MP3 audio file. By default, this audio file will be sent by the user. Alternatively, you can
use input_message_content to send a message with the specified content instead of the audio.

Source: https://core.telegram.org/bots/api#inlinequeryresultaudio

2.3. Bot API 321

https://core.telegram.org/bots/api-changelog#january-1-2025
https://core.telegram.org/bots/api#inlinequeryresultaudio

aiogram Documentation, Release 3.23.0

type: Literal[InlineQueryResultType.AUDIO]

Type of the result, must be audio

id: str

Unique identifier for this result, 1-64 bytes

audio_url: str

A valid URL for the audio file

title: str

Title

caption: str | None

Optional. Caption, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the audio caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

performer: str | None

Optional. Performer

audio_duration: int | None

Optional. Audio duration in seconds

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the audio

322 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

InlineQueryResultCachedAudio

class aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio(*, type:
~typ-
ing.Literal[InlineQueryResultType.AUDIO]
= Inline-
QueryRe-
sult-
Type.AUDIO,
id: str,
au-
dio_file_id:
str,
caption:
str | None
= None,
parse_mode:
str |
~aiogram.client.default.Default
| None =
<De-
fault('parse_mode')>,
cap-
tion_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None =
None, re-
ply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None =
None, in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None =
None,
**ex-
tra_data:
~typ-
ing.Any)

Represents a link to an MP3 audio file stored on the Telegram servers. By default, this audio file will be sent by
the user. Alternatively, you can use input_message_content to send a message with the specified content instead
of the audio.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedaudio

type: Literal[InlineQueryResultType.AUDIO]

2.3. Bot API 323

https://core.telegram.org/bots/api#inlinequeryresultcachedaudio

aiogram Documentation, Release 3.23.0

Type of the result, must be audio

id: str

Unique identifier for this result, 1-64 bytes

audio_file_id: str

A valid file identifier for the audio file

caption: str | None

Optional. Caption, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the audio caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the audio

InlineQueryResultCachedDocument

324 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument(*,
type:
~typ-
ing.Literal[InlineQueryResultType.DOCUMENT]
=
In-
line-
QueryRe-
sult-
Type.DOCUMENT ,
id:
str,
ti-
tle:
str,
doc-
u-
ment_file_id:
str,
de-
scrip-
tion:
str
|
None
=
None,
cap-
tion:
str
|
None
=
None,
parse_mode:
str
|
~aiogram.client.default.Default
|
None
=
<De-
fault('parse_mode')>,
cap-
tion_entities:
list[~aiogram.types.message_entity.MessageEntity]
|
None
=
None,
re-
ply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
None
=
None,
in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
|
None
=
None,
**ex-
tra_data:
~typ-
ing.Any)

2.3. Bot API 325

aiogram Documentation, Release 3.23.0

Represents a link to a file stored on the Telegram servers. By default, this file will be sent by the user with an
optional caption. Alternatively, you can use input_message_content to send a message with the specified content
instead of the file.

Source: https://core.telegram.org/bots/api#inlinequeryresultcacheddocument

type: Literal[InlineQueryResultType.DOCUMENT]

Type of the result, must be document

id: str

Unique identifier for this result, 1-64 bytes

title: str

Title for the result

document_file_id: str

A valid file identifier for the file

description: str | None

Optional. Short description of the result

caption: str | None

Optional. Caption of the document to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the document caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the file

326 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultcacheddocument
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

InlineQueryResultCachedGif

class aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif(*, type: ~typ-
ing.Literal[InlineQueryResultType.GIF]
= Inline-
QueryResult-
Type.GIF, id:
str, gif_file_id:
str, title: str |
None = None,
caption: str |
None = None,
parse_mode:
str |
~aiogram.client.default.Default
| None = <De-
fault('parse_mode')>,
cap-
tion_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
show_caption_above_media:
bool |
~aiogram.client.default.Default
| None = <De-
fault('show_caption_above_media')>,
reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None =
None, in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None =
None,
**extra_data:
~typing.Any)

Represents a link to an animated GIF file stored on the Telegram servers. By default, this animated GIF file will
be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message
with specified content instead of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedgif

type: Literal[InlineQueryResultType.GIF]

Type of the result, must be gif

id: str

2.3. Bot API 327

https://core.telegram.org/bots/api#inlinequeryresultcachedgif

aiogram Documentation, Release 3.23.0

Unique identifier for this result, 1-64 bytes

gif_file_id: str

A valid file identifier for the GIF file

title: str | None

Optional. Title for the result

caption: str | None

Optional. Caption of the GIF file to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the GIF animation

InlineQueryResultCachedMpeg4Gif

328 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif(*,
type:
~typ-
ing.Literal[InlineQueryResultType.MPEG4_GIF]
=
In-
line-
QueryRe-
sult-
Type.MPEG4_GIF,
id:
str,
mpeg4_file_id:
str,
ti-
tle:
str
|
None
=
None,
cap-
tion:
str
|
None
=
None,
parse_mode:
str
|
~aiogram.client.default.Default
|
None
=
<De-
fault('parse_mode')>,
cap-
tion_entities:
list[~aiogram.types.message_entity.MessageEntity]
|
None
=
None,
show_caption_above_media:
bool
|
~aiogram.client.default.Default
|
None
=
<De-
fault('show_caption_above_media')>,
re-
ply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
None
=
None,
in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
|
None
=
None,
**ex-
tra_data:
~typ-
ing.Any)

2.3. Bot API 329

aiogram Documentation, Release 3.23.0

Represents a link to a video animation (H.264/MPEG-4 AVC video without sound) stored on the Telegram
servers. By default, this animated MPEG-4 file will be sent by the user with an optional caption. Alternatively,
you can use input_message_content to send a message with the specified content instead of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedmpeg4gif

type: Literal[InlineQueryResultType.MPEG4_GIF]

Type of the result, must be mpeg4_gif

id: str

Unique identifier for this result, 1-64 bytes

mpeg4_file_id: str

A valid file identifier for the MPEG4 file

title: str | None

Optional. Title for the result

caption: str | None

Optional. Caption of the MPEG-4 file to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the video animation

330 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultcachedmpeg4gif
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

InlineQueryResultCachedPhoto

2.3. Bot API 331

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto(*, type:
~typ-
ing.Literal[InlineQueryResultType.PHOTO]
= Inline-
QueryRe-
sult-
Type.PHOTO,
id: str,
photo_file_id:
str, title:
str | None
= None,
descrip-
tion: str |
None =
None,
caption:
str | None
= None,
parse_mode:
str |
~aiogram.client.default.Default
| None =
<De-
fault('parse_mode')>,
cap-
tion_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None =
None,
show_caption_above_media:
bool |
~aiogram.client.default.Default
| None =
<De-
fault('show_caption_above_media')>,
re-
ply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None =
None, in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None =
None,
**ex-
tra_data:
~typ-
ing.Any)332 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Represents a link to a photo stored on the Telegram servers. By default, this photo will be sent by the user with an
optional caption. Alternatively, you can use input_message_content to send a message with the specified content
instead of the photo.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedphoto

type: Literal[InlineQueryResultType.PHOTO]

Type of the result, must be photo

id: str

Unique identifier for this result, 1-64 bytes

photo_file_id: str

A valid file identifier of the photo

title: str | None

Optional. Title for the result

description: str | None

Optional. Short description of the result

caption: str | None

Optional. Caption of the photo to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the photo caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the photo

InlineQueryResultCachedSticker

2.3. Bot API 333

https://core.telegram.org/bots/api#inlinequeryresultcachedphoto
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker(*,
type:
Lit-
eral[InlineQueryResultType.STICKER]
=
In-
line-
QueryRe-
sult-
Type.STICKER,
id:
str,
sticker_file_id:
str,
re-
ply_markup:
In-
lineKey-
board-
Markup
|
None
=
None,
in-
put_message_content:
In-
put-
TextMes-
sage-
Con-
tent
| In-
put-
Lo-
ca-
tion-
Mes-
sage-
Con-
tent
| In-
putV-
enueMes-
sage-
Con-
tent
| In-
put-
Con-
tactMes-
sage-
Con-
tent
| In-
putIn-
voiceMes-
sage-
Con-
tent
|
None
=
None,
**ex-
tra_data:
Any)

334 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Represents a link to a sticker stored on the Telegram servers. By default, this sticker will be sent by the user.
Alternatively, you can use input_message_content to send a message with the specified content instead of the
sticker.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedsticker

type: Literal[InlineQueryResultType.STICKER]

Type of the result, must be sticker

id: str

Unique identifier for this result, 1-64 bytes

sticker_file_id: str

A valid file identifier of the sticker

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the sticker

InlineQueryResultCachedVideo

2.3. Bot API 335

https://core.telegram.org/bots/api#inlinequeryresultcachedsticker
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo(*, type:
~typ-
ing.Literal[InlineQueryResultType.VIDEO]
= Inline-
QueryRe-
sult-
Type.VIDEO,
id: str,
video_file_id:
str, title:
str, de-
scription:
str | None
= None,
caption:
str | None
= None,
parse_mode:
str |
~aiogram.client.default.Default
| None =
<De-
fault('parse_mode')>,
cap-
tion_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None =
None,
show_caption_above_media:
bool |
~aiogram.client.default.Default
| None =
<De-
fault('show_caption_above_media')>,
re-
ply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None =
None, in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None =
None,
**ex-
tra_data:
~typ-
ing.Any)

336 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Represents a link to a video file stored on the Telegram servers. By default, this video file will be sent by the user
with an optional caption. Alternatively, you can use input_message_content to send a message with the specified
content instead of the video.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedvideo

type: Literal[InlineQueryResultType.VIDEO]

Type of the result, must be video

id: str

Unique identifier for this result, 1-64 bytes

video_file_id: str

A valid file identifier for the video file

title: str

Title for the result

description: str | None

Optional. Short description of the result

caption: str | None

Optional. Caption of the video to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the video caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the video

InlineQueryResultCachedVoice

2.3. Bot API 337

https://core.telegram.org/bots/api#inlinequeryresultcachedvideo
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice(*, type:
~typ-
ing.Literal[InlineQueryResultType.VOICE]
= Inline-
QueryRe-
sult-
Type.VOICE,
id: str,
voice_file_id:
str, title:
str,
caption:
str | None
= None,
parse_mode:
str |
~aiogram.client.default.Default
| None =
<De-
fault('parse_mode')>,
cap-
tion_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None =
None, re-
ply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None =
None, in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None =
None,
**ex-
tra_data:
~typ-
ing.Any)

Represents a link to a voice message stored on the Telegram servers. By default, this voice message will be
sent by the user. Alternatively, you can use input_message_content to send a message with the specified content
instead of the voice message.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedvoice

type: Literal[InlineQueryResultType.VOICE]

Type of the result, must be voice

id: str

338 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultcachedvoice

aiogram Documentation, Release 3.23.0

Unique identifier for this result, 1-64 bytes

voice_file_id: str

A valid file identifier for the voice message

title: str

Voice message title

caption: str | None

Optional. Caption, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the voice message caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the voice message

InlineQueryResultContact

class aiogram.types.inline_query_result_contact.InlineQueryResultContact(*, type: Lit-
eral[InlineQueryResultType.CONTACT]
= InlineQueryResult-
Type.CONTACT , id:
str, phone_number:
str, first_name: str,
last_name: str | None
= None, vcard: str |
None = None,
reply_markup: In-
lineKeyboardMarkup
| None = None, in-
put_message_content:
InputTextMessage-
Content |
InputLocationMes-
sageContent |
InputVenueMessage-
Content |
InputContactMes-
sageContent |
InputInvoiceMes-
sageContent | None =
None, thumbnail_url:
str | None = None,
thumbnail_width: int
| None = None,
thumbnail_height:
int | None = None,
**extra_data: Any)

2.3. Bot API 339

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Represents a contact with a phone number. By default, this contact will be sent by the user. Alternatively, you
can use input_message_content to send a message with the specified content instead of the contact.

Source: https://core.telegram.org/bots/api#inlinequeryresultcontact

type: Literal[InlineQueryResultType.CONTACT]

Type of the result, must be contact

id: str

Unique identifier for this result, 1-64 Bytes

phone_number: str

Contact’s phone number

first_name: str

Contact’s first name

last_name: str | None

Optional. Contact’s last name

vcard: str | None

Optional. Additional data about the contact in the form of a vCard, 0-2048 bytes

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the contact

thumbnail_url: str | None

Optional. Url of the thumbnail for the result

thumbnail_width: int | None

Optional. Thumbnail width

thumbnail_height: int | None

Optional. Thumbnail height

InlineQueryResultDocument

340 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultcontact
https://en.wikipedia.org/wiki/VCard
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_document.InlineQueryResultDocument(*, type: ~typ-
ing.Literal[InlineQueryResultType.DOCUMENT]
= InlineQueryRe-
sult-
Type.DOCUMENT ,
id: str, title: str,
document_url: str,
mime_type: str,
caption: str | None
= None,
parse_mode: str |
~aiogram.client.default.Default
| None = <De-
fault('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
description: str |
None = None,
reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None, in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None = None,
thumbnail_url: str
| None = None,
thumbnail_width:
int | None = None,
thumbnail_height:
int | None = None,
**extra_data:
~typing.Any)

Represents a link to a file. By default, this file will be sent by the user with an optional caption. Alternatively,
you can use input_message_content to send a message with the specified content instead of the file. Currently,
only .PDF and .ZIP files can be sent using this method.

Source: https://core.telegram.org/bots/api#inlinequeryresultdocument

type: Literal[InlineQueryResultType.DOCUMENT]

Type of the result, must be document

id: str

Unique identifier for this result, 1-64 bytes

title: str

Title for the result

2.3. Bot API 341

https://core.telegram.org/bots/api#inlinequeryresultdocument

aiogram Documentation, Release 3.23.0

document_url: str

A valid URL for the file

mime_type: str

MIME type of the content of the file, either ‘application/pdf’ or ‘application/zip’

caption: str | None

Optional. Caption of the document to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the document caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

description: str | None

Optional. Short description of the result

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the file

thumbnail_url: str | None

Optional. URL of the thumbnail (JPEG only) for the file

thumbnail_width: int | None

Optional. Thumbnail width

thumbnail_height: int | None

Optional. Thumbnail height

InlineQueryResultGame

class aiogram.types.inline_query_result_game.InlineQueryResultGame(*, type: Lit-
eral[InlineQueryResultType.GAME]
= InlineQueryResult-
Type.GAME, id: str,
game_short_name: str,
reply_markup:
InlineKeyboardMarkup |
None = None, **extra_data:
Any)

Represents a Game.

Source: https://core.telegram.org/bots/api#inlinequeryresultgame

type: Literal[InlineQueryResultType.GAME]

Type of the result, must be game

id: str

Unique identifier for this result, 1-64 bytes

game_short_name: str

Short name of the game

342 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#games
https://core.telegram.org/bots/api#inlinequeryresultgame

aiogram Documentation, Release 3.23.0

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

InlineQueryResultGif

class aiogram.types.inline_query_result_gif.InlineQueryResultGif(*, type: ~typ-
ing.Literal[InlineQueryResultType.GIF]
= InlineQueryResultType.GIF,
id: str, gif_url: str,
thumbnail_url: str, gif_width:
int | None = None, gif_height:
int | None = None,
gif_duration: int | None =
None, thumbnail_mime_type:
str | None = None, title: str |
None = None, caption: str |
None = None, parse_mode: str
|
~aiogram.client.default.Default
| None =
<Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
show_caption_above_media:
bool |
~aiogram.client.default.Default
| None = <De-
fault('show_caption_above_media')>,
reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None,
input_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None = None, **extra_data:
~typing.Any)

Represents a link to an animated GIF file. By default, this animated GIF file will be sent by the user with optional
caption. Alternatively, you can use input_message_content to send a message with the specified content instead
of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultgif

type: Literal[InlineQueryResultType.GIF]

Type of the result, must be gif

2.3. Bot API 343

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#inlinequeryresultgif

aiogram Documentation, Release 3.23.0

id: str

Unique identifier for this result, 1-64 bytes

gif_url: str

A valid URL for the GIF file

thumbnail_url: str

URL of the static (JPEG or GIF) or animated (MPEG4) thumbnail for the result

gif_width: int | None

Optional. Width of the GIF

gif_height: int | None

Optional. Height of the GIF

gif_duration: int | None

Optional. Duration of the GIF in seconds

thumbnail_mime_type: str | None

Optional. MIME type of the thumbnail, must be one of ‘image/jpeg’, ‘image/gif’, or ‘video/mp4’. Defaults
to ‘image/jpeg’

title: str | None

Optional. Title for the result

caption: str | None

Optional. Caption of the GIF file to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the GIF animation

InlineQueryResultLocation

344 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_location.InlineQueryResultLocation(*, type: Lit-
eral[InlineQueryResultType.LOCATION]
= InlineQueryRe-
sult-
Type.LOCATION ,
id: str, latitude:
float, longitude:
float, title: str,
horizon-
tal_accuracy: float
| None = None,
live_period: int |
None = None,
heading: int |
None = None,
proxim-
ity_alert_radius:
int | None = None,
reply_markup:
InlineKeyboard-
Markup | None =
None, in-
put_message_content:
InputTextMes-
sageContent |
InputLocation-
MessageContent |
InputVenueMes-
sageContent |
InputContactMes-
sageContent |
InputInvoiceMes-
sageContent |
None = None,
thumbnail_url: str
| None = None,
thumbnail_width:
int | None = None,
thumbnail_height:
int | None = None,
**extra_data:
Any)

Represents a location on a map. By default, the location will be sent by the user. Alternatively, you can use
input_message_content to send a message with the specified content instead of the location.

Source: https://core.telegram.org/bots/api#inlinequeryresultlocation

type: Literal[InlineQueryResultType.LOCATION]

Type of the result, must be location

id: str

Unique identifier for this result, 1-64 Bytes

latitude: float

Location latitude in degrees

2.3. Bot API 345

https://core.telegram.org/bots/api#inlinequeryresultlocation

aiogram Documentation, Release 3.23.0

longitude: float

Location longitude in degrees

title: str

Location title

horizontal_accuracy: float | None

Optional. The radius of uncertainty for the location, measured in meters; 0-1500

live_period: int | None

Optional. Period in seconds during which the location can be updated, should be between 60 and 86400,
or 0x7FFFFFFF for live locations that can be edited indefinitely.

heading: int | None

Optional. For live locations, a direction in which the user is moving, in degrees. Must be between 1 and
360 if specified.

proximity_alert_radius: int | None

Optional. For live locations, a maximum distance for proximity alerts about approaching another chat
member, in meters. Must be between 1 and 100000 if specified.

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the location

thumbnail_url: str | None

Optional. Url of the thumbnail for the result

thumbnail_width: int | None

Optional. Thumbnail width

thumbnail_height: int | None

Optional. Thumbnail height

346 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

InlineQueryResultMpeg4Gif

2.3. Bot API 347

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif(*, type: ~typ-
ing.Literal[InlineQueryResultType.MPEG4_GIF]
= Inline-
QueryResult-
Type.MPEG4_GIF,
id: str,
mpeg4_url: str,
thumbnail_url:
str,
mpeg4_width:
int | None =
None,
mpeg4_height:
int | None =
None,
mpeg4_duration:
int | None =
None, thumb-
nail_mime_type:
str | None =
None, title: str |
None = None,
caption: str |
None = None,
parse_mode: str |
~aiogram.client.default.Default
| None = <De-
fault('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
show_caption_above_media:
bool |
~aiogram.client.default.Default
| None = <De-
fault('show_caption_above_media')>,
reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None,
in-
put_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None = None,
**extra_data:
~typing.Any)

Represents a link to a video animation (H.264/MPEG-4 AVC video without sound). By default, this animated

348 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

MPEG-4 file will be sent by the user with optional caption. Alternatively, you can use input_message_content
to send a message with the specified content instead of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultmpeg4gif

type: Literal[InlineQueryResultType.MPEG4_GIF]

Type of the result, must be mpeg4_gif

id: str

Unique identifier for this result, 1-64 bytes

mpeg4_url: str

A valid URL for the MPEG4 file

thumbnail_url: str

URL of the static (JPEG or GIF) or animated (MPEG4) thumbnail for the result

mpeg4_width: int | None

Optional. Video width

mpeg4_height: int | None

Optional. Video height

mpeg4_duration: int | None

Optional. Video duration in seconds

thumbnail_mime_type: str | None

Optional. MIME type of the thumbnail, must be one of ‘image/jpeg’, ‘image/gif’, or ‘video/mp4’. Defaults
to ‘image/jpeg’

title: str | None

Optional. Title for the result

caption: str | None

Optional. Caption of the MPEG-4 file to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the video animation

2.3. Bot API 349

https://core.telegram.org/bots/api#inlinequeryresultmpeg4gif
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

InlineQueryResultPhoto

class aiogram.types.inline_query_result_photo.InlineQueryResultPhoto(*, type: ~typ-
ing.Literal[InlineQueryResultType.PHOTO]
= InlineQueryResult-
Type.PHOTO, id: str,
photo_url: str,
thumbnail_url: str,
photo_width: int | None =
None, photo_height: int |
None = None, title: str |
None = None, description:
str | None = None,
caption: str | None =
None, parse_mode: str |
~aiogram.client.default.Default
| None =
<Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
show_caption_above_media:
bool |
~aiogram.client.default.Default
| None = <De-
fault('show_caption_above_media')>,
reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None,
input_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None = None,
**extra_data:
~typing.Any)

Represents a link to a photo. By default, this photo will be sent by the user with optional caption. Alternatively,
you can use input_message_content to send a message with the specified content instead of the photo.

Source: https://core.telegram.org/bots/api#inlinequeryresultphoto

type: Literal[InlineQueryResultType.PHOTO]

Type of the result, must be photo

id: str

Unique identifier for this result, 1-64 bytes

photo_url: str

A valid URL of the photo. Photo must be in JPEG format. Photo size must not exceed 5MB

350 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultphoto

aiogram Documentation, Release 3.23.0

thumbnail_url: str

URL of the thumbnail for the photo

photo_width: int | None

Optional. Width of the photo

photo_height: int | None

Optional. Height of the photo

title: str | None

Optional. Title for the result

description: str | None

Optional. Short description of the result

caption: str | None

Optional. Caption of the photo to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the photo caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the photo

2.3. Bot API 351

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

InlineQueryResultVenue

class aiogram.types.inline_query_result_venue.InlineQueryResultVenue(*, type: Lit-
eral[InlineQueryResultType.VENUE]
= InlineQueryResult-
Type.VENUE, id: str,
latitude: float, longitude:
float, title: str, address:
str, foursquare_id: str |
None = None,
foursquare_type: str |
None = None,
google_place_id: str |
None = None,
google_place_type: str |
None = None,
reply_markup:
InlineKeyboardMarkup |
None = None,
input_message_content:
InputTextMessageContent
| InputLocationMessage-
Content |
InputVenueMessageCon-
tent |
InputContactMessageCon-
tent |
InputInvoiceMessageCon-
tent | None = None,
thumbnail_url: str | None
= None, thumbnail_width:
int | None = None,
thumbnail_height: int |
None = None,
**extra_data: Any)

Represents a venue. By default, the venue will be sent by the user. Alternatively, you can use in-
put_message_content to send a message with the specified content instead of the venue.

Source: https://core.telegram.org/bots/api#inlinequeryresultvenue

type: Literal[InlineQueryResultType.VENUE]

Type of the result, must be venue

id: str

Unique identifier for this result, 1-64 Bytes

latitude: float

Latitude of the venue location in degrees

longitude: float

Longitude of the venue location in degrees

title: str

Title of the venue

352 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultvenue

aiogram Documentation, Release 3.23.0

address: str

Address of the venue

foursquare_id: str | None

Optional. Foursquare identifier of the venue if known

foursquare_type: str | None

Optional. Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’,
‘arts_entertainment/aquarium’ or ‘food/icecream’.)

google_place_id: str | None

Optional. Google Places identifier of the venue

google_place_type: str | None

Optional. Google Places type of the venue. (See supported types.)

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the venue

thumbnail_url: str | None

Optional. Url of the thumbnail for the result

thumbnail_width: int | None

Optional. Thumbnail width

thumbnail_height: int | None

Optional. Thumbnail height

InlineQueryResultVideo

2.3. Bot API 353

https://developers.google.com/places/web-service/supported_types
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_video.InlineQueryResultVideo(*, type: ~typ-
ing.Literal[InlineQueryResultType.VIDEO]
= InlineQueryResult-
Type.VIDEO, id: str,
video_url: str, mime_type:
str, thumbnail_url: str,
title: str, caption: str |
None = None,
parse_mode: str |
~aiogram.client.default.Default
| None =
<Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
show_caption_above_media:
bool |
~aiogram.client.default.Default
| None = <De-
fault('show_caption_above_media')>,
video_width: int | None =
None, video_height: int |
None = None,
video_duration: int | None
= None, description: str |
None = None,
reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None,
input_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None = None,
**extra_data:
~typing.Any)

Represents a link to a page containing an embedded video player or a video file. By default, this video file will be
sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message
with the specified content instead of the video.

If an InlineQueryResultVideo message contains an embedded video (e.g., YouTube), you must re-
place its content using input_message_content.

Source: https://core.telegram.org/bots/api#inlinequeryresultvideo

type: Literal[InlineQueryResultType.VIDEO]

Type of the result, must be video

id: str

354 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultvideo

aiogram Documentation, Release 3.23.0

Unique identifier for this result, 1-64 bytes

video_url: str

A valid URL for the embedded video player or video file

mime_type: str

MIME type of the content of the video URL, ‘text/html’ or ‘video/mp4’

thumbnail_url: str

URL of the thumbnail (JPEG only) for the video

title: str

Title for the result

caption: str | None

Optional. Caption of the video to be sent, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the video caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

show_caption_above_media: bool | Default | None

Optional. Pass True, if the caption must be shown above the message media

video_width: int | None

Optional. Video width

video_height: int | None

Optional. Video height

video_duration: int | None

Optional. Video duration in seconds

description: str | None

Optional. Short description of the result

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the video. This field is required if InlineQueryRe-
sultVideo is used to send an HTML-page as a result (e.g., a YouTube video).

InlineQueryResultVoice

2.3. Bot API 355

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

class aiogram.types.inline_query_result_voice.InlineQueryResultVoice(*, type: ~typ-
ing.Literal[InlineQueryResultType.VOICE]
= InlineQueryResult-
Type.VOICE, id: str,
voice_url: str, title: str,
caption: str | None =
None, parse_mode: str |
~aiogram.client.default.Default
| None =
<Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
voice_duration: int | None
= None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None,
input_message_content:
~aiogram.types.input_text_message_content.InputTextMessageContent
|
~aiogram.types.input_location_message_content.InputLocationMessageContent
|
~aiogram.types.input_venue_message_content.InputVenueMessageContent
|
~aiogram.types.input_contact_message_content.InputContactMessageContent
|
~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
| None = None,
**extra_data:
~typing.Any)

Represents a link to a voice recording in an .OGG container encoded with OPUS. By default, this voice recording
will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified
content instead of the the voice message.

Source: https://core.telegram.org/bots/api#inlinequeryresultvoice

type: Literal[InlineQueryResultType.VOICE]

Type of the result, must be voice

id: str

Unique identifier for this result, 1-64 bytes

voice_url: str

A valid URL for the voice recording

title: str

Recording title

caption: str | None

Optional. Caption, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Optional. Mode for parsing entities in the voice message caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

356 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresultvoice
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

voice_duration: int | None

Optional. Recording duration in seconds

reply_markup: InlineKeyboardMarkup | None

Optional. Inline keyboard attached to the message

input_message_content: InputMessageContentUnion | None

Optional. Content of the message to be sent instead of the voice recording

InlineQueryResultsButton

class aiogram.types.inline_query_results_button.InlineQueryResultsButton(*, text: str, web_app:
WebAppInfo | None
= None,
start_parameter: str |
None = None,
**extra_data: Any)

This object represents a button to be shown above inline query results. You must use exactly one of the optional
fields.

Source: https://core.telegram.org/bots/api#inlinequeryresultsbutton

text: str

Label text on the button

web_app: WebAppInfo | None

Optional. Description of the Web App that will be launched when the user presses the button. The Web
App will be able to switch back to the inline mode using the method switchInlineQuery inside the Web
App.

start_parameter: str | None

Optional. Deep-linking parameter for the /start message sent to the bot when a user presses the button.
1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed.

InputContactMessageContent

class aiogram.types.input_contact_message_content.InputContactMessageContent(*,
phone_number:
str, first_name:
str, last_name:
str | None =
None, vcard: str
| None = None,
**extra_data:
Any)

Represents the content of a contact message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputcontactmessagecontent

phone_number: str

Contact’s phone number

first_name: str

Contact’s first name

2.3. Bot API 357

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api#inlinequeryresultsbutton
https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/webapps#initializing-mini-apps
https://core.telegram.org/bots/features#deep-linking
https://core.telegram.org/bots/api#inputmessagecontent
https://core.telegram.org/bots/api#inputcontactmessagecontent

aiogram Documentation, Release 3.23.0

last_name: str | None

Optional. Contact’s last name

vcard: str | None

Optional. Additional data about the contact in the form of a vCard, 0-2048 bytes

InputInvoiceMessageContent

358 Chapter 2. Contents

https://en.wikipedia.org/wiki/VCard

aiogram Documentation, Release 3.23.0

class aiogram.types.input_invoice_message_content.InputInvoiceMessageContent(*, title: str,
description: str,
payload: str,
currency: str,
prices:
list[LabeledPrice],
provider_token:
str | None =
None,
max_tip_amount:
int | None =
None, sug-
gested_tip_amounts:
list[int] | None
= None,
provider_data:
str | None =
None,
photo_url: str |
None = None,
photo_size: int |
None = None,
photo_width:
int | None =
None,
photo_height:
int | None =
None,
need_name:
bool | None =
None,
need_phone_number:
bool | None =
None,
need_email:
bool | None =
None,
need_shipping_address:
bool | None =
None,
send_phone_number_to_provider:
bool | None =
None,
send_email_to_provider:
bool | None =
None,
is_flexible: bool
| None = None,
**extra_data:
Any)

Represents the content of an invoice message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputinvoicemessagecontent

title: str

2.3. Bot API 359

https://core.telegram.org/bots/api#inputmessagecontent
https://core.telegram.org/bots/api#inputinvoicemessagecontent

aiogram Documentation, Release 3.23.0

Product name, 1-32 characters

description: str

Product description, 1-255 characters

payload: str

Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use it for your internal
processes.

currency: str

Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for payments in Telegram Stars.

prices: list[LabeledPrice]

Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost,
delivery tax, bonus, etc.). Must contain exactly one item for payments in Telegram Stars.

provider_token: str | None

Optional. Payment provider token, obtained via @BotFather. Pass an empty string for payments in Tele-
gram Stars.

max_tip_amount: int | None

Optional. The maximum accepted amount for tips in the smallest units of the currency (integer, not
float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the
exp parameter in currencies.json, it shows the number of digits past the decimal point for each currency (2
for the majority of currencies). Defaults to 0. Not supported for payments in Telegram Stars.

suggested_tip_amounts: list[int] | None

Optional. A JSON-serialized array of suggested amounts of tip in the smallest units of the currency (integer,
not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be
positive, passed in a strictly increased order and must not exceed max_tip_amount.

provider_data: str | None

Optional. A JSON-serialized object for data about the invoice, which will be shared with the payment
provider. A detailed description of the required fields should be provided by the payment provider.

photo_url: str | None

Optional. URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for
a service.

photo_size: int | None

Optional. Photo size in bytes

photo_width: int | None

Optional. Photo width

photo_height: int | None

Optional. Photo height

need_name: bool | None

Optional. Pass True if you require the user’s full name to complete the order. Ignored for payments in
Telegram Stars.

need_phone_number: bool | None

Optional. Pass True if you require the user’s phone number to complete the order. Ignored for payments
in Telegram Stars.

360 Chapter 2. Contents

https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

need_email: bool | None

Optional. Pass True if you require the user’s email address to complete the order. Ignored for payments in
Telegram Stars.

need_shipping_address: bool | None

Optional. Pass True if you require the user’s shipping address to complete the order. Ignored for payments
in Telegram Stars.

send_phone_number_to_provider: bool | None

Optional. Pass True if the user’s phone number should be sent to the provider. Ignored for payments in
Telegram Stars.

send_email_to_provider: bool | None

Optional. Pass True if the user’s email address should be sent to the provider. Ignored for payments in
Telegram Stars.

is_flexible: bool | None

Optional. Pass True if the final price depends on the shipping method. Ignored for payments in Telegram
Stars.

InputLocationMessageContent

class aiogram.types.input_location_message_content.InputLocationMessageContent(*, latitude:
float,
longitude:
float,
horizon-
tal_accuracy:
float | None
= None,
live_period:
int | None =
None,
heading: int |
None =
None,
proxim-
ity_alert_radius:
int | None =
None, **ex-
tra_data:
Any)

Represents the content of a location message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputlocationmessagecontent

latitude: float

Latitude of the location in degrees

longitude: float

Longitude of the location in degrees

horizontal_accuracy: float | None

Optional. The radius of uncertainty for the location, measured in meters; 0-1500

2.3. Bot API 361

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://core.telegram.org/bots/api#inputmessagecontent
https://core.telegram.org/bots/api#inputlocationmessagecontent

aiogram Documentation, Release 3.23.0

live_period: int | None

Optional. Period in seconds during which the location can be updated, should be between 60 and 86400,
or 0x7FFFFFFF for live locations that can be edited indefinitely.

heading: int | None

Optional. For live locations, a direction in which the user is moving, in degrees. Must be between 1 and
360 if specified.

proximity_alert_radius: int | None

Optional. For live locations, a maximum distance for proximity alerts about approaching another chat
member, in meters. Must be between 1 and 100000 if specified.

InputMessageContent

class aiogram.types.input_message_content.InputMessageContent(**extra_data: Any)
This object represents the content of a message to be sent as a result of an inline query. Telegram clients currently
support the following 5 types:

• aiogram.types.input_text_message_content.InputTextMessageContent

• aiogram.types.input_location_message_content.InputLocationMessageContent

• aiogram.types.input_venue_message_content.InputVenueMessageContent

• aiogram.types.input_contact_message_content.InputContactMessageContent

• aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

Source: https://core.telegram.org/bots/api#inputmessagecontent

InputTextMessageContent

class aiogram.types.input_text_message_content.InputTextMessageContent(*, message_text: str,
parse_mode: str |
~aiogram.client.default.Default
| None = <De-
fault('parse_mode')>,
entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
link_preview_options:
~aiogram.types.link_preview_options.LinkPreviewOptions
|
~aiogram.client.default.Default
| None = <De-
fault('link_preview')>,
dis-
able_web_page_preview:
bool | None = None,
**extra_data:
~typing.Any)

Represents the content of a text message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputtextmessagecontent

362 Chapter 2. Contents

https://core.telegram.org/bots/api#inputmessagecontent
https://core.telegram.org/bots/api#inputmessagecontent
https://core.telegram.org/bots/api#inputtextmessagecontent

aiogram Documentation, Release 3.23.0

message_text: str

Text of the message to be sent, 1-4096 characters

parse_mode: str | Default | None

Optional. Mode for parsing entities in the message text. See formatting options for more details.

entities: list[MessageEntity] | None

Optional. List of special entities that appear in message text, which can be specified instead of parse_mode

link_preview_options: LinkPreviewOptions | Default | None

Optional. Link preview generation options for the message

disable_web_page_preview: bool | None

Optional. Disables link previews for links in the sent message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

InputVenueMessageContent

class aiogram.types.input_venue_message_content.InputVenueMessageContent(*, latitude: float,
longitude: float, title:
str, address: str,
foursquare_id: str |
None = None,
foursquare_type: str
| None = None,
google_place_id: str
| None = None,
google_place_type:
str | None = None,
**extra_data: Any)

Represents the content of a venue message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputvenuemessagecontent

latitude: float

Latitude of the venue in degrees

longitude: float

Longitude of the venue in degrees

title: str

Name of the venue

address: str

Address of the venue

foursquare_id: str | None

Optional. Foursquare identifier of the venue, if known

foursquare_type: str | None

Optional. Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’,
‘arts_entertainment/aquarium’ or ‘food/icecream’.)

google_place_id: str | None

Optional. Google Places identifier of the venue

2.3. Bot API 363

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api#inputmessagecontent
https://core.telegram.org/bots/api#inputvenuemessagecontent

aiogram Documentation, Release 3.23.0

google_place_type: str | None

Optional. Google Places type of the venue. (See supported types.)

PreparedInlineMessage

class aiogram.types.prepared_inline_message.PreparedInlineMessage(*, id: str, expiration_date:
datetime | timedelta | int,
**extra_data: Any)

Describes an inline message to be sent by a user of a Mini App.

Source: https://core.telegram.org/bots/api#preparedinlinemessage

id: str

Unique identifier of the prepared message

expiration_date: DateTimeUnion

Expiration date of the prepared message, in Unix time. Expired prepared messages can no longer be used

SentWebAppMessage

class aiogram.types.sent_web_app_message.SentWebAppMessage(*, inline_message_id: str | None =
None, **extra_data: Any)

Describes an inline message sent by a Web App on behalf of a user.

Source: https://core.telegram.org/bots/api#sentwebappmessage

inline_message_id: str | None

Optional. Identifier of the sent inline message. Available only if there is an inline keyboard attached to the
message.

Payments

AffiliateInfo

class aiogram.types.affiliate_info.AffiliateInfo(*, commission_per_mille: int, amount: int,
affiliate_user: User | None = None, affiliate_chat:
Chat | None = None, nanostar_amount: int | None =
None, **extra_data: Any)

Contains information about the affiliate that received a commission via this transaction.

Source: https://core.telegram.org/bots/api#affiliateinfo

commission_per_mille: int

The number of Telegram Stars received by the affiliate for each 1000 Telegram Stars received by the bot
from referred users

amount: int

Integer amount of Telegram Stars received by the affiliate from the transaction, rounded to 0; can be negative
for refunds

affiliate_user: User | None

Optional. The bot or the user that received an affiliate commission if it was received by a bot or a user

364 Chapter 2. Contents

https://developers.google.com/places/web-service/supported_types
https://core.telegram.org/bots/api#preparedinlinemessage
https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/api#sentwebappmessage
https://core.telegram.org/bots/api#inlinekeyboardmarkup
https://core.telegram.org/bots/api#affiliateinfo

aiogram Documentation, Release 3.23.0

affiliate_chat: Chat | None

Optional. The chat that received an affiliate commission if it was received by a chat

nanostar_amount: int | None

Optional. The number of 1/1000000000 shares of Telegram Stars received by the affiliate; from -999999999
to 999999999; can be negative for refunds

Invoice

class aiogram.types.invoice.Invoice(*, title: str, description: str, start_parameter: str, currency: str,
total_amount: int, **extra_data: Any)

This object contains basic information about an invoice.

Source: https://core.telegram.org/bots/api#invoice

title: str

Product name

description: str

Product description

start_parameter: str

Unique bot deep-linking parameter that can be used to generate this invoice

currency: str

Three-letter ISO 4217 currency code, or ‘XTR’ for payments in Telegram Stars

total_amount: int

Total price in the smallest units of the currency (integer, not float/double). For example, for a price of US$
1.45 pass amount = 145. See the exp parameter in currencies.json, it shows the number of digits past the
decimal point for each currency (2 for the majority of currencies).

LabeledPrice

class aiogram.types.labeled_price.LabeledPrice(*, label: str, amount: int, **extra_data: Any)
This object represents a portion of the price for goods or services.

Source: https://core.telegram.org/bots/api#labeledprice

label: str

Portion label

amount: int

Price of the product in the smallest units of the currency (integer, not float/double). For example, for a
price of US$ 1.45 pass amount = 145. See the exp parameter in currencies.json, it shows the number of
digits past the decimal point for each currency (2 for the majority of currencies).

2.3. Bot API 365

https://core.telegram.org/bots/api#invoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://core.telegram.org/bots/api#labeledprice
https://core.telegram.org/bots/payments#supported-currencies
https://core.telegram.org/bots/payments/currencies.json

aiogram Documentation, Release 3.23.0

OrderInfo

class aiogram.types.order_info.OrderInfo(*, name: str | None = None, phone_number: str | None = None,
email: str | None = None, shipping_address: ShippingAddress
| None = None, **extra_data: Any)

This object represents information about an order.

Source: https://core.telegram.org/bots/api#orderinfo

name: str | None

Optional. User name

phone_number: str | None

Optional. User’s phone number

email: str | None

Optional. User email

shipping_address: ShippingAddress | None

Optional. User shipping address

PaidMediaPurchased

class aiogram.types.paid_media_purchased.PaidMediaPurchased(*, from_user: User,
paid_media_payload: str,
**extra_data: Any)

This object contains information about a paid media purchase.

Source: https://core.telegram.org/bots/api#paidmediapurchased

from_user: User

User who purchased the media

paid_media_payload: str

Bot-specified paid media payload

PreCheckoutQuery

class aiogram.types.pre_checkout_query.PreCheckoutQuery(*, id: str, from_user: User, currency: str,
total_amount: int, invoice_payload: str,
shipping_option_id: str | None = None,
order_info: OrderInfo | None = None,
**extra_data: Any)

This object contains information about an incoming pre-checkout query.

Source: https://core.telegram.org/bots/api#precheckoutquery

id: str

Unique query identifier

from_user: User

User who sent the query

366 Chapter 2. Contents

https://core.telegram.org/bots/api#orderinfo
https://core.telegram.org/bots/api#paidmediapurchased
https://core.telegram.org/bots/api#precheckoutquery

aiogram Documentation, Release 3.23.0

currency: str

Three-letter ISO 4217 currency code, or ‘XTR’ for payments in Telegram Stars

total_amount: int

Total price in the smallest units of the currency (integer, not float/double). For example, for a price of US$
1.45 pass amount = 145. See the exp parameter in currencies.json, it shows the number of digits past the
decimal point for each currency (2 for the majority of currencies).

invoice_payload: str

Bot-specified invoice payload

shipping_option_id: str | None

Optional. Identifier of the shipping option chosen by the user

order_info: OrderInfo | None

Optional. Order information provided by the user

answer(ok: bool, error_message: str | None = None, **kwargs: Any)→ AnswerPreCheckoutQuery
Shortcut for method aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery
will automatically fill method attributes:

• pre_checkout_query_id

Once the user has confirmed their payment and shipping details, the Bot API sends the final confirmation
in the form of an aiogram.types.update.Update with the field pre_checkout_query. Use this method
to respond to such pre-checkout queries. On success, True is returned. Note: The Bot API must receive
an answer within 10 seconds after the pre-checkout query was sent.

Source: https://core.telegram.org/bots/api#answerprecheckoutquery

Parameters

• ok – Specify True if everything is alright (goods are available, etc.) and the bot is ready
to proceed with the order. Use False if there are any problems.

• error_message – Required if ok is False. Error message in human readable form that
explains the reason for failure to proceed with the checkout (e.g. “Sorry, somebody just
bought the last of our amazing black T-shirts while you were busy filling out your payment
details. Please choose a different color or garment!”). Telegram will display this message
to the user.

Returns
instance of method aiogram.methods.answer_pre_checkout_query.
AnswerPreCheckoutQuery

RefundedPayment

class aiogram.types.refunded_payment.RefundedPayment(*, currency: Literal['XTR'] = 'XTR',
total_amount: int, invoice_payload: str,
telegram_payment_charge_id: str,
provider_payment_charge_id: str | None =
None, **extra_data: Any)

This object contains basic information about a refunded payment.

Source: https://core.telegram.org/bots/api#refundedpayment

currency: Literal['XTR']

Three-letter ISO 4217 currency code, or ‘XTR’ for payments in Telegram Stars. Currently, always ‘XTR’

2.3. Bot API 367

https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://core.telegram.org/bots/api#answerprecheckoutquery
https://core.telegram.org/bots/api#refundedpayment
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

total_amount: int

Total refunded price in the smallest units of the currency (integer, not float/double). For example, for a price
of US$ 1.45, total_amount = 145. See the exp parameter in currencies.json, it shows the number of
digits past the decimal point for each currency (2 for the majority of currencies).

invoice_payload: str

Bot-specified invoice payload

telegram_payment_charge_id: str

Telegram payment identifier

provider_payment_charge_id: str | None

Optional. Provider payment identifier

RevenueWithdrawalState

class aiogram.types.revenue_withdrawal_state.RevenueWithdrawalState(**extra_data: Any)
This object describes the state of a revenue withdrawal operation. Currently, it can be one of

• aiogram.types.revenue_withdrawal_state_pending.RevenueWithdrawalStatePending

• aiogram.types.revenue_withdrawal_state_succeeded.RevenueWithdrawalStateSucceeded

• aiogram.types.revenue_withdrawal_state_failed.RevenueWithdrawalStateFailed

Source: https://core.telegram.org/bots/api#revenuewithdrawalstate

RevenueWithdrawalStateFailed

class aiogram.types.revenue_withdrawal_state_failed.RevenueWithdrawalStateFailed(*, type:
Lit-
eral[RevenueWithdrawalStateType.FAILED]
= Rev-
enueWith-
drawal-
State-
Type.FAILED,
**ex-
tra_data:
Any)

The withdrawal failed and the transaction was refunded.

Source: https://core.telegram.org/bots/api#revenuewithdrawalstatefailed

type: Literal[RevenueWithdrawalStateType.FAILED]

Type of the state, always ‘failed’

368 Chapter 2. Contents

https://core.telegram.org/bots/payments/currencies.json
https://core.telegram.org/bots/api#revenuewithdrawalstate
https://core.telegram.org/bots/api#revenuewithdrawalstatefailed

aiogram Documentation, Release 3.23.0

RevenueWithdrawalStatePending

class aiogram.types.revenue_withdrawal_state_pending.RevenueWithdrawalStatePending(*, type:
Lit-
eral[RevenueWithdrawalStateType.PENDING]
= Rev-
enue-
With-
drawal-
State-
Type.PENDING,
**ex-
tra_data:
Any)

The withdrawal is in progress.

Source: https://core.telegram.org/bots/api#revenuewithdrawalstatepending

type: Literal[RevenueWithdrawalStateType.PENDING]

Type of the state, always ‘pending’

RevenueWithdrawalStateSucceeded

class aiogram.types.revenue_withdrawal_state_succeeded.RevenueWithdrawalStateSucceeded(*,
type:
Lit-
eral[RevenueWithdrawalStateType.SUCCEEDED]
=
Rev-
enue-
With-
drawal-
State-
Type.SUCCEEDED,
date:
_date-
time_serializer,
re-
turn_type=int,
when_used=unless
-
none)],
url:
str,
**ex-
tra_data:
Any)

The withdrawal succeeded.

Source: https://core.telegram.org/bots/api#revenuewithdrawalstatesucceeded

type: Literal[RevenueWithdrawalStateType.SUCCEEDED]

Type of the state, always ‘succeeded’

2.3. Bot API 369

https://core.telegram.org/bots/api#revenuewithdrawalstatepending
https://core.telegram.org/bots/api#revenuewithdrawalstatesucceeded

aiogram Documentation, Release 3.23.0

date: DateTime

Date the withdrawal was completed in Unix time

url: str

An HTTPS URL that can be used to see transaction details

ShippingAddress

class aiogram.types.shipping_address.ShippingAddress(*, country_code: str, state: str, city: str,
street_line1: str, street_line2: str, post_code:
str, **extra_data: Any)

This object represents a shipping address.

Source: https://core.telegram.org/bots/api#shippingaddress

country_code: str

Two-letter ISO 3166-1 alpha-2 country code

state: str

State, if applicable

city: str

City

street_line1: str

First line for the address

street_line2: str

Second line for the address

post_code: str

Address post code

ShippingOption

class aiogram.types.shipping_option.ShippingOption(*, id: str, title: str, prices: list[LabeledPrice],
**extra_data: Any)

This object represents one shipping option.

Source: https://core.telegram.org/bots/api#shippingoption

id: str

Shipping option identifier

title: str

Option title

prices: list[LabeledPrice]

List of price portions

370 Chapter 2. Contents

https://core.telegram.org/bots/api#shippingaddress
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://core.telegram.org/bots/api#shippingoption

aiogram Documentation, Release 3.23.0

ShippingQuery

class aiogram.types.shipping_query.ShippingQuery(*, id: str, from_user: User, invoice_payload: str,
shipping_address: ShippingAddress, **extra_data:
Any)

This object contains information about an incoming shipping query.

Source: https://core.telegram.org/bots/api#shippingquery

id: str

Unique query identifier

from_user: User

User who sent the query

invoice_payload: str

Bot-specified invoice payload

shipping_address: ShippingAddress

User specified shipping address

answer(ok: bool, shipping_options: list[ShippingOption] | None = None, error_message: str | None = None,
**kwargs: Any)→ AnswerShippingQuery

Shortcut for method aiogram.methods.answer_shipping_query.AnswerShippingQuery will auto-
matically fill method attributes:

• shipping_query_id

If you sent an invoice requesting a shipping address and the parameter is_flexible was specified, the Bot API
will send an aiogram.types.update.Update with a shipping_query field to the bot. Use this method to
reply to shipping queries. On success, True is returned.

Source: https://core.telegram.org/bots/api#answershippingquery

Parameters

• ok – Pass True if delivery to the specified address is possible and False if there are any
problems (for example, if delivery to the specified address is not possible)

• shipping_options – Required if ok is True. A JSON-serialized array of available ship-
ping options.

• error_message – Required if ok is False. Error message in human readable form that
explains why it is impossible to complete the order (e.g. ‘Sorry, delivery to your desired
address is unavailable’). Telegram will display this message to the user.

Returns
instance of method aiogram.methods.answer_shipping_query.
AnswerShippingQuery

2.3. Bot API 371

https://core.telegram.org/bots/api#shippingquery
https://core.telegram.org/bots/api#answershippingquery

aiogram Documentation, Release 3.23.0

StarTransaction

class aiogram.types.star_transaction.StarTransaction(*, id: str, amount: int, date:
_datetime_serializer, return_type=int,
when_used=unless - none)], nanostar_amount:
int | None = None, source:
TransactionPartnerUser |
TransactionPartnerChat |
TransactionPartnerAffiliateProgram |
TransactionPartnerFragment |
TransactionPartnerTelegramAds |
TransactionPartnerTelegramApi |
TransactionPartnerOther | None = None,
receiver: TransactionPartnerUser |
TransactionPartnerChat |
TransactionPartnerAffiliateProgram |
TransactionPartnerFragment |
TransactionPartnerTelegramAds |
TransactionPartnerTelegramApi |
TransactionPartnerOther | None = None,
**extra_data: Any)

Describes a Telegram Star transaction. Note that if the buyer initiates a chargeback with the payment provider
from whom they acquired Stars (e.g., Apple, Google) following this transaction, the refunded Stars will be de-
ducted from the bot’s balance. This is outside of Telegram’s control.

Source: https://core.telegram.org/bots/api#startransaction

id: str

Unique identifier of the transaction. Coincides with the identifier of the original transaction for refund
transactions. Coincides with SuccessfulPayment.telegram_payment_charge_id for successful incoming
payments from users.

amount: int

Integer amount of Telegram Stars transferred by the transaction

date: DateTime

Date the transaction was created in Unix time

nanostar_amount: int | None

Optional. The number of 1/1000000000 shares of Telegram Stars transferred by the transaction; from 0 to
999999999

source: TransactionPartnerUnion | None

Optional. Source of an incoming transaction (e.g., a user purchasing goods or services, Fragment refunding
a failed withdrawal). Only for incoming transactions

receiver: TransactionPartnerUnion | None

Optional. Receiver of an outgoing transaction (e.g., a user for a purchase refund, Fragment for a with-
drawal). Only for outgoing transactions

372 Chapter 2. Contents

https://core.telegram.org/bots/api#startransaction

aiogram Documentation, Release 3.23.0

StarTransactions

class aiogram.types.star_transactions.StarTransactions(*, transactions: list[StarTransaction],
**extra_data: Any)

Contains a list of Telegram Star transactions.

Source: https://core.telegram.org/bots/api#startransactions

transactions: list[StarTransaction]

The list of transactions

SuccessfulPayment

class aiogram.types.successful_payment.SuccessfulPayment(*, currency: str, total_amount: int,
invoice_payload: str,
telegram_payment_charge_id: str,
provider_payment_charge_id: str,
subscription_expiration_date: int | None
= None, is_recurring: bool | None =
None, is_first_recurring: bool | None =
None, shipping_option_id: str | None =
None, order_info: OrderInfo | None =
None, **extra_data: Any)

This object contains basic information about a successful payment. Note that if the buyer initiates a chargeback
with the relevant payment provider following this transaction, the funds may be debited from your balance. This
is outside of Telegram’s control.

Source: https://core.telegram.org/bots/api#successfulpayment

currency: str

Three-letter ISO 4217 currency code, or ‘XTR’ for payments in Telegram Stars

total_amount: int

Total price in the smallest units of the currency (integer, not float/double). For example, for a price of US$
1.45 pass amount = 145. See the exp parameter in currencies.json, it shows the number of digits past the
decimal point for each currency (2 for the majority of currencies).

invoice_payload: str

Bot-specified invoice payload

telegram_payment_charge_id: str

Telegram payment identifier

provider_payment_charge_id: str

Provider payment identifier

subscription_expiration_date: int | None

Optional. Expiration date of the subscription, in Unix time; for recurring payments only

is_recurring: bool | None

Optional. True, if the payment is a recurring payment for a subscription

is_first_recurring: bool | None

Optional. True, if the payment is the first payment for a subscription

2.3. Bot API 373

https://core.telegram.org/bots/api#startransactions
https://core.telegram.org/bots/api#successfulpayment
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json

aiogram Documentation, Release 3.23.0

shipping_option_id: str | None

Optional. Identifier of the shipping option chosen by the user

order_info: OrderInfo | None

Optional. Order information provided by the user

TransactionPartner

class aiogram.types.transaction_partner.TransactionPartner(**extra_data: Any)
This object describes the source of a transaction, or its recipient for outgoing transactions. Currently, it can be
one of

• aiogram.types.transaction_partner_user.TransactionPartnerUser

• aiogram.types.transaction_partner_chat.TransactionPartnerChat

• aiogram.types.transaction_partner_affiliate_program.TransactionPartnerAffiliateProgram

• aiogram.types.transaction_partner_fragment.TransactionPartnerFragment

• aiogram.types.transaction_partner_telegram_ads.TransactionPartnerTelegramAds

• aiogram.types.transaction_partner_telegram_api.TransactionPartnerTelegramApi

• aiogram.types.transaction_partner_other.TransactionPartnerOther

Source: https://core.telegram.org/bots/api#transactionpartner

TransactionPartnerAffiliateProgram

class aiogram.types.transaction_partner_affiliate_program.TransactionPartnerAffiliateProgram(*,
type:
Lit-
eral[TransactionPartnerType.AFFILIATE_PROGRAM]
=
Trans-
ac-
tion-
Part-
ner-
Type.AFFILIATE_PROGRAM,
com-
mis-
sion_per_mille:
int,
spon-
sor_user:
User
|
None
=
None,
**ex-
tra_data:
Any)

374 Chapter 2. Contents

https://core.telegram.org/bots/api#transactionpartner

aiogram Documentation, Release 3.23.0

Describes the affiliate program that issued the affiliate commission received via this transaction.

Source: https://core.telegram.org/bots/api#transactionpartneraffiliateprogram

type: Literal[TransactionPartnerType.AFFILIATE_PROGRAM]

Type of the transaction partner, always ‘affiliate_program’

commission_per_mille: int

The number of Telegram Stars received by the bot for each 1000 Telegram Stars received by the affiliate
program sponsor from referred users

sponsor_user: User | None

Optional. Information about the bot that sponsored the affiliate program

TransactionPartnerChat

class aiogram.types.transaction_partner_chat.TransactionPartnerChat(*, type: Lit-
eral[TransactionPartnerType.CHAT]
= TransactionPartner-
Type.CHAT , chat: Chat,
gift: Gift | None = None,
**extra_data: Any)

Describes a transaction with a chat.

Source: https://core.telegram.org/bots/api#transactionpartnerchat

type: Literal[TransactionPartnerType.CHAT]

Type of the transaction partner, always ‘chat’

chat: Chat

Information about the chat

gift: Gift | None

Optional. The gift sent to the chat by the bot

2.3. Bot API 375

https://core.telegram.org/bots/api#transactionpartneraffiliateprogram
https://core.telegram.org/bots/api#transactionpartnerchat

aiogram Documentation, Release 3.23.0

TransactionPartnerFragment

class aiogram.types.transaction_partner_fragment.TransactionPartnerFragment(*, type: Lit-
eral[TransactionPartnerType.FRAGMENT]
= Transaction-
Partner-
Type.FRAGMENT ,
with-
drawal_state:
RevenueWith-
drawalStatePend-
ing |
RevenueWith-
drawalStateSuc-
ceeded |
RevenueWith-
drawalState-
Failed | None =
None,
**extra_data:
Any)

Describes a withdrawal transaction with Fragment.

Source: https://core.telegram.org/bots/api#transactionpartnerfragment

type: Literal[TransactionPartnerType.FRAGMENT]

Type of the transaction partner, always ‘fragment’

withdrawal_state: RevenueWithdrawalStateUnion | None

Optional. State of the transaction if the transaction is outgoing

TransactionPartnerOther

class aiogram.types.transaction_partner_other.TransactionPartnerOther(*, type: Lit-
eral[TransactionPartnerType.OTHER]
= TransactionPartner-
Type.OTHER,
**extra_data: Any)

Describes a transaction with an unknown source or recipient.

Source: https://core.telegram.org/bots/api#transactionpartnerother

type: Literal[TransactionPartnerType.OTHER]

Type of the transaction partner, always ‘other’

376 Chapter 2. Contents

https://core.telegram.org/bots/api#transactionpartnerfragment
https://core.telegram.org/bots/api#transactionpartnerother

aiogram Documentation, Release 3.23.0

TransactionPartnerTelegramAds

class aiogram.types.transaction_partner_telegram_ads.TransactionPartnerTelegramAds(*, type:
Lit-
eral[TransactionPartnerType.TELEGRAM_ADS]
=
Trans-
action-
Partner-
Type.TELEGRAM_ADS,
**ex-
tra_data:
Any)

Describes a withdrawal transaction to the Telegram Ads platform.

Source: https://core.telegram.org/bots/api#transactionpartnertelegramads

type: Literal[TransactionPartnerType.TELEGRAM_ADS]

Type of the transaction partner, always ‘telegram_ads’

TransactionPartnerTelegramApi

class aiogram.types.transaction_partner_telegram_api.TransactionPartnerTelegramApi(*, type:
Lit-
eral[TransactionPartnerType.TELEGRAM_API]
=
Trans-
action-
Partner-
Type.TELEGRAM_API ,
re-
quest_count:
int,
**ex-
tra_data:
Any)

Describes a transaction with payment for paid broadcasting.

Source: https://core.telegram.org/bots/api#transactionpartnertelegramapi

type: Literal[TransactionPartnerType.TELEGRAM_API]

Type of the transaction partner, always ‘telegram_api’

request_count: int

The number of successful requests that exceeded regular limits and were therefore billed

2.3. Bot API 377

https://core.telegram.org/bots/api#transactionpartnertelegramads
https://core.telegram.org/bots/api#paid-broadcasts
https://core.telegram.org/bots/api#transactionpartnertelegramapi

aiogram Documentation, Release 3.23.0

TransactionPartnerUser

class aiogram.types.transaction_partner_user.TransactionPartnerUser(*, type: Lit-
eral[TransactionPartnerType.USER]
= TransactionPartner-
Type.USER,
transaction_type: str, user:
User, affiliate: AffiliateInfo
| None = None,
invoice_payload: str | None
= None,
subscription_period: int |
None = None, paid_media:
list[PaidMediaPreview |
PaidMediaPhoto |
PaidMediaVideo] | None =
None,
paid_media_payload: str |
None = None, gift: Gift |
None = None, pre-
mium_subscription_duration:
int | None = None,
**extra_data: Any)

Describes a transaction with a user.

Source: https://core.telegram.org/bots/api#transactionpartneruser

type: Literal[TransactionPartnerType.USER]

Type of the transaction partner, always ‘user’

transaction_type: str

Type of the transaction, currently one of ‘invoice_payment’ for payments via invoices,
‘paid_media_payment’ for payments for paid media, ‘gift_purchase’ for gifts sent by the bot, ‘pre-
mium_purchase’ for Telegram Premium subscriptions gifted by the bot, ‘business_account_transfer’ for
direct transfers from managed business accounts

user: User

Information about the user

affiliate: AffiliateInfo | None

Optional. Information about the affiliate that received a commission via this transaction. Can be available
only for ‘invoice_payment’ and ‘paid_media_payment’ transactions.

invoice_payload: str | None

Optional. Bot-specified invoice payload. Can be available only for ‘invoice_payment’ transactions.

subscription_period: int | None

Optional. The duration of the paid subscription. Can be available only for ‘invoice_payment’ transactions.

paid_media: list[PaidMediaUnion] | None

Optional. Information about the paid media bought by the user; for ‘paid_media_payment’ transactions
only

paid_media_payload: str | None

Optional. Bot-specified paid media payload. Can be available only for ‘paid_media_payment’ transactions.

378 Chapter 2. Contents

https://core.telegram.org/bots/api#transactionpartneruser

aiogram Documentation, Release 3.23.0

gift: Gift | None

Optional. The gift sent to the user by the bot; for ‘gift_purchase’ transactions only

premium_subscription_duration: int | None

Optional. Number of months the gifted Telegram Premium subscription will be active for; for ‘pre-
mium_purchase’ transactions only

Stickers

InputSticker

class aiogram.types.input_sticker.InputSticker(*, sticker: str | InputFile, format: str, emoji_list:
list[str], mask_position: MaskPosition | None = None,
keywords: list[str] | None = None, **extra_data: Any)

This object describes a sticker to be added to a sticker set.

Source: https://core.telegram.org/bots/api#inputsticker

sticker: InputFileUnion

The added sticker. Pass a file_id as a String to send a file that already exists on the Telegram servers, pass an
HTTP URL as a String for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to
upload a new file using multipart/form-data under <file_attach_name> name. Animated and video stickers
can’t be uploaded via HTTP URL. More information on Sending Files »

format: str

Format of the added sticker, must be one of ‘static’ for a .WEBP or .PNG image, ‘animated’ for a .TGS
animation, ‘video’ for a .WEBM video

emoji_list: list[str]

List of 1-20 emoji associated with the sticker

mask_position: MaskPosition | None

Optional. Position where the mask should be placed on faces. For ‘mask’ stickers only.

keywords: list[str] | None

Optional. List of 0-20 search keywords for the sticker with total length of up to 64 characters. For ‘regular’
and ‘custom_emoji’ stickers only.

MaskPosition

class aiogram.types.mask_position.MaskPosition(*, point: str, x_shift: float, y_shift: float, scale: float,
**extra_data: Any)

This object describes the position on faces where a mask should be placed by default.

Source: https://core.telegram.org/bots/api#maskposition

point: str

The part of the face relative to which the mask should be placed. One of ‘forehead’, ‘eyes’, ‘mouth’, or
‘chin’.

x_shift: float

Shift by X-axis measured in widths of the mask scaled to the face size, from left to right. For example,
choosing -1.0 will place mask just to the left of the default mask position.

2.3. Bot API 379

https://core.telegram.org/bots/api#inputsticker
https://core.telegram.org/bots/api#maskposition

aiogram Documentation, Release 3.23.0

y_shift: float

Shift by Y-axis measured in heights of the mask scaled to the face size, from top to bottom. For example,
1.0 will place the mask just below the default mask position.

scale: float

Mask scaling coefficient. For example, 2.0 means double size.

Sticker

class aiogram.types.sticker.Sticker(*, file_id: str, file_unique_id: str, type: str, width: int, height: int,
is_animated: bool, is_video: bool, thumbnail: PhotoSize | None =
None, emoji: str | None = None, set_name: str | None = None,
premium_animation: File | None = None, mask_position:
MaskPosition | None = None, custom_emoji_id: str | None = None,
needs_repainting: bool | None = None, file_size: int | None = None,
**extra_data: Any)

This object represents a sticker.

Source: https://core.telegram.org/bots/api#sticker

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

type: str

Type of the sticker, currently one of ‘regular’, ‘mask’, ‘custom_emoji’. The type of the sticker is independent
from its format, which is determined by the fields is_animated and is_video.

width: int

Sticker width

height: int

Sticker height

is_animated: bool

True, if the sticker is animated

is_video: bool

True, if the sticker is a video sticker

thumbnail: PhotoSize | None

Optional. Sticker thumbnail in the .WEBP or .JPG format

emoji: str | None

Optional. Emoji associated with the sticker

set_name: str | None

Optional. Name of the sticker set to which the sticker belongs

premium_animation: File | None

Optional. For premium regular stickers, premium animation for the sticker

380 Chapter 2. Contents

https://core.telegram.org/bots/api#sticker
https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions

aiogram Documentation, Release 3.23.0

mask_position: MaskPosition | None

Optional. For mask stickers, the position where the mask should be placed

custom_emoji_id: str | None

Optional. For custom emoji stickers, unique identifier of the custom emoji

needs_repainting: bool | None

Optional. True, if the sticker must be repainted to a text color in messages, the color of the Telegram
Premium badge in emoji status, white color on chat photos, or another appropriate color in other places

file_size: int | None

Optional. File size in bytes

set_position_in_set(position: int, **kwargs: Any)→ SetStickerPositionInSet
Shortcut for method aiogram.methods.set_sticker_position_in_set.
SetStickerPositionInSet will automatically fill method attributes:

• sticker

Use this method to move a sticker in a set created by the bot to a specific position. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickerpositioninset

Parameters
position – New sticker position in the set, zero-based

Returns
instance of method aiogram.methods.set_sticker_position_in_set.
SetStickerPositionInSet

delete_from_set(**kwargs: Any)→ DeleteStickerFromSet
Shortcut for method aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet will
automatically fill method attributes:

• sticker

Use this method to delete a sticker from a set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#deletestickerfromset

Returns
instance of method aiogram.methods.delete_sticker_from_set.
DeleteStickerFromSet

StickerSet

class aiogram.types.sticker_set.StickerSet(*, name: str, title: str, sticker_type: str, stickers:
list[Sticker], thumbnail: PhotoSize | None = None,
is_animated: bool | None = None, is_video: bool | None =
None, **extra_data: Any)

This object represents a sticker set.

Source: https://core.telegram.org/bots/api#stickerset

name: str

Sticker set name

title: str

Sticker set title

2.3. Bot API 381

https://core.telegram.org/bots/api#setstickerpositioninset
https://core.telegram.org/bots/api#deletestickerfromset
https://core.telegram.org/bots/api#stickerset

aiogram Documentation, Release 3.23.0

sticker_type: str

Type of stickers in the set, currently one of ‘regular’, ‘mask’, ‘custom_emoji’

stickers: list[Sticker]

List of all set stickers

thumbnail: PhotoSize | None

Optional. Sticker set thumbnail in the .WEBP, .TGS, or .WEBM format

is_animated: bool | None

True, if the sticker set contains animated stickers

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

is_video: bool | None

True, if the sticker set contains video stickers

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

Telegram Passport

EncryptedCredentials

class aiogram.types.encrypted_credentials.EncryptedCredentials(*, data: str, hash: str, secret: str,
**extra_data: Any)

Describes data required for decrypting and authenticating aiogram.types.encrypted_passport_element.
EncryptedPassportElement. See the Telegram Passport Documentation for a complete description of the
data decryption and authentication processes.

Source: https://core.telegram.org/bots/api#encryptedcredentials

data: str

Base64-encoded encrypted JSON-serialized data with unique user’s payload, data hashes and secrets
required for aiogram.types.encrypted_passport_element.EncryptedPassportElement decryp-
tion and authentication

hash: str

Base64-encoded data hash for data authentication

secret: str

Base64-encoded secret, encrypted with the bot’s public RSA key, required for data decryption

EncryptedPassportElement

382 Chapter 2. Contents

https://telegram.org/blog/animated-stickers
https://core.telegram.org/bots/api-changelog#march-31-2024
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api-changelog#march-31-2024
https://core.telegram.org/passport#receiving-information
https://core.telegram.org/bots/api#encryptedcredentials

aiogram Documentation, Release 3.23.0

class aiogram.types.encrypted_passport_element.EncryptedPassportElement(*, type: str, hash: str,
data: str | None =
None, phone_number:
str | None = None,
email: str | None =
None, files:
list[PassportFile] |
None = None,
front_side:
PassportFile | None =
None, reverse_side:
PassportFile | None =
None, selfie:
PassportFile | None =
None, translation:
list[PassportFile] |
None = None,
**extra_data: Any)

Describes documents or other Telegram Passport elements shared with the bot by the user.

Source: https://core.telegram.org/bots/api#encryptedpassportelement

type: str

Element type. One of ‘personal_details’, ‘passport’, ‘driver_license’, ‘identity_card’, ‘inter-
nal_passport’, ‘address’, ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’, ‘tem-
porary_registration’, ‘phone_number’, ‘email’.

hash: str

Base64-encoded element hash for using in aiogram.types.passport_element_error_unspecified.
PassportElementErrorUnspecified

data: str | None

Optional. Base64-encoded encrypted Telegram Passport element data provided by the user; available only
for ‘personal_details’, ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’ and ‘address’ types.
Can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.
EncryptedCredentials.

phone_number: str | None

Optional. User’s verified phone number; available only for ‘phone_number’ type

email: str | None

Optional. User’s verified email address; available only for ‘email’ type

files: list[PassportFile] | None

Optional. Array of encrypted files with documents provided by the user; available only for ‘utility_bill’,
‘bank_statement’, ‘rental_agreement’, ‘passport_registration’ and ‘temporary_registration’ types. Files
can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.
EncryptedCredentials.

front_side: PassportFile | None

Optional. Encrypted file with the front side of the document, provided by the user; available only for
‘passport’, ‘driver_license’, ‘identity_card’ and ‘internal_passport’. The file can be decrypted and verified
using the accompanying aiogram.types.encrypted_credentials.EncryptedCredentials.

reverse_side: PassportFile | None

Optional. Encrypted file with the reverse side of the document, provided by the user; available only

2.3. Bot API 383

https://core.telegram.org/bots/api#encryptedpassportelement

aiogram Documentation, Release 3.23.0

for ‘driver_license’ and ‘identity_card’. The file can be decrypted and verified using the accompanying
aiogram.types.encrypted_credentials.EncryptedCredentials.

selfie: PassportFile | None

Optional. Encrypted file with the selfie of the user holding a document, provided by the user;
available if requested for ‘passport’, ‘driver_license’, ‘identity_card’ and ‘internal_passport’. The file
can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.
EncryptedCredentials.

translation: list[PassportFile] | None

Optional. Array of encrypted files with translated versions of documents provided by the user;
available if requested for ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘utility_bill’,
‘bank_statement’, ‘rental_agreement’, ‘passport_registration’ and ‘temporary_registration’ types. Files
can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.
EncryptedCredentials.

PassportData

class aiogram.types.passport_data.PassportData(*, data: list[EncryptedPassportElement], credentials:
EncryptedCredentials, **extra_data: Any)

Describes Telegram Passport data shared with the bot by the user.

Source: https://core.telegram.org/bots/api#passportdata

data: list[EncryptedPassportElement]

Array with information about documents and other Telegram Passport elements that was shared with the
bot

credentials: EncryptedCredentials

Encrypted credentials required to decrypt the data

PassportElementError

class aiogram.types.passport_element_error.PassportElementError(**extra_data: Any)
This object represents an error in the Telegram Passport element which was submitted that should be resolved
by the user. It should be one of:

• aiogram.types.passport_element_error_data_field.PassportElementErrorDataField

• aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide

• aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide

• aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie

• aiogram.types.passport_element_error_file.PassportElementErrorFile

• aiogram.types.passport_element_error_files.PassportElementErrorFiles

• aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile

• aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles

• aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified

Source: https://core.telegram.org/bots/api#passportelementerror

384 Chapter 2. Contents

https://core.telegram.org/bots/api#passportdata
https://core.telegram.org/bots/api#passportelementerror

aiogram Documentation, Release 3.23.0

PassportElementErrorDataField

class aiogram.types.passport_element_error_data_field.PassportElementErrorDataField(*,
source:
Lit-
eral[PassportElementErrorType.DATA]
=
Pass-
portEle-
mentEr-
rorType.DATA,
type:
str,
field_name:
str,
data_hash:
str,
mes-
sage:
str,
**ex-
tra_data:
Any)

Represents an issue in one of the data fields that was provided by the user. The error is considered resolved when
the field’s value changes.

Source: https://core.telegram.org/bots/api#passportelementerrordatafield

source: Literal[PassportElementErrorType.DATA]

Error source, must be data

type: str

The section of the user’s Telegram Passport which has the error, one of ‘personal_details’, ‘passport’,
‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘address’

field_name: str

Name of the data field which has the error

data_hash: str

Base64-encoded data hash

message: str

Error message

PassportElementErrorFile

class aiogram.types.passport_element_error_file.PassportElementErrorFile(*, source: Lit-
eral[PassportElementErrorType.FILE]
=
PassportElementEr-
rorType.FILE, type:
str, file_hash: str,
message: str,
**extra_data: Any)

2.3. Bot API 385

https://core.telegram.org/bots/api#passportelementerrordatafield

aiogram Documentation, Release 3.23.0

Represents an issue with a document scan. The error is considered resolved when the file with the document
scan changes.

Source: https://core.telegram.org/bots/api#passportelementerrorfile

source: Literal[PassportElementErrorType.FILE]

Error source, must be file

type: str

The section of the user’s Telegram Passport which has the issue, one of ‘utility_bill’, ‘bank_statement’,
‘rental_agreement’, ‘passport_registration’, ‘temporary_registration’

file_hash: str

Base64-encoded file hash

message: str

Error message

PassportElementErrorFiles

class aiogram.types.passport_element_error_files.PassportElementErrorFiles(*, source: Lit-
eral[PassportElementErrorType.FILES]
= PassportEle-
mentEr-
rorType.FILES,
type: str,
file_hashes:
list[str], message:
str, **extra_data:
Any)

Represents an issue with a list of scans. The error is considered resolved when the list of files containing the
scans changes.

Source: https://core.telegram.org/bots/api#passportelementerrorfiles

source: Literal[PassportElementErrorType.FILES]

Error source, must be files

type: str

The section of the user’s Telegram Passport which has the issue, one of ‘utility_bill’, ‘bank_statement’,
‘rental_agreement’, ‘passport_registration’, ‘temporary_registration’

file_hashes: list[str]

List of base64-encoded file hashes

message: str

Error message

386 Chapter 2. Contents

https://core.telegram.org/bots/api#passportelementerrorfile
https://core.telegram.org/bots/api#passportelementerrorfiles

aiogram Documentation, Release 3.23.0

PassportElementErrorFrontSide

class aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide(*,
source:
Lit-
eral[PassportElementErrorType.FRONT_SIDE]
=
Pass-
portEle-
mentEr-
rorType.FRONT_SIDE,
type:
str,
file_hash:
str,
mes-
sage:
str,
**ex-
tra_data:
Any)

Represents an issue with the front side of a document. The error is considered resolved when the file with the
front side of the document changes.

Source: https://core.telegram.org/bots/api#passportelementerrorfrontside

source: Literal[PassportElementErrorType.FRONT_SIDE]

Error source, must be front_side

type: str

The section of the user’s Telegram Passport which has the issue, one of ‘passport’, ‘driver_license’, ‘iden-
tity_card’, ‘internal_passport’

file_hash: str

Base64-encoded hash of the file with the front side of the document

message: str

Error message

2.3. Bot API 387

https://core.telegram.org/bots/api#passportelementerrorfrontside

aiogram Documentation, Release 3.23.0

PassportElementErrorReverseSide

class aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide(*,
source:
Lit-
eral[PassportElementErrorType.REVERSE_SIDE]
=
Pass-
portEle-
mentEr-
rorType.REVERSE_SIDE,
type:
str,
file_hash:
str,
mes-
sage:
str,
**ex-
tra_data:
Any)

Represents an issue with the reverse side of a document. The error is considered resolved when the file with
reverse side of the document changes.

Source: https://core.telegram.org/bots/api#passportelementerrorreverseside

source: Literal[PassportElementErrorType.REVERSE_SIDE]

Error source, must be reverse_side

type: str

The section of the user’s Telegram Passport which has the issue, one of ‘driver_license’, ‘identity_card’

file_hash: str

Base64-encoded hash of the file with the reverse side of the document

message: str

Error message

PassportElementErrorSelfie

class aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie(*, source: Lit-
eral[PassportElementErrorType.SELFIE]
= PassportEle-
mentEr-
rorType.SELFIE,
type: str,
file_hash: str,
message: str,
**extra_data:
Any)

Represents an issue with the selfie with a document. The error is considered resolved when the file with the selfie
changes.

Source: https://core.telegram.org/bots/api#passportelementerrorselfie

388 Chapter 2. Contents

https://core.telegram.org/bots/api#passportelementerrorreverseside
https://core.telegram.org/bots/api#passportelementerrorselfie

aiogram Documentation, Release 3.23.0

source: Literal[PassportElementErrorType.SELFIE]

Error source, must be selfie

type: str

The section of the user’s Telegram Passport which has the issue, one of ‘passport’, ‘driver_license’, ‘iden-
tity_card’, ‘internal_passport’

file_hash: str

Base64-encoded hash of the file with the selfie

message: str

Error message

PassportElementErrorTranslationFile

class aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile(*,
source:
Lit-
eral[PassportElementErrorType.TRANSLATION_FILE]
=
Pass-
portEle-
mentEr-
rorType.TRANSLATION_FILE,
type:
str,
file_hash:
str,
mes-
sage:
str,
**ex-
tra_data:
Any)

Represents an issue with one of the files that constitute the translation of a document. The error is considered
resolved when the file changes.

Source: https://core.telegram.org/bots/api#passportelementerrortranslationfile

source: Literal[PassportElementErrorType.TRANSLATION_FILE]

Error source, must be translation_file

type: str

Type of element of the user’s Telegram Passport which has the issue, one of ‘passport’,
‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’,
‘passport_registration’, ‘temporary_registration’

file_hash: str

Base64-encoded file hash

message: str

Error message

2.3. Bot API 389

https://core.telegram.org/bots/api#passportelementerrortranslationfile

aiogram Documentation, Release 3.23.0

PassportElementErrorTranslationFiles

class aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles(*,
source:
Lit-
eral[PassportElementErrorType.TRANSLATION_FILES]
=
Pass-
portEle-
mentEr-
rorType.TRANSLATION_FILES,
type:
str,
file_hashes:
list[str],
mes-
sage:
str,
**ex-
tra_data:
Any)

Represents an issue with the translated version of a document. The error is considered resolved when a file with
the document translation change.

Source: https://core.telegram.org/bots/api#passportelementerrortranslationfiles

source: Literal[PassportElementErrorType.TRANSLATION_FILES]

Error source, must be translation_files

type: str

Type of element of the user’s Telegram Passport which has the issue, one of ‘passport’,
‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’,
‘passport_registration’, ‘temporary_registration’

file_hashes: list[str]

List of base64-encoded file hashes

message: str

Error message

390 Chapter 2. Contents

https://core.telegram.org/bots/api#passportelementerrortranslationfiles

aiogram Documentation, Release 3.23.0

PassportElementErrorUnspecified

class aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified(*,
source:
Lit-
eral[PassportElementErrorType.UNSPECIFIED]
=
Pass-
portEle-
mentEr-
rorType.UNSPECIFIED,
type:
str,
el-
e-
ment_hash:
str,
mes-
sage:
str,
**ex-
tra_data:
Any)

Represents an issue in an unspecified place. The error is considered resolved when new data is added.

Source: https://core.telegram.org/bots/api#passportelementerrorunspecified

source: Literal[PassportElementErrorType.UNSPECIFIED]

Error source, must be unspecified

type: str

Type of element of the user’s Telegram Passport which has the issue

element_hash: str

Base64-encoded element hash

message: str

Error message

PassportFile

class aiogram.types.passport_file.PassportFile(*, file_id: str, file_unique_id: str, file_size: int,
file_date: _datetime_serializer, return_type=int,
when_used=unless - none)], **extra_data: Any)

This object represents a file uploaded to Telegram Passport. Currently all Telegram Passport files are in JPEG
format when decrypted and don’t exceed 10MB.

Source: https://core.telegram.org/bots/api#passportfile

file_id: str

Identifier for this file, which can be used to download or reuse the file

file_unique_id: str

Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be
used to download or reuse the file.

2.3. Bot API 391

https://core.telegram.org/bots/api#passportelementerrorunspecified
https://core.telegram.org/bots/api#passportfile

aiogram Documentation, Release 3.23.0

file_size: int

File size in bytes

file_date: DateTime

Unix time when the file was uploaded

Getting updates

Update

class aiogram.types.update.Update(*, update_id: int, message: Message | None = None, edited_message:
Message | None = None, channel_post: Message | None = None,
edited_channel_post: Message | None = None, business_connection:
BusinessConnection | None = None, business_message: Message | None
= None, edited_business_message: Message | None = None,
deleted_business_messages: BusinessMessagesDeleted | None = None,
message_reaction: MessageReactionUpdated | None = None,
message_reaction_count: MessageReactionCountUpdated | None =
None, inline_query: InlineQuery | None = None, chosen_inline_result:
ChosenInlineResult | None = None, callback_query: CallbackQuery |
None = None, shipping_query: ShippingQuery | None = None,
pre_checkout_query: PreCheckoutQuery | None = None,
purchased_paid_media: PaidMediaPurchased | None = None, poll: Poll
| None = None, poll_answer: PollAnswer | None = None,
my_chat_member: ChatMemberUpdated | None = None, chat_member:
ChatMemberUpdated | None = None, chat_join_request:
ChatJoinRequest | None = None, chat_boost: ChatBoostUpdated | None
= None, removed_chat_boost: ChatBoostRemoved | None = None,
**extra_data: Any)

This object represents an incoming update.

At most one of the optional parameters can be present in any given update.

Source: https://core.telegram.org/bots/api#update

update_id: int

The update’s unique identifier. Update identifiers start from a certain positive number and increase sequen-
tially. This identifier becomes especially handy if you’re using webhooks, since it allows you to ignore
repeated updates or to restore the correct update sequence, should they get out of order. If there are no new
updates for at least a week, then identifier of the next update will be chosen randomly instead of sequentially.

message: Message | None

Optional. New incoming message of any kind - text, photo, sticker, etc.

edited_message: Message | None

Optional. New version of a message that is known to the bot and was edited. This update may at times be
triggered by changes to message fields that are either unavailable or not actively used by your bot.

channel_post: Message | None

Optional. New incoming channel post of any kind - text, photo, sticker, etc.

edited_channel_post: Message | None

Optional. New version of a channel post that is known to the bot and was edited. This update may at times
be triggered by changes to message fields that are either unavailable or not actively used by your bot.

392 Chapter 2. Contents

https://core.telegram.org/bots/api#available-types
https://core.telegram.org/bots/api#update
https://core.telegram.org/bots/api#setwebhook

aiogram Documentation, Release 3.23.0

business_connection: BusinessConnection | None

Optional. The bot was connected to or disconnected from a business account, or a user edited an existing
connection with the bot

business_message: Message | None

Optional. New message from a connected business account

edited_business_message: Message | None

Optional. New version of a message from a connected business account

deleted_business_messages: BusinessMessagesDeleted | None

Optional. Messages were deleted from a connected business account

message_reaction: MessageReactionUpdated | None

Optional. A reaction to a message was changed by a user. The bot must be an administrator in the chat and
must explicitly specify "message_reaction" in the list of allowed_updates to receive these updates. The
update isn’t received for reactions set by bots.

message_reaction_count: MessageReactionCountUpdated | None

Optional. Reactions to a message with anonymous reactions were changed. The bot must be an adminis-
trator in the chat and must explicitly specify "message_reaction_count" in the list of allowed_updates
to receive these updates. The updates are grouped and can be sent with delay up to a few minutes.

inline_query: InlineQuery | None

Optional. New incoming inline query

chosen_inline_result: ChosenInlineResult | None

Optional. The result of an inline query that was chosen by a user and sent to their chat partner. Please see
our documentation on the feedback collecting for details on how to enable these updates for your bot.

callback_query: CallbackQuery | None

Optional. New incoming callback query

shipping_query: ShippingQuery | None

Optional. New incoming shipping query. Only for invoices with flexible price

pre_checkout_query: PreCheckoutQuery | None

Optional. New incoming pre-checkout query. Contains full information about checkout

purchased_paid_media: PaidMediaPurchased | None

Optional. A user purchased paid media with a non-empty payload sent by the bot in a non-channel chat

poll: Poll | None

Optional. New poll state. Bots receive only updates about manually stopped polls and polls, which are sent
by the bot

poll_answer: PollAnswer | None

Optional. A user changed their answer in a non-anonymous poll. Bots receive new votes only in polls that
were sent by the bot itself.

my_chat_member: ChatMemberUpdated | None

Optional. The bot’s chat member status was updated in a chat. For private chats, this update is received
only when the bot is blocked or unblocked by the user.

chat_member: ChatMemberUpdated | None

Optional. A chat member’s status was updated in a chat. The bot must be an administrator in the chat and
must explicitly specify "chat_member" in the list of allowed_updates to receive these updates.

2.3. Bot API 393

https://core.telegram.org/bots/api#inline-mode
https://core.telegram.org/bots/api#inline-mode
https://core.telegram.org/bots/inline#collecting-feedback

aiogram Documentation, Release 3.23.0

chat_join_request: ChatJoinRequest | None

Optional. A request to join the chat has been sent. The bot must have the can_invite_users administrator
right in the chat to receive these updates.

chat_boost: ChatBoostUpdated | None

Optional. A chat boost was added or changed. The bot must be an administrator in the chat to receive these
updates.

removed_chat_boost: ChatBoostRemoved | None

Optional. A boost was removed from a chat. The bot must be an administrator in the chat to receive these
updates.

property event_type: str

Detect update type If update type is unknown, raise UpdateTypeLookupError

Returns

property event: TelegramObject

exception aiogram.types.update.UpdateTypeLookupError

Update does not contain any known event type.

WebhookInfo

class aiogram.types.webhook_info.WebhookInfo(*, url: str, has_custom_certificate: bool,
pending_update_count: int, ip_address: str | None =
None, last_error_date: _datetime_serializer,
return_type=int, when_used=unless - none)] | None =
None, last_error_message: str | None = None,
last_synchronization_error_date: _datetime_serializer,
return_type=int, when_used=unless - none)] | None =
None, max_connections: int | None = None,
allowed_updates: list[str] | None = None, **extra_data:
Any)

Describes the current status of a webhook.

Source: https://core.telegram.org/bots/api#webhookinfo

url: str

Webhook URL, may be empty if webhook is not set up

has_custom_certificate: bool

True, if a custom certificate was provided for webhook certificate checks

pending_update_count: int

Number of updates awaiting delivery

ip_address: str | None

Optional. Currently used webhook IP address

last_error_date: DateTime | None

Optional. Unix time for the most recent error that happened when trying to deliver an update via webhook

last_error_message: str | None

Optional. Error message in human-readable format for the most recent error that happened when trying to
deliver an update via webhook

394 Chapter 2. Contents

https://core.telegram.org/bots/api#webhookinfo

aiogram Documentation, Release 3.23.0

last_synchronization_error_date: DateTime | None

Optional. Unix time of the most recent error that happened when trying to synchronize available updates
with Telegram datacenters

max_connections: int | None

Optional. The maximum allowed number of simultaneous HTTPS connections to the webhook for update
delivery

allowed_updates: list[str] | None

Optional. A list of update types the bot is subscribed to. Defaults to all update types except chat_member

Games

CallbackGame

class aiogram.types.callback_game.CallbackGame(**extra_data: Any)
A placeholder, currently holds no information. Use BotFather to set up your game.

Source: https://core.telegram.org/bots/api#callbackgame

Game

class aiogram.types.game.Game(*, title: str, description: str, photo: list[PhotoSize], text: str | None = None,
text_entities: list[MessageEntity] | None = None, animation: Animation |
None = None, **extra_data: Any)

This object represents a game. Use BotFather to create and edit games, their short names will act as unique
identifiers.

Source: https://core.telegram.org/bots/api#game

title: str

Title of the game

description: str

Description of the game

photo: list[PhotoSize]

Photo that will be displayed in the game message in chats.

text: str | None

Optional. Brief description of the game or high scores included in the game message.
Can be automatically edited to include current high scores for the game when the bot calls
aiogram.methods.set_game_score.SetGameScore, or manually edited using aiogram.methods.
edit_message_text.EditMessageText. 0-4096 characters.

text_entities: list[MessageEntity] | None

Optional. Special entities that appear in text, such as usernames, URLs, bot commands, etc.

animation: Animation | None

Optional. Animation that will be displayed in the game message in chats. Upload via BotFather

2.3. Bot API 395

https://t.me/botfather
https://core.telegram.org/bots/api#callbackgame
https://core.telegram.org/bots/api#game
https://t.me/botfather

aiogram Documentation, Release 3.23.0

GameHighScore

class aiogram.types.game_high_score.GameHighScore(*, position: int, user: User, score: int,
**extra_data: Any)

This object represents one row of the high scores table for a game. And that’s about all we’ve got for now.

If you’ve got any questions, please check out our https://core.telegram.org/bots/faq Bot FAQ »

Source: https://core.telegram.org/bots/api#gamehighscore

position: int

Position in high score table for the game

user: User

User

score: int

Score

2.3.4 Methods

Here is list of all available API methods:

Stickers

addStickerToSet

Returns: bool

class aiogram.methods.add_sticker_to_set.AddStickerToSet(*, user_id: int, name: str, sticker:
InputSticker, **extra_data: Any)

Use this method to add a new sticker to a set created by the bot. Emoji sticker sets can have up to 200 stickers.
Other sticker sets can have up to 120 stickers. Returns True on success.

Source: https://core.telegram.org/bots/api#addstickertoset

user_id: int

User identifier of sticker set owner

name: str

Sticker set name

sticker: InputSticker

A JSON-serialized object with information about the added sticker. If exactly the same sticker had already
been added to the set, then the set isn’t changed.

396 Chapter 2. Contents

https://core.telegram.org/bots/faq
https://core.telegram.org/bots/api#gamehighscore
https://core.telegram.org/bots/api#addstickertoset

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.add_sticker_to_set(...)

Method as object

Imports:

• from aiogram.methods.add_sticker_to_set import AddStickerToSet

• alias: from aiogram.methods import AddStickerToSet

With specific bot

result: bool = await bot(AddStickerToSet(...))

As reply into Webhook in handler

return AddStickerToSet(...)

createNewStickerSet

Returns: bool

class aiogram.methods.create_new_sticker_set.CreateNewStickerSet(*, user_id: int, name: str, title:
str, stickers: list[InputSticker],
sticker_type: str | None = None,
needs_repainting: bool | None
= None, sticker_format: str |
None = None, **extra_data:
Any)

Use this method to create a new sticker set owned by a user. The bot will be able to edit the sticker set thus
created. Returns True on success.

Source: https://core.telegram.org/bots/api#createnewstickerset

user_id: int

User identifier of created sticker set owner

name: str

Short name of sticker set, to be used in t.me/addstickers/ URLs (e.g., animals). Can contain only
English letters, digits and underscores. Must begin with a letter, can’t contain consecutive underscores and
must end in "_by_<bot_username>". <bot_username> is case insensitive. 1-64 characters.

title: str

Sticker set title, 1-64 characters

2.3. Bot API 397

https://core.telegram.org/bots/api#createnewstickerset

aiogram Documentation, Release 3.23.0

stickers: list[InputSticker]

A JSON-serialized list of 1-50 initial stickers to be added to the sticker set

sticker_type: str | None

Type of stickers in the set, pass ‘regular’, ‘mask’, or ‘custom_emoji’. By default, a regular sticker set is
created.

needs_repainting: bool | None

Pass True if stickers in the sticker set must be repainted to the color of text when used in messages, the
accent color if used as emoji status, white on chat photos, or another appropriate color based on context;
for custom emoji sticker sets only

sticker_format: str | None

Format of stickers in the set, must be one of ‘static’, ‘animated’, ‘video’

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

Usage

As bot method

result: bool = await bot.create_new_sticker_set(...)

Method as object

Imports:

• from aiogram.methods.create_new_sticker_set import CreateNewStickerSet

• alias: from aiogram.methods import CreateNewStickerSet

With specific bot

result: bool = await bot(CreateNewStickerSet(...))

As reply into Webhook in handler

return CreateNewStickerSet(...)

deleteStickerFromSet

Returns: bool

class aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet(*, sticker: str, **extra_data:
Any)

Use this method to delete a sticker from a set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#deletestickerfromset

398 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#march-31-2024
https://core.telegram.org/bots/api#deletestickerfromset

aiogram Documentation, Release 3.23.0

sticker: str

File identifier of the sticker

Usage

As bot method

result: bool = await bot.delete_sticker_from_set(...)

Method as object

Imports:

• from aiogram.methods.delete_sticker_from_set import DeleteStickerFromSet

• alias: from aiogram.methods import DeleteStickerFromSet

With specific bot

result: bool = await bot(DeleteStickerFromSet(...))

As reply into Webhook in handler

return DeleteStickerFromSet(...)

As shortcut from received object

• aiogram.types.sticker.Sticker.delete_from_set()

deleteStickerSet

Returns: bool

class aiogram.methods.delete_sticker_set.DeleteStickerSet(*, name: str, **extra_data: Any)
Use this method to delete a sticker set that was created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#deletestickerset

name: str

Sticker set name

2.3. Bot API 399

https://core.telegram.org/bots/api#deletestickerset

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.delete_sticker_set(...)

Method as object

Imports:

• from aiogram.methods.delete_sticker_set import DeleteStickerSet

• alias: from aiogram.methods import DeleteStickerSet

With specific bot

result: bool = await bot(DeleteStickerSet(...))

As reply into Webhook in handler

return DeleteStickerSet(...)

getCustomEmojiStickers

Returns: list[Sticker]

class aiogram.methods.get_custom_emoji_stickers.GetCustomEmojiStickers(*, custom_emoji_ids:
list[str], **extra_data:
Any)

Use this method to get information about custom emoji stickers by their identifiers. Returns an Array of
aiogram.types.sticker.Sticker objects.

Source: https://core.telegram.org/bots/api#getcustomemojistickers

custom_emoji_ids: list[str]

A JSON-serialized list of custom emoji identifiers. At most 200 custom emoji identifiers can be specified.

Usage

As bot method

result: list[Sticker] = await bot.get_custom_emoji_stickers(...)

400 Chapter 2. Contents

https://core.telegram.org/bots/api#getcustomemojistickers

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.get_custom_emoji_stickers import GetCustomEmojiStickers

• alias: from aiogram.methods import GetCustomEmojiStickers

With specific bot

result: list[Sticker] = await bot(GetCustomEmojiStickers(...))

getStickerSet

Returns: StickerSet

class aiogram.methods.get_sticker_set.GetStickerSet(*, name: str, **extra_data: Any)
Use this method to get a sticker set. On success, a aiogram.types.sticker_set.StickerSet object is
returned.

Source: https://core.telegram.org/bots/api#getstickerset

name: str

Name of the sticker set

Usage

As bot method

result: StickerSet = await bot.get_sticker_set(...)

Method as object

Imports:

• from aiogram.methods.get_sticker_set import GetStickerSet

• alias: from aiogram.methods import GetStickerSet

With specific bot

result: StickerSet = await bot(GetStickerSet(...))

2.3. Bot API 401

https://core.telegram.org/bots/api#getstickerset

aiogram Documentation, Release 3.23.0

replaceStickerInSet

Returns: bool

class aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet(*, user_id: int, name: str,
old_sticker: str, sticker:
InputSticker, **extra_data:
Any)

Use this method to replace an existing sticker in a sticker set with a new one. The method is equivalent to call-
ing aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet, then aiogram.methods.
add_sticker_to_set.AddStickerToSet, then aiogram.methods.set_sticker_position_in_set.
SetStickerPositionInSet. Returns True on success.

Source: https://core.telegram.org/bots/api#replacestickerinset

user_id: int

User identifier of the sticker set owner

name: str

Sticker set name

old_sticker: str

File identifier of the replaced sticker

sticker: InputSticker

A JSON-serialized object with information about the added sticker. If exactly the same sticker had already
been added to the set, then the set remains unchanged.

Usage

As bot method

result: bool = await bot.replace_sticker_in_set(...)

Method as object

Imports:

• from aiogram.methods.replace_sticker_in_set import ReplaceStickerInSet

• alias: from aiogram.methods import ReplaceStickerInSet

With specific bot

result: bool = await bot(ReplaceStickerInSet(...))

402 Chapter 2. Contents

https://core.telegram.org/bots/api#replacestickerinset

aiogram Documentation, Release 3.23.0

As reply into Webhook in handler

return ReplaceStickerInSet(...)

sendSticker

Returns: Message

class aiogram.methods.send_sticker.SendSticker(*, chat_id: int | str, sticker: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None, emoji:
str | None = None, disable_notification: bool | None =
None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast:
bool | None = None, message_effect_id: str | None =
None, suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters |
None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None =
None, allow_sending_without_reply: bool | None =
None, reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

Use this method to send static .WEBP, animated .TGS, or video .WEBM stickers. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

sticker: InputFileUnion

Sticker to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended),
pass an HTTP URL as a String for Telegram to get a .WEBP sticker from the Internet, or upload a new
.WEBP, .TGS, or .WEBM sticker using multipart/form-data. More information on Sending Files ». Video
and animated stickers can’t be sent via an HTTP URL.

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

2.3. Bot API 403

https://telegram.org/blog/animated-stickers
https://telegram.org/blog/video-stickers-better-reactions
https://core.telegram.org/bots/api#sendsticker

aiogram Documentation, Release 3.23.0

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

emoji: str | None

Emoji associated with the sticker; only for just uploaded stickers

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_sticker(...)

404 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.send_sticker import SendSticker

• alias: from aiogram.methods import SendSticker

With specific bot

result: Message = await bot(SendSticker(...))

As reply into Webhook in handler

return SendSticker(...)

As shortcut from received object

• aiogram.types.message.Message.answer_sticker()

• aiogram.types.message.Message.reply_sticker()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_sticker()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_sticker_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_sticker()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_sticker()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_sticker()

setCustomEmojiStickerSetThumbnail

Returns: bool

class aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail(*,
name:
str,
cus-
tom_emoji_id:
str
|
None
=
None,
**ex-
tra_data:
Any)

Use this method to set the thumbnail of a custom emoji sticker set. Returns True on success.

Source: https://core.telegram.org/bots/api#setcustomemojistickersetthumbnail

2.3. Bot API 405

https://core.telegram.org/bots/api#setcustomemojistickersetthumbnail

aiogram Documentation, Release 3.23.0

name: str

Sticker set name

custom_emoji_id: str | None

Custom emoji identifier of a sticker from the sticker set; pass an empty string to drop the thumbnail and use
the first sticker as the thumbnail.

Usage

As bot method

result: bool = await bot.set_custom_emoji_sticker_set_thumbnail(...)

Method as object

Imports:

• from aiogram.methods.set_custom_emoji_sticker_set_thumbnail import
SetCustomEmojiStickerSetThumbnail

• alias: from aiogram.methods import SetCustomEmojiStickerSetThumbnail

With specific bot

result: bool = await bot(SetCustomEmojiStickerSetThumbnail(...))

As reply into Webhook in handler

return SetCustomEmojiStickerSetThumbnail(...)

setStickerEmojiList

Returns: bool

class aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList(*, sticker: str, emoji_list:
list[str], **extra_data: Any)

Use this method to change the list of emoji assigned to a regular or custom emoji sticker. The sticker must belong
to a sticker set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickeremojilist

sticker: str

File identifier of the sticker

emoji_list: list[str]

A JSON-serialized list of 1-20 emoji associated with the sticker

406 Chapter 2. Contents

https://core.telegram.org/bots/api#setstickeremojilist

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_sticker_emoji_list(...)

Method as object

Imports:

• from aiogram.methods.set_sticker_emoji_list import SetStickerEmojiList

• alias: from aiogram.methods import SetStickerEmojiList

With specific bot

result: bool = await bot(SetStickerEmojiList(...))

As reply into Webhook in handler

return SetStickerEmojiList(...)

setStickerKeywords

Returns: bool

class aiogram.methods.set_sticker_keywords.SetStickerKeywords(*, sticker: str, keywords: list[str] |
None = None, **extra_data: Any)

Use this method to change search keywords assigned to a regular or custom emoji sticker. The sticker must
belong to a sticker set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickerkeywords

sticker: str

File identifier of the sticker

keywords: list[str] | None

A JSON-serialized list of 0-20 search keywords for the sticker with total length of up to 64 characters

Usage

As bot method

result: bool = await bot.set_sticker_keywords(...)

2.3. Bot API 407

https://core.telegram.org/bots/api#setstickerkeywords

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.set_sticker_keywords import SetStickerKeywords

• alias: from aiogram.methods import SetStickerKeywords

With specific bot

result: bool = await bot(SetStickerKeywords(...))

As reply into Webhook in handler

return SetStickerKeywords(...)

setStickerMaskPosition

Returns: bool

class aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition(*, sticker: str,
mask_position:
MaskPosition | None =
None, **extra_data:
Any)

Use this method to change the mask position of a mask sticker. The sticker must belong to a sticker set that was
created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickermaskposition

sticker: str

File identifier of the sticker

mask_position: MaskPosition | None

A JSON-serialized object with the position where the mask should be placed on faces. Omit the parameter
to remove the mask position.

Usage

As bot method

result: bool = await bot.set_sticker_mask_position(...)

408 Chapter 2. Contents

https://core.telegram.org/bots/api#maskposition
https://core.telegram.org/bots/api#setstickermaskposition

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.set_sticker_mask_position import SetStickerMaskPosition

• alias: from aiogram.methods import SetStickerMaskPosition

With specific bot

result: bool = await bot(SetStickerMaskPosition(...))

As reply into Webhook in handler

return SetStickerMaskPosition(...)

setStickerPositionInSet

Returns: bool

class aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet(*, sticker: str,
position: int,
**extra_data: Any)

Use this method to move a sticker in a set created by the bot to a specific position. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickerpositioninset

sticker: str

File identifier of the sticker

position: int

New sticker position in the set, zero-based

Usage

As bot method

result: bool = await bot.set_sticker_position_in_set(...)

Method as object

Imports:

• from aiogram.methods.set_sticker_position_in_set import SetStickerPositionInSet

• alias: from aiogram.methods import SetStickerPositionInSet

2.3. Bot API 409

https://core.telegram.org/bots/api#setstickerpositioninset

aiogram Documentation, Release 3.23.0

With specific bot

result: bool = await bot(SetStickerPositionInSet(...))

As reply into Webhook in handler

return SetStickerPositionInSet(...)

As shortcut from received object

• aiogram.types.sticker.Sticker.set_position_in_set()

setStickerSetThumbnail

Returns: bool

class aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail(*, name: str, user_id:
int, format: str,
thumbnail: str |
InputFile | None =
None, **extra_data:
Any)

Use this method to set the thumbnail of a regular or mask sticker set. The format of the thumbnail file must match
the format of the stickers in the set. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickersetthumbnail

name: str

Sticker set name

user_id: int

User identifier of the sticker set owner

format: str

Format of the thumbnail, must be one of ‘static’ for a .WEBP or .PNG image, ‘animated’ for a .TGS
animation, or ‘video’ for a .WEBM video

thumbnail: InputFileUnion | None

A .WEBP or .PNG image with the thumbnail, must be up to 128 kilobytes in size and have a width
and height of exactly 100px, or a .TGS animation with a thumbnail up to 32 kilobytes in size (see
https://core.telegram.org/stickers#animation-requirements <https://core.telegram.org/stickers#animation-
requirements>`_`https://core.telegram.org/stickers#animation-requirements for animated sticker
technical requirements), or a .WEBM video with the thumbnail up to 32 kilobytes in size; see
https://core.telegram.org/stickers#video-requirements <https://core.telegram.org/stickers#video-
requirements>`_`https://core.telegram.org/stickers#video-requirements for video sticker technical
requirements. Pass a file_id as a String to send a file that already exists on the Telegram servers, pass
an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using
multipart/form-data. More information on Sending Files ». Animated and video sticker set thumbnails
can’t be uploaded via HTTP URL. If omitted, then the thumbnail is dropped and the first sticker is used as
the thumbnail.

410 Chapter 2. Contents

https://core.telegram.org/bots/api#setstickersetthumbnail
https://core.telegram.org/stickers#animation-requirements
https://core.telegram.org/stickers#animation-requirements
https://core.telegram.org/stickers#video-requirements
https://core.telegram.org/stickers#video-requirements

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_sticker_set_thumbnail(...)

Method as object

Imports:

• from aiogram.methods.set_sticker_set_thumbnail import SetStickerSetThumbnail

• alias: from aiogram.methods import SetStickerSetThumbnail

With specific bot

result: bool = await bot(SetStickerSetThumbnail(...))

As reply into Webhook in handler

return SetStickerSetThumbnail(...)

setStickerSetTitle

Returns: bool

class aiogram.methods.set_sticker_set_title.SetStickerSetTitle(*, name: str, title: str,
**extra_data: Any)

Use this method to set the title of a created sticker set. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickersettitle

name: str

Sticker set name

title: str

Sticker set title, 1-64 characters

Usage

As bot method

result: bool = await bot.set_sticker_set_title(...)

2.3. Bot API 411

https://core.telegram.org/bots/api#setstickersettitle

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.set_sticker_set_title import SetStickerSetTitle

• alias: from aiogram.methods import SetStickerSetTitle

With specific bot

result: bool = await bot(SetStickerSetTitle(...))

As reply into Webhook in handler

return SetStickerSetTitle(...)

uploadStickerFile

Returns: File

class aiogram.methods.upload_sticker_file.UploadStickerFile(*, user_id: int, sticker: InputFile,
sticker_format: str, **extra_data:
Any)

Use this method to upload a file with a sticker for later use in the aiogram.methods.
create_new_sticker_set.CreateNewStickerSet, aiogram.methods.add_sticker_to_set.
AddStickerToSet, or aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet methods
(the file can be used multiple times). Returns the uploaded aiogram.types.file.File on success.

Source: https://core.telegram.org/bots/api#uploadstickerfile

user_id: int

User identifier of sticker file owner

sticker: InputFile

A file with the sticker in .WEBP, .PNG, .TGS, or .WEBM format. See https://core.telegram.org/stickers
<https://core.telegram.org/stickers>`_`https://core.telegram.org/stickers for technical requirements. More
information on Sending Files »

sticker_format: str

Format of the sticker, must be one of ‘static’, ‘animated’, ‘video’

Usage

As bot method

result: File = await bot.upload_sticker_file(...)

412 Chapter 2. Contents

https://core.telegram.org/bots/api#uploadstickerfile
https://core.telegram.org/stickers
https://core.telegram.org/stickers

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.upload_sticker_file import UploadStickerFile

• alias: from aiogram.methods import UploadStickerFile

With specific bot

result: File = await bot(UploadStickerFile(...))

Available methods

answerCallbackQuery

Returns: bool

class aiogram.methods.answer_callback_query.AnswerCallbackQuery(*, callback_query_id: str, text:
str | None = None, show_alert:
bool | None = None, url: str |
None = None, cache_time: int |
None = None, **extra_data:
Any)

Use this method to send answers to callback queries sent from inline keyboards. The answer will be displayed
to the user as a notification at the top of the chat screen or as an alert. On success, True is returned.

Alternatively, the user can be redirected to the specified Game URL. For this option to work, you must
first create a game for your bot via @BotFather and accept the terms. Otherwise, you may use links
like t.me/your_bot?start=XXXX that open your bot with a parameter.

Source: https://core.telegram.org/bots/api#answercallbackquery

callback_query_id: str

Unique identifier for the query to be answered

text: str | None

Text of the notification. If not specified, nothing will be shown to the user, 0-200 characters

show_alert: bool | None

If True, an alert will be shown by the client instead of a notification at the top of the chat screen. Defaults
to false.

url: str | None

URL that will be opened by the user’s client. If you have created a aiogram.types.game.Game and
accepted the conditions via @BotFather, specify the URL that opens your game - note that this will only
work if the query comes from a https://core.telegram.org/bots/api#inlinekeyboardbutton callback_game
button.

cache_time: int | None

The maximum amount of time in seconds that the result of the callback query may be cached client-side.
Telegram apps will support caching starting in version 3.14. Defaults to 0.

2.3. Bot API 413

https://core.telegram.org/bots/features#inline-keyboards
https://t.me/botfather
https://core.telegram.org/bots/api#answercallbackquery
https://t.me/botfather
https://core.telegram.org/bots/api#inlinekeyboardbutton

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.answer_callback_query(...)

Method as object

Imports:

• from aiogram.methods.answer_callback_query import AnswerCallbackQuery

• alias: from aiogram.methods import AnswerCallbackQuery

With specific bot

result: bool = await bot(AnswerCallbackQuery(...))

As reply into Webhook in handler

return AnswerCallbackQuery(...)

As shortcut from received object

• aiogram.types.callback_query.CallbackQuery.answer()

approveChatJoinRequest

Returns: bool

class aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest(*, chat_id: int | str,
user_id: int,
**extra_data: Any)

Use this method to approve a chat join request. The bot must be an administrator in the chat for this to work and
must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#approvechatjoinrequest

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

user_id: int

Unique identifier of the target user

414 Chapter 2. Contents

https://core.telegram.org/bots/api#approvechatjoinrequest

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.approve_chat_join_request(...)

Method as object

Imports:

• from aiogram.methods.approve_chat_join_request import ApproveChatJoinRequest

• alias: from aiogram.methods import ApproveChatJoinRequest

With specific bot

result: bool = await bot(ApproveChatJoinRequest(...))

As reply into Webhook in handler

return ApproveChatJoinRequest(...)

As shortcut from received object

• aiogram.types.chat_join_request.ChatJoinRequest.approve()

banChatMember

Returns: bool

class aiogram.methods.ban_chat_member.BanChatMember(*, chat_id: int | str, user_id: int, until_date:
datetime | timedelta | int | None = None,
revoke_messages: bool | None = None,
**extra_data: Any)

Use this method to ban a user in a group, a supergroup or a channel. In the case of supergroups and channels,
the user will not be able to return to the chat on their own using invite links, etc., unless unbanned first. The bot
must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns
True on success.

Source: https://core.telegram.org/bots/api#banchatmember

chat_id: ChatIdUnion

Unique identifier for the target group or username of the target supergroup or channel (in the format
@channelusername)

user_id: int

Unique identifier of the target user

2.3. Bot API 415

https://core.telegram.org/bots/api#unbanchatmember
https://core.telegram.org/bots/api#banchatmember

aiogram Documentation, Release 3.23.0

until_date: DateTimeUnion | None

Date when the user will be unbanned; Unix time. If user is banned for more than 366 days or less than
30 seconds from the current time they are considered to be banned forever. Applied for supergroups and
channels only.

revoke_messages: bool | None

Pass True to delete all messages from the chat for the user that is being removed. If False, the user will be
able to see messages in the group that were sent before the user was removed. Always True for supergroups
and channels.

Usage

As bot method

result: bool = await bot.ban_chat_member(...)

Method as object

Imports:

• from aiogram.methods.ban_chat_member import BanChatMember

• alias: from aiogram.methods import BanChatMember

With specific bot

result: bool = await bot(BanChatMember(...))

As reply into Webhook in handler

return BanChatMember(...)

As shortcut from received object

• aiogram.types.chat.Chat.ban()

banChatSenderChat

Returns: bool

class aiogram.methods.ban_chat_sender_chat.BanChatSenderChat(*, chat_id: int | str, sender_chat_id:
int, **extra_data: Any)

Use this method to ban a channel chat in a supergroup or a channel. Until the chat is unbanned, the owner of the
banned chat won’t be able to send messages on behalf of any of their channels. The bot must be an administrator
in the supergroup or channel for this to work and must have the appropriate administrator rights. Returns True
on success.

Source: https://core.telegram.org/bots/api#banchatsenderchat

416 Chapter 2. Contents

https://core.telegram.org/bots/api#unbanchatsenderchat
https://core.telegram.org/bots/api#banchatsenderchat

aiogram Documentation, Release 3.23.0

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

sender_chat_id: int

Unique identifier of the target sender chat

Usage

As bot method

result: bool = await bot.ban_chat_sender_chat(...)

Method as object

Imports:

• from aiogram.methods.ban_chat_sender_chat import BanChatSenderChat

• alias: from aiogram.methods import BanChatSenderChat

With specific bot

result: bool = await bot(BanChatSenderChat(...))

As reply into Webhook in handler

return BanChatSenderChat(...)

As shortcut from received object

• aiogram.types.chat.Chat.ban_sender_chat()

close

Returns: bool

class aiogram.methods.close.Close(**extra_data: Any)
Use this method to close the bot instance before moving it from one local server to another. You need to delete the
webhook before calling this method to ensure that the bot isn’t launched again after server restart. The method
will return error 429 in the first 10 minutes after the bot is launched. Returns True on success. Requires no
parameters.

Source: https://core.telegram.org/bots/api#close

2.3. Bot API 417

https://core.telegram.org/bots/api#close

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.close(...)

Method as object

Imports:

• from aiogram.methods.close import Close

• alias: from aiogram.methods import Close

With specific bot

result: bool = await bot(Close(...))

As reply into Webhook in handler

return Close(...)

closeForumTopic

Returns: bool

class aiogram.methods.close_forum_topic.CloseForumTopic(*, chat_id: int | str, message_thread_id:
int, **extra_data: Any)

Use this method to close an open topic in a forum supergroup chat. The bot must be an administrator in the chat
for this to work and must have the can_manage_topics administrator rights, unless it is the creator of the topic.
Returns True on success.

Source: https://core.telegram.org/bots/api#closeforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

message_thread_id: int

Unique identifier for the target message thread of the forum topic

418 Chapter 2. Contents

https://core.telegram.org/bots/api#closeforumtopic

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.close_forum_topic(...)

Method as object

Imports:

• from aiogram.methods.close_forum_topic import CloseForumTopic

• alias: from aiogram.methods import CloseForumTopic

With specific bot

result: bool = await bot(CloseForumTopic(...))

As reply into Webhook in handler

return CloseForumTopic(...)

closeGeneralForumTopic

Returns: bool

class aiogram.methods.close_general_forum_topic.CloseGeneralForumTopic(*, chat_id: int | str,
**extra_data: Any)

Use this method to close an open ‘General’ topic in a forum supergroup chat. The bot must be an administrator
in the chat for this to work and must have the can_manage_topics administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#closegeneralforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

Usage

As bot method

result: bool = await bot.close_general_forum_topic(...)

2.3. Bot API 419

https://core.telegram.org/bots/api#closegeneralforumtopic

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.close_general_forum_topic import CloseGeneralForumTopic

• alias: from aiogram.methods import CloseGeneralForumTopic

With specific bot

result: bool = await bot(CloseGeneralForumTopic(...))

As reply into Webhook in handler

return CloseGeneralForumTopic(...)

convertGiftToStars

Returns: bool

class aiogram.methods.convert_gift_to_stars.ConvertGiftToStars(*, business_connection_id: str,
owned_gift_id: str, **extra_data:
Any)

Converts a given regular gift to Telegram Stars. Requires the can_convert_gifts_to_stars business bot right.
Returns True on success.

Source: https://core.telegram.org/bots/api#convertgifttostars

business_connection_id: str

Unique identifier of the business connection

owned_gift_id: str

Unique identifier of the regular gift that should be converted to Telegram Stars

Usage

As bot method

result: bool = await bot.convert_gift_to_stars(...)

420 Chapter 2. Contents

https://core.telegram.org/bots/api#convertgifttostars

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.convert_gift_to_stars import ConvertGiftToStars

• alias: from aiogram.methods import ConvertGiftToStars

With specific bot

result: bool = await bot(ConvertGiftToStars(...))

As reply into Webhook in handler

return ConvertGiftToStars(...)

copyMessage

Returns: MessageId

class aiogram.methods.copy_message.CopyMessage(*, chat_id: int | str, from_chat_id: int | str,
message_id: int, message_thread_id: int | None =
None, direct_messages_topic_id: int | None = None,
video_start_timestamp: ~datetime.datetime |
~datetime.timedelta | int | None = None, caption: str |
None = None, parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] |
None = None, show_caption_above_media: bool |
~aiogram.client.default.Default | None =
<Default('show_caption_above_media')>,
disable_notification: bool | None = None,
protect_content: bool | ~aiogram.client.default.Default
| None = <Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters |
None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None =
None, allow_sending_without_reply: bool | None =
None, reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

2.3. Bot API 421

aiogram Documentation, Release 3.23.0

Use this method to copy messages of any kind. Service messages, paid media messages, giveaway messages,
giveaway winners messages, and invoice messages can’t be copied. A quiz aiogram.methods.poll.Poll
can be copied only if the value of the field correct_option_id is known to the bot. The method is analogous to
the method aiogram.methods.forward_message.ForwardMessage, but the copied message doesn’t have a
link to the original message. Returns the aiogram.types.message_id.MessageId of the sent message on
success.

Source: https://core.telegram.org/bots/api#copymessage

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

from_chat_id: ChatIdUnion

Unique identifier for the chat where the original message was sent (or channel username in the format
@channelusername)

message_id: int

Message identifier in the chat specified in from_chat_id

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

video_start_timestamp: DateTimeUnion | None

New start timestamp for the copied video in the message

caption: str | None

New caption for media, 0-1024 characters after entities parsing. If not specified, the original caption is kept

parse_mode: str | Default | None

Mode for parsing entities in the new caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the new caption, which can be specified instead of
parse_mode

show_caption_above_media: bool | Default | None

Pass True, if the caption must be shown above the message media. Ignored if a new caption isn’t specified.

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

422 Chapter 2. Contents

https://core.telegram.org/bots/api#copymessage
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: MessageId = await bot.copy_message(...)

Method as object

Imports:

• from aiogram.methods.copy_message import CopyMessage

• alias: from aiogram.methods import CopyMessage

With specific bot

result: MessageId = await bot(CopyMessage(...))

As reply into Webhook in handler

return CopyMessage(...)

As shortcut from received object

• aiogram.types.message.Message.copy_to()

2.3. Bot API 423

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

copyMessages

Returns: list[MessageId]

class aiogram.methods.copy_messages.CopyMessages(*, chat_id: int | str, from_chat_id: int | str,
message_ids: list[int], message_thread_id: int |
None = None, direct_messages_topic_id: int | None
= None, disable_notification: bool | None = None,
protect_content: bool | None = None,
remove_caption: bool | None = None, **extra_data:
Any)

Use this method to copy messages of any kind. If some of the specified messages can’t be found or copied,
they are skipped. Service messages, paid media messages, giveaway messages, giveaway winners messages, and
invoice messages can’t be copied. A quiz aiogram.methods.poll.Poll can be copied only if the value of
the field correct_option_id is known to the bot. The method is analogous to the method aiogram.methods.
forward_messages.ForwardMessages, but the copied messages don’t have a link to the original message. Al-
bum grouping is kept for copied messages. On success, an array of aiogram.types.message_id.MessageId
of the sent messages is returned.

Source: https://core.telegram.org/bots/api#copymessages

chat_id: int | str

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

from_chat_id: int | str

Unique identifier for the chat where the original messages were sent (or channel username in the format
@channelusername)

message_ids: list[int]

A JSON-serialized list of 1-100 identifiers of messages in the chat from_chat_id to copy. The identifiers
must be specified in a strictly increasing order.

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the messages will be sent; required if the messages are sent
to a direct messages chat

disable_notification: bool | None

Sends the messages silently. Users will receive a notification with no sound.

protect_content: bool | None

Protects the contents of the sent messages from forwarding and saving

remove_caption: bool | None

Pass True to copy the messages without their captions

424 Chapter 2. Contents

https://core.telegram.org/bots/api#copymessages
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: list[MessageId] = await bot.copy_messages(...)

Method as object

Imports:

• from aiogram.methods.copy_messages import CopyMessages

• alias: from aiogram.methods import CopyMessages

With specific bot

result: list[MessageId] = await bot(CopyMessages(...))

As reply into Webhook in handler

return CopyMessages(...)

createChatInviteLink

Returns: ChatInviteLink

class aiogram.methods.create_chat_invite_link.CreateChatInviteLink(*, chat_id: int | str, name:
str | None = None,
expire_date: datetime |
timedelta | int | None = None,
member_limit: int | None =
None, creates_join_request:
bool | None = None,
**extra_data: Any)

Use this method to create an additional invite link for a chat. The bot must be an administrator in the chat
for this to work and must have the appropriate administrator rights. The link can be revoked using the method
aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink . Returns the new invite link as
aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#createchatinvitelink

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

name: str | None

Invite link name; 0-32 characters

expire_date: DateTimeUnion | None

Point in time (Unix timestamp) when the link will expire

2.3. Bot API 425

https://core.telegram.org/bots/api#createchatinvitelink

aiogram Documentation, Release 3.23.0

member_limit: int | None

The maximum number of users that can be members of the chat simultaneously after joining the chat via
this invite link; 1-99999

creates_join_request: bool | None

True, if users joining the chat via the link need to be approved by chat administrators. If True, mem-
ber_limit can’t be specified

Usage

As bot method

result: ChatInviteLink = await bot.create_chat_invite_link(...)

Method as object

Imports:

• from aiogram.methods.create_chat_invite_link import CreateChatInviteLink

• alias: from aiogram.methods import CreateChatInviteLink

With specific bot

result: ChatInviteLink = await bot(CreateChatInviteLink(...))

As reply into Webhook in handler

return CreateChatInviteLink(...)

As shortcut from received object

• aiogram.types.chat.Chat.create_invite_link()

createChatSubscriptionInviteLink

Returns: ChatInviteLink

426 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

class aiogram.methods.create_chat_subscription_invite_link.CreateChatSubscriptionInviteLink(*,
chat_id:
int
|
str,
sub-
scrip-
tion_period:
date-
time
|
timedelta
|
int,
sub-
scrip-
tion_price:
int,
name:
str
|
None
=
None,
**ex-
tra_data:
Any)

Use this method to create a subscription invite link for a channel chat. The bot must have the
can_invite_users administrator rights. The link can be edited using the method aiogram.methods.
edit_chat_subscription_invite_link.EditChatSubscriptionInviteLink or revoked using the
method aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink . Returns the new invite
link as a aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#createchatsubscriptioninvitelink

chat_id: ChatIdUnion

Unique identifier for the target channel chat or username of the target channel (in the format
@channelusername)

subscription_period: DateTimeUnion

The number of seconds the subscription will be active for before the next payment. Currently, it must always
be 2592000 (30 days).

subscription_price: int

The amount of Telegram Stars a user must pay initially and after each subsequent subscription period to be
a member of the chat; 1-10000

name: str | None

Invite link name; 0-32 characters

2.3. Bot API 427

https://telegram.org/blog/superchannels-star-reactions-subscriptions#star-subscriptions
https://core.telegram.org/bots/api#createchatsubscriptioninvitelink

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: ChatInviteLink = await bot.create_chat_subscription_invite_link(...)

Method as object

Imports:

• from aiogram.methods.create_chat_subscription_invite_link import
CreateChatSubscriptionInviteLink

• alias: from aiogram.methods import CreateChatSubscriptionInviteLink

With specific bot

result: ChatInviteLink = await bot(CreateChatSubscriptionInviteLink(...))

As reply into Webhook in handler

return CreateChatSubscriptionInviteLink(...)

createForumTopic

Returns: ForumTopic

class aiogram.methods.create_forum_topic.CreateForumTopic(*, chat_id: int | str, name: str,
icon_color: int | None = None,
icon_custom_emoji_id: str | None =
None, **extra_data: Any)

Use this method to create a topic in a forum supergroup chat. The bot must be an administrator in the chat for
this to work and must have the can_manage_topics administrator rights. Returns information about the created
topic as a aiogram.types.forum_topic.ForumTopic object.

Source: https://core.telegram.org/bots/api#createforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

name: str

Topic name, 1-128 characters

icon_color: int | None

Color of the topic icon in RGB format. Currently, must be one of 7322096 (0x6FB9F0), 16766590
(0xFFD67E), 13338331 (0xCB86DB), 9367192 (0x8EEE98), 16749490 (0xFF93B2), or 16478047
(0xFB6F5F)

428 Chapter 2. Contents

https://core.telegram.org/bots/api#createforumtopic

aiogram Documentation, Release 3.23.0

icon_custom_emoji_id: str | None

Unique identifier of the custom emoji shown as the topic icon. Use aiogram.methods.
get_forum_topic_icon_stickers.GetForumTopicIconStickers to get all allowed custom emoji
identifiers.

Usage

As bot method

result: ForumTopic = await bot.create_forum_topic(...)

Method as object

Imports:

• from aiogram.methods.create_forum_topic import CreateForumTopic

• alias: from aiogram.methods import CreateForumTopic

With specific bot

result: ForumTopic = await bot(CreateForumTopic(...))

As reply into Webhook in handler

return CreateForumTopic(...)

declineChatJoinRequest

Returns: bool

class aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest(*, chat_id: int | str,
user_id: int,
**extra_data: Any)

Use this method to decline a chat join request. The bot must be an administrator in the chat for this to work and
must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#declinechatjoinrequest

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

user_id: int

Unique identifier of the target user

2.3. Bot API 429

https://core.telegram.org/bots/api#declinechatjoinrequest

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.decline_chat_join_request(...)

Method as object

Imports:

• from aiogram.methods.decline_chat_join_request import DeclineChatJoinRequest

• alias: from aiogram.methods import DeclineChatJoinRequest

With specific bot

result: bool = await bot(DeclineChatJoinRequest(...))

As reply into Webhook in handler

return DeclineChatJoinRequest(...)

As shortcut from received object

• aiogram.types.chat_join_request.ChatJoinRequest.decline()

deleteBusinessMessages

Returns: bool

class aiogram.methods.delete_business_messages.DeleteBusinessMessages(*,
business_connection_id:
str, message_ids:
list[int], **extra_data:
Any)

Delete messages on behalf of a business account. Requires the can_delete_sent_messages business bot right to
delete messages sent by the bot itself, or the can_delete_all_messages business bot right to delete any message.
Returns True on success.

Source: https://core.telegram.org/bots/api#deletebusinessmessages

business_connection_id: str

Unique identifier of the business connection on behalf of which to delete the messages

message_ids: list[int]

A JSON-serialized list of 1-100 identifiers of messages to delete. All messages must be from the same
chat. See aiogram.methods.delete_message.DeleteMessage for limitations on which messages can
be deleted

430 Chapter 2. Contents

https://core.telegram.org/bots/api#deletebusinessmessages

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.delete_business_messages(...)

Method as object

Imports:

• from aiogram.methods.delete_business_messages import DeleteBusinessMessages

• alias: from aiogram.methods import DeleteBusinessMessages

With specific bot

result: bool = await bot(DeleteBusinessMessages(...))

As reply into Webhook in handler

return DeleteBusinessMessages(...)

deleteChatPhoto

Returns: bool

class aiogram.methods.delete_chat_photo.DeleteChatPhoto(*, chat_id: int | str, **extra_data: Any)
Use this method to delete a chat photo. Photos can’t be changed for private chats. The bot must be an administrator
in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#deletechatphoto

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

Usage

As bot method

result: bool = await bot.delete_chat_photo(...)

2.3. Bot API 431

https://core.telegram.org/bots/api#deletechatphoto

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.delete_chat_photo import DeleteChatPhoto

• alias: from aiogram.methods import DeleteChatPhoto

With specific bot

result: bool = await bot(DeleteChatPhoto(...))

As reply into Webhook in handler

return DeleteChatPhoto(...)

As shortcut from received object

• aiogram.types.chat.Chat.delete_photo()

deleteChatStickerSet

Returns: bool

class aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet(*, chat_id: int | str,
**extra_data: Any)

Use this method to delete a group sticker set from a supergroup. The bot must be an administrator in the chat
for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set optionally
returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this method. Returns
True on success.

Source: https://core.telegram.org/bots/api#deletechatstickerset

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

Usage

As bot method

result: bool = await bot.delete_chat_sticker_set(...)

432 Chapter 2. Contents

https://core.telegram.org/bots/api#deletechatstickerset

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.delete_chat_sticker_set import DeleteChatStickerSet

• alias: from aiogram.methods import DeleteChatStickerSet

With specific bot

result: bool = await bot(DeleteChatStickerSet(...))

As reply into Webhook in handler

return DeleteChatStickerSet(...)

As shortcut from received object

• aiogram.types.chat.Chat.delete_sticker_set()

deleteForumTopic

Returns: bool

class aiogram.methods.delete_forum_topic.DeleteForumTopic(*, chat_id: int | str, message_thread_id:
int, **extra_data: Any)

Use this method to delete a forum topic along with all its messages in a forum supergroup chat. The bot must be
an administrator in the chat for this to work and must have the can_delete_messages administrator rights. Returns
True on success.

Source: https://core.telegram.org/bots/api#deleteforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

message_thread_id: int

Unique identifier for the target message thread of the forum topic

Usage

As bot method

result: bool = await bot.delete_forum_topic(...)

2.3. Bot API 433

https://core.telegram.org/bots/api#deleteforumtopic

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.delete_forum_topic import DeleteForumTopic

• alias: from aiogram.methods import DeleteForumTopic

With specific bot

result: bool = await bot(DeleteForumTopic(...))

As reply into Webhook in handler

return DeleteForumTopic(...)

deleteMyCommands

Returns: bool

class aiogram.methods.delete_my_commands.DeleteMyCommands(*, scope: BotCommandScopeDefault |
BotCommandScopeAllPrivateChats |
BotCommandScopeAllGroupChats |
BotCommandScopeAllChatAdministra-
tors | BotCommandScopeChat |
BotCommandScopeChatAdministrators |
BotCommandScopeChatMember | None
= None, language_code: str | None =
None, **extra_data: Any)

Use this method to delete the list of the bot’s commands for the given scope and user language. After deletion,
higher level commands will be shown to affected users. Returns True on success.

Source: https://core.telegram.org/bots/api#deletemycommands

scope: BotCommandScopeUnion | None

A JSON-serialized object, describing scope of users for which the commands are relevant. Defaults to
aiogram.types.bot_command_scope_default.BotCommandScopeDefault.

language_code: str | None

A two-letter ISO 639-1 language code. If empty, commands will be applied to all users from the given
scope, for whose language there are no dedicated commands

434 Chapter 2. Contents

https://core.telegram.org/bots/api#determining-list-of-commands
https://core.telegram.org/bots/api#deletemycommands

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.delete_my_commands(...)

Method as object

Imports:

• from aiogram.methods.delete_my_commands import DeleteMyCommands

• alias: from aiogram.methods import DeleteMyCommands

With specific bot

result: bool = await bot(DeleteMyCommands(...))

As reply into Webhook in handler

return DeleteMyCommands(...)

deleteStory

Returns: bool

class aiogram.methods.delete_story.DeleteStory(*, business_connection_id: str, story_id: int,
**extra_data: Any)

Deletes a story previously posted by the bot on behalf of a managed business account. Requires the
can_manage_stories business bot right. Returns True on success.

Source: https://core.telegram.org/bots/api#deletestory

business_connection_id: str

Unique identifier of the business connection

story_id: int

Unique identifier of the story to delete

Usage

As bot method

result: bool = await bot.delete_story(...)

2.3. Bot API 435

https://core.telegram.org/bots/api#deletestory

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.delete_story import DeleteStory

• alias: from aiogram.methods import DeleteStory

With specific bot

result: bool = await bot(DeleteStory(...))

As reply into Webhook in handler

return DeleteStory(...)

editChatInviteLink

Returns: ChatInviteLink

class aiogram.methods.edit_chat_invite_link.EditChatInviteLink(*, chat_id: int | str, invite_link:
str, name: str | None = None,
expire_date: datetime | timedelta |
int | None = None, member_limit:
int | None = None,
creates_join_request: bool | None
= None, **extra_data: Any)

Use this method to edit a non-primary invite link created by the bot. The bot must be an administrator in the
chat for this to work and must have the appropriate administrator rights. Returns the edited invite link as a
aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#editchatinvitelink

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

invite_link: str

The invite link to edit

name: str | None

Invite link name; 0-32 characters

expire_date: DateTimeUnion | None

Point in time (Unix timestamp) when the link will expire

member_limit: int | None

The maximum number of users that can be members of the chat simultaneously after joining the chat via
this invite link; 1-99999

creates_join_request: bool | None

True, if users joining the chat via the link need to be approved by chat administrators. If True, mem-
ber_limit can’t be specified

436 Chapter 2. Contents

https://core.telegram.org/bots/api#editchatinvitelink

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: ChatInviteLink = await bot.edit_chat_invite_link(...)

Method as object

Imports:

• from aiogram.methods.edit_chat_invite_link import EditChatInviteLink

• alias: from aiogram.methods import EditChatInviteLink

With specific bot

result: ChatInviteLink = await bot(EditChatInviteLink(...))

As reply into Webhook in handler

return EditChatInviteLink(...)

As shortcut from received object

• aiogram.types.chat.Chat.edit_invite_link()

editChatSubscriptionInviteLink

Returns: ChatInviteLink

class aiogram.methods.edit_chat_subscription_invite_link.EditChatSubscriptionInviteLink(*,
chat_id:
int
|
str,
in-
vite_link:
str,
name:
str
|
None
=
None,
**ex-
tra_data:
Any)

2.3. Bot API 437

aiogram Documentation, Release 3.23.0

Use this method to edit a subscription invite link created by the bot. The bot must have the can_invite_users ad-
ministrator rights. Returns the edited invite link as a aiogram.types.chat_invite_link.ChatInviteLink
object.

Source: https://core.telegram.org/bots/api#editchatsubscriptioninvitelink

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

invite_link: str

The invite link to edit

name: str | None

Invite link name; 0-32 characters

Usage

As bot method

result: ChatInviteLink = await bot.edit_chat_subscription_invite_link(...)

Method as object

Imports:

• from aiogram.methods.edit_chat_subscription_invite_link import
EditChatSubscriptionInviteLink

• alias: from aiogram.methods import EditChatSubscriptionInviteLink

With specific bot

result: ChatInviteLink = await bot(EditChatSubscriptionInviteLink(...))

As reply into Webhook in handler

return EditChatSubscriptionInviteLink(...)

editForumTopic

Returns: bool

class aiogram.methods.edit_forum_topic.EditForumTopic(*, chat_id: int | str, message_thread_id: int,
name: str | None = None,
icon_custom_emoji_id: str | None = None,
**extra_data: Any)

438 Chapter 2. Contents

https://core.telegram.org/bots/api#editchatsubscriptioninvitelink

aiogram Documentation, Release 3.23.0

Use this method to edit name and icon of a topic in a forum supergroup chat. The bot must be an administrator
in the chat for this to work and must have the can_manage_topics administrator rights, unless it is the creator of
the topic. Returns True on success.

Source: https://core.telegram.org/bots/api#editforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

message_thread_id: int

Unique identifier for the target message thread of the forum topic

name: str | None

New topic name, 0-128 characters. If not specified or empty, the current name of the topic will be kept

icon_custom_emoji_id: str | None

New unique identifier of the custom emoji shown as the topic icon. Use aiogram.methods.
get_forum_topic_icon_stickers.GetForumTopicIconStickers to get all allowed custom emoji
identifiers. Pass an empty string to remove the icon. If not specified, the current icon will be kept

Usage

As bot method

result: bool = await bot.edit_forum_topic(...)

Method as object

Imports:

• from aiogram.methods.edit_forum_topic import EditForumTopic

• alias: from aiogram.methods import EditForumTopic

With specific bot

result: bool = await bot(EditForumTopic(...))

As reply into Webhook in handler

return EditForumTopic(...)

2.3. Bot API 439

https://core.telegram.org/bots/api#editforumtopic

aiogram Documentation, Release 3.23.0

editGeneralForumTopic

Returns: bool

class aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic(*, chat_id: int | str, name:
str, **extra_data: Any)

Use this method to edit the name of the ‘General’ topic in a forum supergroup chat. The bot must be an admin-
istrator in the chat for this to work and must have the can_manage_topics administrator rights. Returns True on
success.

Source: https://core.telegram.org/bots/api#editgeneralforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

name: str

New topic name, 1-128 characters

Usage

As bot method

result: bool = await bot.edit_general_forum_topic(...)

Method as object

Imports:

• from aiogram.methods.edit_general_forum_topic import EditGeneralForumTopic

• alias: from aiogram.methods import EditGeneralForumTopic

With specific bot

result: bool = await bot(EditGeneralForumTopic(...))

As reply into Webhook in handler

return EditGeneralForumTopic(...)

440 Chapter 2. Contents

https://core.telegram.org/bots/api#editgeneralforumtopic

aiogram Documentation, Release 3.23.0

editStory

Returns: Story

class aiogram.methods.edit_story.EditStory(*, business_connection_id: str, story_id: int, content:
InputStoryContentPhoto | InputStoryContentVideo, caption:
str | None = None, parse_mode: str | None = None,
caption_entities: list[MessageEntity] | None = None, areas:
list[StoryArea] | None = None, **extra_data: Any)

Edits a story previously posted by the bot on behalf of a managed business account. Requires the
can_manage_stories business bot right. Returns aiogram.types.story.Story on success.

Source: https://core.telegram.org/bots/api#editstory

business_connection_id: str

Unique identifier of the business connection

story_id: int

Unique identifier of the story to edit

content: InputStoryContentUnion

Content of the story

caption: str | None

Caption of the story, 0-2048 characters after entities parsing

parse_mode: str | None

Mode for parsing entities in the story caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

areas: list[StoryArea] | None

A JSON-serialized list of clickable areas to be shown on the story

Usage

As bot method

result: Story = await bot.edit_story(...)

Method as object

Imports:

• from aiogram.methods.edit_story import EditStory

• alias: from aiogram.methods import EditStory

2.3. Bot API 441

https://core.telegram.org/bots/api#editstory
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

With specific bot

result: Story = await bot(EditStory(...))

As reply into Webhook in handler

return EditStory(...)

exportChatInviteLink

Returns: str

class aiogram.methods.export_chat_invite_link.ExportChatInviteLink(*, chat_id: int | str,
**extra_data: Any)

Use this method to generate a new primary invite link for a chat; any previously generated primary link is revoked.
The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights.
Returns the new invite link as String on success.

Note: Each administrator in a chat generates their own invite links. Bots can’t use invite links gener-
ated by other administrators. If you want your bot to work with invite links, it will need to generate its
own link using aiogram.methods.export_chat_invite_link.ExportChatInviteLink or by
calling the aiogram.methods.get_chat.GetChatmethod. If your bot needs to generate a new pri-
mary invite link replacing its previous one, use aiogram.methods.export_chat_invite_link.
ExportChatInviteLink again.

Source: https://core.telegram.org/bots/api#exportchatinvitelink

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

Usage

As bot method

result: str = await bot.export_chat_invite_link(...)

Method as object

Imports:

• from aiogram.methods.export_chat_invite_link import ExportChatInviteLink

• alias: from aiogram.methods import ExportChatInviteLink

442 Chapter 2. Contents

https://core.telegram.org/bots/api#exportchatinvitelink

aiogram Documentation, Release 3.23.0

With specific bot

result: str = await bot(ExportChatInviteLink(...))

As reply into Webhook in handler

return ExportChatInviteLink(...)

As shortcut from received object

• aiogram.types.chat.Chat.export_invite_link()

forwardMessage

Returns: Message

class aiogram.methods.forward_message.ForwardMessage(*, chat_id: int | str, from_chat_id: int | str,
message_id: int, message_thread_id: int | None
= None, direct_messages_topic_id: int | None
= None, video_start_timestamp:
~datetime.datetime | ~datetime.timedelta | int |
None = None, disable_notification: bool | None
= None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, **extra_data: ~typing.Any)

Use this method to forward messages of any kind. Service messages and messages with protected content can’t
be forwarded. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#forwardmessage

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

from_chat_id: ChatIdUnion

Unique identifier for the chat where the original message was sent (or channel username in the format
@channelusername)

message_id: int

Message identifier in the chat specified in from_chat_id

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be forwarded; required if the message is
forwarded to a direct messages chat

2.3. Bot API 443

https://core.telegram.org/bots/api#forwardmessage

aiogram Documentation, Release 3.23.0

video_start_timestamp: DateTimeUnion | None

New start timestamp for the forwarded video in the message

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the forwarded message from forwarding and saving

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only

Usage

As bot method

result: Message = await bot.forward_message(...)

Method as object

Imports:

• from aiogram.methods.forward_message import ForwardMessage

• alias: from aiogram.methods import ForwardMessage

With specific bot

result: Message = await bot(ForwardMessage(...))

As reply into Webhook in handler

return ForwardMessage(...)

As shortcut from received object

• aiogram.types.message.Message.forward()

444 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

forwardMessages

Returns: list[MessageId]

class aiogram.methods.forward_messages.ForwardMessages(*, chat_id: int | str, from_chat_id: int | str,
message_ids: list[int], message_thread_id:
int | None = None,
direct_messages_topic_id: int | None =
None, disable_notification: bool | None =
None, protect_content: bool | None = None,
**extra_data: Any)

Use this method to forward multiple messages of any kind. If some of the specified messages can’t be found or
forwarded, they are skipped. Service messages and messages with protected content can’t be forwarded. Album
grouping is kept for forwarded messages. On success, an array of aiogram.types.message_id.MessageId
of the sent messages is returned.

Source: https://core.telegram.org/bots/api#forwardmessages

chat_id: int | str

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

from_chat_id: int | str

Unique identifier for the chat where the original messages were sent (or channel username in the format
@channelusername)

message_ids: list[int]

A JSON-serialized list of 1-100 identifiers of messages in the chat from_chat_id to forward. The identifiers
must be specified in a strictly increasing order.

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the messages will be forwarded; required if the messages
are forwarded to a direct messages chat

disable_notification: bool | None

Sends the messages silently. Users will receive a notification with no sound.

protect_content: bool | None

Protects the contents of the forwarded messages from forwarding and saving

Usage

As bot method

result: list[MessageId] = await bot.forward_messages(...)

2.3. Bot API 445

https://core.telegram.org/bots/api#forwardmessages
https://telegram.org/blog/channels-2-0#silent-messages

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.forward_messages import ForwardMessages

• alias: from aiogram.methods import ForwardMessages

With specific bot

result: list[MessageId] = await bot(ForwardMessages(...))

As reply into Webhook in handler

return ForwardMessages(...)

getAvailableGifts

Returns: Gifts

class aiogram.methods.get_available_gifts.GetAvailableGifts(**extra_data: Any)
Returns the list of gifts that can be sent by the bot to users and channel chats. Requires no parameters. Returns
a aiogram.types.gifts.Gifts object.

Source: https://core.telegram.org/bots/api#getavailablegifts

Usage

As bot method

result: Gifts = await bot.get_available_gifts(...)

Method as object

Imports:

• from aiogram.methods.get_available_gifts import GetAvailableGifts

• alias: from aiogram.methods import GetAvailableGifts

446 Chapter 2. Contents

https://core.telegram.org/bots/api#getavailablegifts

aiogram Documentation, Release 3.23.0

With specific bot

result: Gifts = await bot(GetAvailableGifts(...))

getBusinessAccountGifts

Returns: OwnedGifts

class aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts(*, busi-
ness_connection_id:
str,
exclude_unsaved:
bool | None = None,
exclude_saved: bool
| None = None,
exclude_unlimited:
bool | None = None,
exclude_limited:
bool | None = None,
exclude_unique:
bool | None = None,
sort_by_price: bool |
None = None, offset:
str | None = None,
limit: int | None =
None, **extra_data:
Any)

Returns the gifts received and owned by a managed business account. Requires the can_view_gifts_and_stars
business bot right. Returns aiogram.types.owned_gifts.OwnedGifts on success.

Source: https://core.telegram.org/bots/api#getbusinessaccountgifts

business_connection_id: str

Unique identifier of the business connection

exclude_unsaved: bool | None

Pass True to exclude gifts that aren’t saved to the account’s profile page

exclude_saved: bool | None

Pass True to exclude gifts that are saved to the account’s profile page

exclude_unlimited: bool | None

Pass True to exclude gifts that can be purchased an unlimited number of times

exclude_limited: bool | None

Pass True to exclude gifts that can be purchased a limited number of times

exclude_unique: bool | None

Pass True to exclude unique gifts

sort_by_price: bool | None

Pass True to sort results by gift price instead of send date. Sorting is applied before pagination.

2.3. Bot API 447

https://core.telegram.org/bots/api#getbusinessaccountgifts

aiogram Documentation, Release 3.23.0

offset: str | None

Offset of the first entry to return as received from the previous request; use empty string to get the first
chunk of results

limit: int | None

The maximum number of gifts to be returned; 1-100. Defaults to 100

Usage

As bot method

result: OwnedGifts = await bot.get_business_account_gifts(...)

Method as object

Imports:

• from aiogram.methods.get_business_account_gifts import GetBusinessAccountGifts

• alias: from aiogram.methods import GetBusinessAccountGifts

With specific bot

result: OwnedGifts = await bot(GetBusinessAccountGifts(...))

getBusinessAccountStarBalance

Returns: StarAmount

class aiogram.methods.get_business_account_star_balance.GetBusinessAccountStarBalance(*,
busi-
ness_connection_id:
str,
**ex-
tra_data:
Any)

Returns the amount of Telegram Stars owned by a managed business account. Requires the
can_view_gifts_and_stars business bot right. Returns aiogram.types.star_amount.StarAmount on suc-
cess.

Source: https://core.telegram.org/bots/api#getbusinessaccountstarbalance

business_connection_id: str

Unique identifier of the business connection

448 Chapter 2. Contents

https://core.telegram.org/bots/api#getbusinessaccountstarbalance

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: StarAmount = await bot.get_business_account_star_balance(...)

Method as object

Imports:

• from aiogram.methods.get_business_account_star_balance import
GetBusinessAccountStarBalance

• alias: from aiogram.methods import GetBusinessAccountStarBalance

With specific bot

result: StarAmount = await bot(GetBusinessAccountStarBalance(...))

getBusinessConnection

Returns: BusinessConnection

class aiogram.methods.get_business_connection.GetBusinessConnection(*, business_connection_id:
str, **extra_data: Any)

Use this method to get information about the connection of the bot with a business account. Returns a aiogram.
types.business_connection.BusinessConnection object on success.

Source: https://core.telegram.org/bots/api#getbusinessconnection

business_connection_id: str

Unique identifier of the business connection

Usage

As bot method

result: BusinessConnection = await bot.get_business_connection(...)

2.3. Bot API 449

https://core.telegram.org/bots/api#getbusinessconnection

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.get_business_connection import GetBusinessConnection

• alias: from aiogram.methods import GetBusinessConnection

With specific bot

result: BusinessConnection = await bot(GetBusinessConnection(...))

getChat

Returns: ChatFullInfo

class aiogram.methods.get_chat.GetChat(*, chat_id: int | str, **extra_data: Any)
Use this method to get up-to-date information about the chat. Returns a aiogram.types.chat_full_info.
ChatFullInfo object on success.

Source: https://core.telegram.org/bots/api#getchat

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup or channel (in the format
@channelusername)

Usage

As bot method

result: ChatFullInfo = await bot.get_chat(...)

Method as object

Imports:

• from aiogram.methods.get_chat import GetChat

• alias: from aiogram.methods import GetChat

With specific bot

result: ChatFullInfo = await bot(GetChat(...))

450 Chapter 2. Contents

https://core.telegram.org/bots/api#getchat

aiogram Documentation, Release 3.23.0

getChatAdministrators

Returns: list[ResultChatMemberUnion]

class aiogram.methods.get_chat_administrators.GetChatAdministrators(*, chat_id: int | str,
**extra_data: Any)

Use this method to get a list of administrators in a chat, which aren’t bots. Returns an Array of aiogram.types.
chat_member.ChatMember objects.

Source: https://core.telegram.org/bots/api#getchatadministrators

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup or channel (in the format
@channelusername)

Usage

As bot method

result: list[ResultChatMemberUnion] = await bot.get_chat_administrators(...)

Method as object

Imports:

• from aiogram.methods.get_chat_administrators import GetChatAdministrators

• alias: from aiogram.methods import GetChatAdministrators

With specific bot

result: list[ResultChatMemberUnion] = await bot(GetChatAdministrators(...))

As shortcut from received object

• aiogram.types.chat.Chat.get_administrators()

getChatMember

Returns: ResultChatMemberUnion

class aiogram.methods.get_chat_member.GetChatMember(*, chat_id: int | str, user_id: int, **extra_data:
Any)

Use this method to get information about a member of a chat. The method is only guaranteed to work for other
users if the bot is an administrator in the chat. Returns a aiogram.types.chat_member.ChatMember object
on success.

Source: https://core.telegram.org/bots/api#getchatmember

2.3. Bot API 451

https://core.telegram.org/bots/api#getchatadministrators
https://core.telegram.org/bots/api#getchatmember

aiogram Documentation, Release 3.23.0

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup or channel (in the format
@channelusername)

user_id: int

Unique identifier of the target user

Usage

As bot method

result: ResultChatMemberUnion = await bot.get_chat_member(...)

Method as object

Imports:

• from aiogram.methods.get_chat_member import GetChatMember

• alias: from aiogram.methods import GetChatMember

With specific bot

result: ResultChatMemberUnion = await bot(GetChatMember(...))

As shortcut from received object

• aiogram.types.chat.Chat.get_member()

getChatMemberCount

Returns: int

class aiogram.methods.get_chat_member_count.GetChatMemberCount(*, chat_id: int | str, **extra_data:
Any)

Use this method to get the number of members in a chat. Returns Int on success.

Source: https://core.telegram.org/bots/api#getchatmembercount

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup or channel (in the format
@channelusername)

452 Chapter 2. Contents

https://core.telegram.org/bots/api#getchatmembercount

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: int = await bot.get_chat_member_count(...)

Method as object

Imports:

• from aiogram.methods.get_chat_member_count import GetChatMemberCount

• alias: from aiogram.methods import GetChatMemberCount

With specific bot

result: int = await bot(GetChatMemberCount(...))

As shortcut from received object

• aiogram.types.chat.Chat.get_member_count()

getChatMenuButton

Returns: ResultMenuButtonUnion

class aiogram.methods.get_chat_menu_button.GetChatMenuButton(*, chat_id: int | None = None,
**extra_data: Any)

Use this method to get the current value of the bot’s menu button in a private chat, or the default menu button.
Returns aiogram.types.menu_button.MenuButton on success.

Source: https://core.telegram.org/bots/api#getchatmenubutton

chat_id: int | None

Unique identifier for the target private chat. If not specified, default bot’s menu button will be returned

Usage

As bot method

result: ResultMenuButtonUnion = await bot.get_chat_menu_button(...)

2.3. Bot API 453

https://core.telegram.org/bots/api#getchatmenubutton

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.get_chat_menu_button import GetChatMenuButton

• alias: from aiogram.methods import GetChatMenuButton

With specific bot

result: ResultMenuButtonUnion = await bot(GetChatMenuButton(...))

getFile

Returns: File

class aiogram.methods.get_file.GetFile(*, file_id: str, **extra_data: Any)
Use this method to get basic information about a file and prepare it for downloading. For the moment, bots can
download files of up to 20MB in size. On success, a aiogram.types.file.File object is returned. The file
can then be downloaded via the link https://api.telegram.org/file/bot<token>/<file_path>, where
<file_path> is taken from the response. It is guaranteed that the link will be valid for at least 1 hour. When
the link expires, a new one can be requested by calling aiogram.methods.get_file.GetFile again. Note:
This function may not preserve the original file name and MIME type. You should save the file’s MIME type
and name (if available) when the File object is received.

Source: https://core.telegram.org/bots/api#getfile

file_id: str

File identifier to get information about

Usage

As bot method

result: File = await bot.get_file(...)

Method as object

Imports:

• from aiogram.methods.get_file import GetFile

• alias: from aiogram.methods import GetFile

454 Chapter 2. Contents

https://core.telegram.org/bots/api#getfile

aiogram Documentation, Release 3.23.0

With specific bot

result: File = await bot(GetFile(...))

getForumTopicIconStickers

Returns: list[Sticker]

class aiogram.methods.get_forum_topic_icon_stickers.GetForumTopicIconStickers(**extra_data:
Any)

Use this method to get custom emoji stickers, which can be used as a forum topic icon by any user. Requires no
parameters. Returns an Array of aiogram.types.sticker.Sticker objects.

Source: https://core.telegram.org/bots/api#getforumtopiciconstickers

Usage

As bot method

result: list[Sticker] = await bot.get_forum_topic_icon_stickers(...)

Method as object

Imports:

• from aiogram.methods.get_forum_topic_icon_stickers import GetForumTopicIconStickers

• alias: from aiogram.methods import GetForumTopicIconStickers

With specific bot

result: list[Sticker] = await bot(GetForumTopicIconStickers(...))

getMe

Returns: User

class aiogram.methods.get_me.GetMe(**extra_data: Any)
A simple method for testing your bot’s authentication token. Requires no parameters. Returns basic information
about the bot in form of a aiogram.types.user.User object.

Source: https://core.telegram.org/bots/api#getme

2.3. Bot API 455

https://core.telegram.org/bots/api#getforumtopiciconstickers
https://core.telegram.org/bots/api#getme

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: User = await bot.get_me(...)

Method as object

Imports:

• from aiogram.methods.get_me import GetMe

• alias: from aiogram.methods import GetMe

With specific bot

result: User = await bot(GetMe(...))

getMyCommands

Returns: list[BotCommand]

class aiogram.methods.get_my_commands.GetMyCommands(*, scope: BotCommandScopeDefault |
BotCommandScopeAllPrivateChats |
BotCommandScopeAllGroupChats |
BotCommandScopeAllChatAdministrators |
BotCommandScopeChat |
BotCommandScopeChatAdministrators |
BotCommandScopeChatMember | None = None,
language_code: str | None = None,
**extra_data: Any)

Use this method to get the current list of the bot’s commands for the given scope and user language. Returns
an Array of aiogram.types.bot_command.BotCommand objects. If commands aren’t set, an empty list is
returned.

Source: https://core.telegram.org/bots/api#getmycommands

scope: BotCommandScopeUnion | None

A JSON-serialized object, describing scope of users. Defaults to aiogram.types.
bot_command_scope_default.BotCommandScopeDefault.

language_code: str | None

A two-letter ISO 639-1 language code or an empty string

456 Chapter 2. Contents

https://core.telegram.org/bots/api#getmycommands

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: list[BotCommand] = await bot.get_my_commands(...)

Method as object

Imports:

• from aiogram.methods.get_my_commands import GetMyCommands

• alias: from aiogram.methods import GetMyCommands

With specific bot

result: list[BotCommand] = await bot(GetMyCommands(...))

getMyDefaultAdministratorRights

Returns: ChatAdministratorRights

class aiogram.methods.get_my_default_administrator_rights.GetMyDefaultAdministratorRights(*,
for_channels:
bool
|
None
=
None,
**ex-
tra_data:
Any)

Use this method to get the current default administrator rights of the bot. Returns aiogram.types.
chat_administrator_rights.ChatAdministratorRights on success.

Source: https://core.telegram.org/bots/api#getmydefaultadministratorrights

for_channels: bool | None

Pass True to get default administrator rights of the bot in channels. Otherwise, default administrator rights
of the bot for groups and supergroups will be returned.

2.3. Bot API 457

https://core.telegram.org/bots/api#getmydefaultadministratorrights

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: ChatAdministratorRights = await bot.get_my_default_administrator_rights(...)

Method as object

Imports:

• from aiogram.methods.get_my_default_administrator_rights import
GetMyDefaultAdministratorRights

• alias: from aiogram.methods import GetMyDefaultAdministratorRights

With specific bot

result: ChatAdministratorRights = await bot(GetMyDefaultAdministratorRights(...))

getMyDescription

Returns: BotDescription

class aiogram.methods.get_my_description.GetMyDescription(*, language_code: str | None = None,
**extra_data: Any)

Use this method to get the current bot description for the given user language. Returns aiogram.types.
bot_description.BotDescription on success.

Source: https://core.telegram.org/bots/api#getmydescription

language_code: str | None

A two-letter ISO 639-1 language code or an empty string

Usage

As bot method

result: BotDescription = await bot.get_my_description(...)

458 Chapter 2. Contents

https://core.telegram.org/bots/api#getmydescription

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.get_my_description import GetMyDescription

• alias: from aiogram.methods import GetMyDescription

With specific bot

result: BotDescription = await bot(GetMyDescription(...))

getMyName

Returns: BotName

class aiogram.methods.get_my_name.GetMyName(*, language_code: str | None = None, **extra_data: Any)
Use this method to get the current bot name for the given user language. Returns aiogram.types.bot_name.
BotName on success.

Source: https://core.telegram.org/bots/api#getmyname

language_code: str | None

A two-letter ISO 639-1 language code or an empty string

Usage

As bot method

result: BotName = await bot.get_my_name(...)

Method as object

Imports:

• from aiogram.methods.get_my_name import GetMyName

• alias: from aiogram.methods import GetMyName

With specific bot

result: BotName = await bot(GetMyName(...))

2.3. Bot API 459

https://core.telegram.org/bots/api#getmyname

aiogram Documentation, Release 3.23.0

getMyShortDescription

Returns: BotShortDescription

class aiogram.methods.get_my_short_description.GetMyShortDescription(*, language_code: str |
None = None,
**extra_data: Any)

Use this method to get the current bot short description for the given user language. Returns aiogram.types.
bot_short_description.BotShortDescription on success.

Source: https://core.telegram.org/bots/api#getmyshortdescription

language_code: str | None

A two-letter ISO 639-1 language code or an empty string

Usage

As bot method

result: BotShortDescription = await bot.get_my_short_description(...)

Method as object

Imports:

• from aiogram.methods.get_my_short_description import GetMyShortDescription

• alias: from aiogram.methods import GetMyShortDescription

With specific bot

result: BotShortDescription = await bot(GetMyShortDescription(...))

getUserChatBoosts

Returns: UserChatBoosts

class aiogram.methods.get_user_chat_boosts.GetUserChatBoosts(*, chat_id: int | str, user_id: int,
**extra_data: Any)

Use this method to get the list of boosts added to a chat by a user. Requires administrator rights in the chat.
Returns a aiogram.types.user_chat_boosts.UserChatBoosts object.

Source: https://core.telegram.org/bots/api#getuserchatboosts

chat_id: int | str

Unique identifier for the chat or username of the channel (in the format @channelusername)

user_id: int

Unique identifier of the target user

460 Chapter 2. Contents

https://core.telegram.org/bots/api#getmyshortdescription
https://core.telegram.org/bots/api#getuserchatboosts

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: UserChatBoosts = await bot.get_user_chat_boosts(...)

Method as object

Imports:

• from aiogram.methods.get_user_chat_boosts import GetUserChatBoosts

• alias: from aiogram.methods import GetUserChatBoosts

With specific bot

result: UserChatBoosts = await bot(GetUserChatBoosts(...))

getUserProfilePhotos

Returns: UserProfilePhotos

class aiogram.methods.get_user_profile_photos.GetUserProfilePhotos(*, user_id: int, offset: int |
None = None, limit: int |
None = None, **extra_data:
Any)

Use this method to get a list of profile pictures for a user. Returns a aiogram.types.user_profile_photos.
UserProfilePhotos object.

Source: https://core.telegram.org/bots/api#getuserprofilephotos

user_id: int

Unique identifier of the target user

offset: int | None

Sequential number of the first photo to be returned. By default, all photos are returned.

limit: int | None

Limits the number of photos to be retrieved. Values between 1-100 are accepted. Defaults to 100.

Usage

As bot method

result: UserProfilePhotos = await bot.get_user_profile_photos(...)

2.3. Bot API 461

https://core.telegram.org/bots/api#getuserprofilephotos

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.get_user_profile_photos import GetUserProfilePhotos

• alias: from aiogram.methods import GetUserProfilePhotos

With specific bot

result: UserProfilePhotos = await bot(GetUserProfilePhotos(...))

As shortcut from received object

• aiogram.types.user.User.get_profile_photos()

giftPremiumSubscription

Returns: bool

class aiogram.methods.gift_premium_subscription.GiftPremiumSubscription(*, user_id: int,
month_count: int,
star_count: int, text:
str | None = None,
text_parse_mode: str |
None = None,
text_entities:
list[MessageEntity] |
None = None,
**extra_data: Any)

Gifts a Telegram Premium subscription to the given user. Returns True on success.

Source: https://core.telegram.org/bots/api#giftpremiumsubscription

user_id: int

Unique identifier of the target user who will receive a Telegram Premium subscription

month_count: int

Number of months the Telegram Premium subscription will be active for the user; must be one of 3, 6, or
12

star_count: int

Number of Telegram Stars to pay for the Telegram Premium subscription; must be 1000 for 3 months, 1500
for 6 months, and 2500 for 12 months

text: str | None

Text that will be shown along with the service message about the subscription; 0-128 characters

text_parse_mode: str | None

Mode for parsing entities in the text. See formatting options for more details. Entities other than ‘bold’,
‘italic’, ‘underline’, ‘strikethrough’, ‘spoiler’, and ‘custom_emoji’ are ignored.

462 Chapter 2. Contents

https://core.telegram.org/bots/api#giftpremiumsubscription
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

text_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the gift text. It can be specified instead of
text_parse_mode. Entities other than ‘bold’, ‘italic’, ‘underline’, ‘strikethrough’, ‘spoiler’, and ‘cus-
tom_emoji’ are ignored.

Usage

As bot method

result: bool = await bot.gift_premium_subscription(...)

Method as object

Imports:

• from aiogram.methods.gift_premium_subscription import GiftPremiumSubscription

• alias: from aiogram.methods import GiftPremiumSubscription

With specific bot

result: bool = await bot(GiftPremiumSubscription(...))

As reply into Webhook in handler

return GiftPremiumSubscription(...)

hideGeneralForumTopic

Returns: bool

class aiogram.methods.hide_general_forum_topic.HideGeneralForumTopic(*, chat_id: int | str,
**extra_data: Any)

Use this method to hide the ‘General’ topic in a forum supergroup chat. The bot must be an administrator in the
chat for this to work and must have the can_manage_topics administrator rights. The topic will be automatically
closed if it was open. Returns True on success.

Source: https://core.telegram.org/bots/api#hidegeneralforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

2.3. Bot API 463

https://core.telegram.org/bots/api#hidegeneralforumtopic

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.hide_general_forum_topic(...)

Method as object

Imports:

• from aiogram.methods.hide_general_forum_topic import HideGeneralForumTopic

• alias: from aiogram.methods import HideGeneralForumTopic

With specific bot

result: bool = await bot(HideGeneralForumTopic(...))

As reply into Webhook in handler

return HideGeneralForumTopic(...)

leaveChat

Returns: bool

class aiogram.methods.leave_chat.LeaveChat(*, chat_id: int | str, **extra_data: Any)
Use this method for your bot to leave a group, supergroup or channel. Returns True on success.

Source: https://core.telegram.org/bots/api#leavechat

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup or channel (in the format
@channelusername). Channel direct messages chats aren’t supported; leave the corresponding channel
instead.

Usage

As bot method

result: bool = await bot.leave_chat(...)

464 Chapter 2. Contents

https://core.telegram.org/bots/api#leavechat

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.leave_chat import LeaveChat

• alias: from aiogram.methods import LeaveChat

With specific bot

result: bool = await bot(LeaveChat(...))

As reply into Webhook in handler

return LeaveChat(...)

As shortcut from received object

• aiogram.types.chat.Chat.leave()

logOut

Returns: bool

class aiogram.methods.log_out.LogOut(**extra_data: Any)
Use this method to log out from the cloud Bot API server before launching the bot locally. You must log out the
bot before running it locally, otherwise there is no guarantee that the bot will receive updates. After a successful
call, you can immediately log in on a local server, but will not be able to log in back to the cloud Bot API server
for 10 minutes. Returns True on success. Requires no parameters.

Source: https://core.telegram.org/bots/api#logout

Usage

As bot method

result: bool = await bot.log_out(...)

2.3. Bot API 465

https://core.telegram.org/bots/api#logout

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.log_out import LogOut

• alias: from aiogram.methods import LogOut

With specific bot

result: bool = await bot(LogOut(...))

As reply into Webhook in handler

return LogOut(...)

pinChatMessage

Returns: bool

class aiogram.methods.pin_chat_message.PinChatMessage(*, chat_id: int | str, message_id: int,
business_connection_id: str | None = None,
disable_notification: bool | None = None,
**extra_data: Any)

Use this method to add a message to the list of pinned messages in a chat. In private chats and channel direct
messages chats, all non-service messages can be pinned. Conversely, the bot must be an administrator with the
‘can_pin_messages’ right or the ‘can_edit_messages’ right to pin messages in groups and channels respectively.
Returns True on success.

Source: https://core.telegram.org/bots/api#pinchatmessage

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

message_id: int

Identifier of a message to pin

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be pinned

disable_notification: bool | None

Pass True if it is not necessary to send a notification to all chat members about the new pinned message.
Notifications are always disabled in channels and private chats.

466 Chapter 2. Contents

https://core.telegram.org/bots/api#pinchatmessage

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.pin_chat_message(...)

Method as object

Imports:

• from aiogram.methods.pin_chat_message import PinChatMessage

• alias: from aiogram.methods import PinChatMessage

With specific bot

result: bool = await bot(PinChatMessage(...))

As reply into Webhook in handler

return PinChatMessage(...)

As shortcut from received object

• aiogram.types.chat.Chat.pin_message()

• aiogram.types.message.Message.pin()

postStory

Returns: Story

class aiogram.methods.post_story.PostStory(*, business_connection_id: str, content:
InputStoryContentPhoto | InputStoryContentVideo,
active_period: int, caption: str | None = None, parse_mode:
str | None = None, caption_entities: list[MessageEntity] |
None = None, areas: list[StoryArea] | None = None,
post_to_chat_page: bool | None = None, protect_content:
bool | None = None, **extra_data: Any)

Posts a story on behalf of a managed business account. Requires the can_manage_stories business bot right.
Returns aiogram.types.story.Story on success.

Source: https://core.telegram.org/bots/api#poststory

business_connection_id: str

Unique identifier of the business connection

2.3. Bot API 467

https://core.telegram.org/bots/api#poststory

aiogram Documentation, Release 3.23.0

content: InputStoryContentUnion

Content of the story

active_period: int

Period after which the story is moved to the archive, in seconds; must be one of 6 * 3600, 12 * 3600,
86400, or 2 * 86400

caption: str | None

Caption of the story, 0-2048 characters after entities parsing

parse_mode: str | None

Mode for parsing entities in the story caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

areas: list[StoryArea] | None

A JSON-serialized list of clickable areas to be shown on the story

post_to_chat_page: bool | None

Pass True to keep the story accessible after it expires

protect_content: bool | None

Pass True if the content of the story must be protected from forwarding and screenshotting

Usage

As bot method

result: Story = await bot.post_story(...)

Method as object

Imports:

• from aiogram.methods.post_story import PostStory

• alias: from aiogram.methods import PostStory

With specific bot

result: Story = await bot(PostStory(...))

468 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

As reply into Webhook in handler

return PostStory(...)

promoteChatMember

Returns: bool

class aiogram.methods.promote_chat_member.PromoteChatMember(*, chat_id: int | str, user_id: int,
is_anonymous: bool | None = None,
can_manage_chat: bool | None =
None, can_delete_messages: bool |
None = None,
can_manage_video_chats: bool |
None = None, can_restrict_members:
bool | None = None,
can_promote_members: bool | None =
None, can_change_info: bool | None
= None, can_invite_users: bool | None
= None, can_post_stories: bool | None
= None, can_edit_stories: bool | None
= None, can_delete_stories: bool |
None = None, can_post_messages:
bool | None = None,
can_edit_messages: bool | None =
None, can_pin_messages: bool | None
= None, can_manage_topics: bool |
None = None,
can_manage_direct_messages: bool |
None = None, **extra_data: Any)

Use this method to promote or demote a user in a supergroup or a channel. The bot must be an administrator in the
chat for this to work and must have the appropriate administrator rights. Pass False for all boolean parameters
to demote a user. Returns True on success.

Source: https://core.telegram.org/bots/api#promotechatmember

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

user_id: int

Unique identifier of the target user

is_anonymous: bool | None

Pass True if the administrator’s presence in the chat is hidden

can_manage_chat: bool | None

Pass True if the administrator can access the chat event log, get boost list, see hidden supergroup and
channel members, report spam messages, ignore slow mode, and send messages to the chat without paying
Telegram Stars. Implied by any other administrator privilege.

can_delete_messages: bool | None

Pass True if the administrator can delete messages of other users

2.3. Bot API 469

https://core.telegram.org/bots/api#promotechatmember

aiogram Documentation, Release 3.23.0

can_manage_video_chats: bool | None

Pass True if the administrator can manage video chats

can_restrict_members: bool | None

Pass True if the administrator can restrict, ban or unban chat members, or access supergroup statistics

can_promote_members: bool | None

Pass True if the administrator can add new administrators with a subset of their own privileges or de-
mote administrators that they have promoted, directly or indirectly (promoted by administrators that were
appointed by him)

can_change_info: bool | None

Pass True if the administrator can change chat title, photo and other settings

can_invite_users: bool | None

Pass True if the administrator can invite new users to the chat

can_post_stories: bool | None

Pass True if the administrator can post stories to the chat

can_edit_stories: bool | None

Pass True if the administrator can edit stories posted by other users, post stories to the chat page, pin chat
stories, and access the chat’s story archive

can_delete_stories: bool | None

Pass True if the administrator can delete stories posted by other users

can_post_messages: bool | None

Pass True if the administrator can post messages in the channel, approve suggested posts, or access channel
statistics; for channels only

can_edit_messages: bool | None

Pass True if the administrator can edit messages of other users and can pin messages; for channels only

can_pin_messages: bool | None

Pass True if the administrator can pin messages; for supergroups only

can_manage_topics: bool | None

Pass True if the user is allowed to create, rename, close, and reopen forum topics; for supergroups only

can_manage_direct_messages: bool | None

Pass True if the administrator can manage direct messages within the channel and decline suggested posts;
for channels only

Usage

As bot method

result: bool = await bot.promote_chat_member(...)

470 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.promote_chat_member import PromoteChatMember

• alias: from aiogram.methods import PromoteChatMember

With specific bot

result: bool = await bot(PromoteChatMember(...))

As reply into Webhook in handler

return PromoteChatMember(...)

As shortcut from received object

• aiogram.types.chat.Chat.promote()

readBusinessMessage

Returns: bool

class aiogram.methods.read_business_message.ReadBusinessMessage(*, business_connection_id: str,
chat_id: int, message_id: int,
**extra_data: Any)

Marks incoming message as read on behalf of a business account. Requires the can_read_messages business bot
right. Returns True on success.

Source: https://core.telegram.org/bots/api#readbusinessmessage

business_connection_id: str

Unique identifier of the business connection on behalf of which to read the message

chat_id: int

Unique identifier of the chat in which the message was received. The chat must have been active in the last
24 hours.

message_id: int

Unique identifier of the message to mark as read

2.3. Bot API 471

https://core.telegram.org/bots/api#readbusinessmessage

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.read_business_message(...)

Method as object

Imports:

• from aiogram.methods.read_business_message import ReadBusinessMessage

• alias: from aiogram.methods import ReadBusinessMessage

With specific bot

result: bool = await bot(ReadBusinessMessage(...))

As reply into Webhook in handler

return ReadBusinessMessage(...)

removeBusinessAccountProfilePhoto

Returns: bool

class aiogram.methods.remove_business_account_profile_photo.RemoveBusinessAccountProfilePhoto(*,
busi-
ness_connection_id:
str,
is_public:
bool
|
None
=
None,
**ex-
tra_data:
Any)

Removes the current profile photo of a managed business account. Requires the can_edit_profile_photo business
bot right. Returns True on success.

Source: https://core.telegram.org/bots/api#removebusinessaccountprofilephoto

business_connection_id: str

Unique identifier of the business connection

472 Chapter 2. Contents

https://core.telegram.org/bots/api#removebusinessaccountprofilephoto

aiogram Documentation, Release 3.23.0

is_public: bool | None

Pass True to remove the public photo, which is visible even if the main photo is hidden by the business
account’s privacy settings. After the main photo is removed, the previous profile photo (if present) becomes
the main photo.

Usage

As bot method

result: bool = await bot.remove_business_account_profile_photo(...)

Method as object

Imports:

• from aiogram.methods.remove_business_account_profile_photo import
RemoveBusinessAccountProfilePhoto

• alias: from aiogram.methods import RemoveBusinessAccountProfilePhoto

With specific bot

result: bool = await bot(RemoveBusinessAccountProfilePhoto(...))

As reply into Webhook in handler

return RemoveBusinessAccountProfilePhoto(...)

removeChatVerification

Returns: bool

class aiogram.methods.remove_chat_verification.RemoveChatVerification(*, chat_id: int | str,
**extra_data: Any)

Removes verification from a chat that is currently verified on behalf of the organization represented by the bot.
Returns True on success.

Source: https://core.telegram.org/bots/api#removechatverification

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

2.3. Bot API 473

https://telegram.org/verify#third-party-verification
https://core.telegram.org/bots/api#removechatverification

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.remove_chat_verification(...)

Method as object

Imports:

• from aiogram.methods.remove_chat_verification import RemoveChatVerification

• alias: from aiogram.methods import RemoveChatVerification

With specific bot

result: bool = await bot(RemoveChatVerification(...))

As reply into Webhook in handler

return RemoveChatVerification(...)

removeUserVerification

Returns: bool

class aiogram.methods.remove_user_verification.RemoveUserVerification(*, user_id: int,
**extra_data: Any)

Removes verification from a user who is currently verified on behalf of the organization represented by the bot.
Returns True on success.

Source: https://core.telegram.org/bots/api#removeuserverification

user_id: int

Unique identifier of the target user

Usage

As bot method

result: bool = await bot.remove_user_verification(...)

474 Chapter 2. Contents

https://telegram.org/verify#third-party-verification
https://core.telegram.org/bots/api#removeuserverification

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.remove_user_verification import RemoveUserVerification

• alias: from aiogram.methods import RemoveUserVerification

With specific bot

result: bool = await bot(RemoveUserVerification(...))

As reply into Webhook in handler

return RemoveUserVerification(...)

reopenForumTopic

Returns: bool

class aiogram.methods.reopen_forum_topic.ReopenForumTopic(*, chat_id: int | str, message_thread_id:
int, **extra_data: Any)

Use this method to reopen a closed topic in a forum supergroup chat. The bot must be an administrator in the
chat for this to work and must have the can_manage_topics administrator rights, unless it is the creator of the
topic. Returns True on success.

Source: https://core.telegram.org/bots/api#reopenforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

message_thread_id: int

Unique identifier for the target message thread of the forum topic

Usage

As bot method

result: bool = await bot.reopen_forum_topic(...)

2.3. Bot API 475

https://core.telegram.org/bots/api#reopenforumtopic

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.reopen_forum_topic import ReopenForumTopic

• alias: from aiogram.methods import ReopenForumTopic

With specific bot

result: bool = await bot(ReopenForumTopic(...))

As reply into Webhook in handler

return ReopenForumTopic(...)

reopenGeneralForumTopic

Returns: bool

class aiogram.methods.reopen_general_forum_topic.ReopenGeneralForumTopic(*, chat_id: int | str,
**extra_data: Any)

Use this method to reopen a closed ‘General’ topic in a forum supergroup chat. The bot must be an adminis-
trator in the chat for this to work and must have the can_manage_topics administrator rights. The topic will be
automatically unhidden if it was hidden. Returns True on success.

Source: https://core.telegram.org/bots/api#reopengeneralforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

Usage

As bot method

result: bool = await bot.reopen_general_forum_topic(...)

Method as object

Imports:

• from aiogram.methods.reopen_general_forum_topic import ReopenGeneralForumTopic

• alias: from aiogram.methods import ReopenGeneralForumTopic

476 Chapter 2. Contents

https://core.telegram.org/bots/api#reopengeneralforumtopic

aiogram Documentation, Release 3.23.0

With specific bot

result: bool = await bot(ReopenGeneralForumTopic(...))

As reply into Webhook in handler

return ReopenGeneralForumTopic(...)

restrictChatMember

Returns: bool

class aiogram.methods.restrict_chat_member.RestrictChatMember(*, chat_id: int | str, user_id: int,
permissions: ChatPermissions,
use_independent_chat_permissions:
bool | None = None, until_date:
datetime | timedelta | int | None =
None, **extra_data: Any)

Use this method to restrict a user in a supergroup. The bot must be an administrator in the supergroup for this to
work and must have the appropriate administrator rights. Pass True for all permissions to lift restrictions from a
user. Returns True on success.

Source: https://core.telegram.org/bots/api#restrictchatmember

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

user_id: int

Unique identifier of the target user

permissions: ChatPermissions

A JSON-serialized object for new user permissions

use_independent_chat_permissions: bool | None

Pass True if chat permissions are set independently. Otherwise, the can_send_other_messages and
can_add_web_page_previews permissions will imply the can_send_messages, can_send_audios,
can_send_documents, can_send_photos, can_send_videos, can_send_video_notes, and
can_send_voice_notes permissions; the can_send_polls permission will imply the can_send_messages
permission.

until_date: DateTimeUnion | None

Date when restrictions will be lifted for the user; Unix time. If user is restricted for more than 366 days or
less than 30 seconds from the current time, they are considered to be restricted forever

2.3. Bot API 477

https://core.telegram.org/bots/api#restrictchatmember

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.restrict_chat_member(...)

Method as object

Imports:

• from aiogram.methods.restrict_chat_member import RestrictChatMember

• alias: from aiogram.methods import RestrictChatMember

With specific bot

result: bool = await bot(RestrictChatMember(...))

As reply into Webhook in handler

return RestrictChatMember(...)

As shortcut from received object

• aiogram.types.chat.Chat.restrict()

revokeChatInviteLink

Returns: ChatInviteLink

class aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink(*, chat_id: int | str,
invite_link: str,
**extra_data: Any)

Use this method to revoke an invite link created by the bot. If the primary link is revoked, a new link is automat-
ically generated. The bot must be an administrator in the chat for this to work and must have the appropriate ad-
ministrator rights. Returns the revoked invite link as aiogram.types.chat_invite_link.ChatInviteLink
object.

Source: https://core.telegram.org/bots/api#revokechatinvitelink

chat_id: ChatIdUnion

Unique identifier of the target chat or username of the target channel (in the format @channelusername)

invite_link: str

The invite link to revoke

478 Chapter 2. Contents

https://core.telegram.org/bots/api#revokechatinvitelink

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: ChatInviteLink = await bot.revoke_chat_invite_link(...)

Method as object

Imports:

• from aiogram.methods.revoke_chat_invite_link import RevokeChatInviteLink

• alias: from aiogram.methods import RevokeChatInviteLink

With specific bot

result: ChatInviteLink = await bot(RevokeChatInviteLink(...))

As reply into Webhook in handler

return RevokeChatInviteLink(...)

As shortcut from received object

• aiogram.types.chat.Chat.revoke_invite_link()

2.3. Bot API 479

aiogram Documentation, Release 3.23.0

sendAnimation

Returns: Message

class aiogram.methods.send_animation.SendAnimation(*, chat_id: int | str, animation: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
duration: int | None = None, width: int | None =
None, height: int | None = None, thumbnail:
~aiogram.types.input_file.InputFile | None =
None, caption: str | None = None, parse_mode:
str | ~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, show_caption_above_media: bool
| ~aiogram.client.default.Default | None =
<Default('show_caption_above_media')>,
has_spoiler: bool | None = None,
disable_notification: bool | None = None,
protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters
| None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None =
None, allow_sending_without_reply: bool | None
= None, reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success, the
sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to 50 MB
in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

animation: InputFileUnion

Animation to send. Pass a file_id as String to send an animation that exists on the Telegram servers (rec-
ommended), pass an HTTP URL as a String for Telegram to get an animation from the Internet, or upload
a new animation using multipart/form-data. More information on Sending Files »

480 Chapter 2. Contents

https://core.telegram.org/bots/api#sendanimation

aiogram Documentation, Release 3.23.0

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

duration: int | None

Duration of sent animation in seconds

width: int | None

Animation width

height: int | None

Animation height

thumbnail: InputFile | None

Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The
thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should
not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused
and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was
uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

caption: str | None

Animation caption (may also be used when resending animation by file_id), 0-1024 characters after entities
parsing

parse_mode: str | Default | None

Mode for parsing entities in the animation caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

show_caption_above_media: bool | Default | None

Pass True, if the caption must be shown above the message media

has_spoiler: bool | None

Pass True if the animation needs to be covered with a spoiler animation

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

2.3. Bot API 481

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_animation(...)

Method as object

Imports:

• from aiogram.methods.send_animation import SendAnimation

• alias: from aiogram.methods import SendAnimation

With specific bot

result: Message = await bot(SendAnimation(...))

As reply into Webhook in handler

return SendAnimation(...)

482 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

As shortcut from received object

• aiogram.types.message.Message.answer_animation()

• aiogram.types.message.Message.reply_animation()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_animation()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_animation_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_animation()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_animation()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_animation()

sendAudio

Returns: Message

class aiogram.methods.send_audio.SendAudio(*, chat_id: int | str, audio: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None, caption: str |
None = None, parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] | None =
None, duration: int | None = None, performer: str | None =
None, title: str | None = None, thumbnail:
~aiogram.types.input_file.InputFile | None = None,
disable_notification: bool | None = None, protect_content:
bool | ~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast: bool |
None = None, message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None = None,
allow_sending_without_reply: bool | None = None,
reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio
must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is returned.
Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future. For sending
voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

2.3. Bot API 483

https://core.telegram.org/bots/api#sendaudio

aiogram Documentation, Release 3.23.0

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

audio: InputFileUnion

Audio file to send. Pass a file_id as String to send an audio file that exists on the Telegram servers (recom-
mended), pass an HTTP URL as a String for Telegram to get an audio file from the Internet, or upload a
new one using multipart/form-data. More information on Sending Files »

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

caption: str | None

Audio caption, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Mode for parsing entities in the audio caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

duration: int | None

Duration of the audio in seconds

performer: str | None

Performer

title: str | None

Track name

thumbnail: InputFile | None

Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The
thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should
not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused
and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was
uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

484 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_audio(...)

Method as object

Imports:

• from aiogram.methods.send_audio import SendAudio

• alias: from aiogram.methods import SendAudio

With specific bot

result: Message = await bot(SendAudio(...))

As reply into Webhook in handler

return SendAudio(...)

2.3. Bot API 485

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

As shortcut from received object

• aiogram.types.message.Message.answer_audio()

• aiogram.types.message.Message.reply_audio()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_audio()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_audio_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_audio()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_audio()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_audio()

sendChatAction

Returns: bool

class aiogram.methods.send_chat_action.SendChatAction(*, chat_id: int | str, action: str,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
**extra_data: Any)

Use this method when you need to tell the user that something is happening on the bot’s side. The status is set
for 5 seconds or less (when a message arrives from your bot, Telegram clients clear its typing status). Returns
True on success.

Example: The ImageBot needs some time to process a request and upload the image. Instead of
sending a text message along the lines of ‘Retrieving image, please wait. . . ’, the bot may use aiogram.
methods.send_chat_action.SendChatAction with action = upload_photo. The user will see a
‘sending photo’ status for the bot.

We only recommend using this method when a response from the bot will take a noticeable amount of time to
arrive.

Source: https://core.telegram.org/bots/api#sendchataction

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername). Channel chats and channel direct messages chats aren’t supported.

action: str

Type of action to broadcast. Choose one, depending on what the user is about to receive: typing for text mes-
sages, upload_photo for photos, record_video or upload_video for videos, record_voice or upload_voice
for voice notes, upload_document for general files, choose_sticker for stickers, find_location for location
data, record_video_note or upload_video_note for video notes.

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the action will be sent

message_thread_id: int | None

Unique identifier for the target message thread; for supergroups only

486 Chapter 2. Contents

https://t.me/imagebot
https://core.telegram.org/bots/api#sendchataction
https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#sendmessage
https://core.telegram.org/bots/api#sendphoto
https://core.telegram.org/bots/api#sendvideo
https://core.telegram.org/bots/api#sendvoice
https://core.telegram.org/bots/api#senddocument
https://core.telegram.org/bots/api#sendsticker
https://core.telegram.org/bots/api#sendlocation
https://core.telegram.org/bots/api#sendlocation
https://core.telegram.org/bots/api#sendvideonote

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.send_chat_action(...)

Method as object

Imports:

• from aiogram.methods.send_chat_action import SendChatAction

• alias: from aiogram.methods import SendChatAction

With specific bot

result: bool = await bot(SendChatAction(...))

As reply into Webhook in handler

return SendChatAction(...)

As shortcut from received object

• aiogram.types.chat.Chat.do()

sendChecklist

Returns: Message

class aiogram.methods.send_checklist.SendChecklist(*, business_connection_id: str, chat_id: int,
checklist: InputChecklist, disable_notification:
bool | None = None, protect_content: bool | None
= None, message_effect_id: str | None = None,
reply_parameters: ReplyParameters | None =
None, reply_markup: InlineKeyboardMarkup |
None = None, **extra_data: Any)

Use this method to send a checklist on behalf of a connected business account. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendchecklist

business_connection_id: str

Unique identifier of the business connection on behalf of which the message will be sent

chat_id: int

Unique identifier for the target chat

2.3. Bot API 487

https://core.telegram.org/bots/api#sendchecklist

aiogram Documentation, Release 3.23.0

checklist: InputChecklist

A JSON-serialized object for the checklist to send

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | None

Protects the contents of the sent message from forwarding and saving

message_effect_id: str | None

Unique identifier of the message effect to be added to the message

reply_parameters: ReplyParameters | None

A JSON-serialized object for description of the message to reply to

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for an inline keyboard

Usage

As bot method

result: Message = await bot.send_checklist(...)

Method as object

Imports:

• from aiogram.methods.send_checklist import SendChecklist

• alias: from aiogram.methods import SendChecklist

With specific bot

result: Message = await bot(SendChecklist(...))

As reply into Webhook in handler

return SendChecklist(...)

488 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

sendContact

Returns: Message

class aiogram.methods.send_contact.SendContact(*, chat_id: int | str, phone_number: str, first_name:
str, business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
last_name: str | None = None, vcard: str | None =
None, disable_notification: bool | None = None,
protect_content: bool | ~aiogram.client.default.Default
| None = <Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters |
None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None =
None, allow_sending_without_reply: bool | None =
None, reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendcontact

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

phone_number: str

Contact’s phone number

first_name: str

Contact’s first name

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

last_name: str | None

Contact’s last name

vcard: str | None

Additional data about the contact in the form of a vCard, 0-2048 bytes

2.3. Bot API 489

https://core.telegram.org/bots/api#sendcontact
https://en.wikipedia.org/wiki/VCard

aiogram Documentation, Release 3.23.0

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_contact(...)

Method as object

Imports:

• from aiogram.methods.send_contact import SendContact

• alias: from aiogram.methods import SendContact

490 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

With specific bot

result: Message = await bot(SendContact(...))

As reply into Webhook in handler

return SendContact(...)

As shortcut from received object

• aiogram.types.message.Message.answer_contact()

• aiogram.types.message.Message.reply_contact()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_contact()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_contact_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_contact()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_contact()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_contact()

sendDice

Returns: Message

class aiogram.methods.send_dice.SendDice(*, chat_id: int | str, business_connection_id: str | None =
None, message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None, emoji: str | None
= None, disable_notification: bool | None = None,
protect_content: bool | ~aiogram.client.default.Default | None
= <Default('protect_content')>, allow_paid_broadcast: bool |
None = None, message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None = None,
allow_sending_without_reply: bool | None = None,
reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

2.3. Bot API 491

https://core.telegram.org/bots/api#senddice

aiogram Documentation, Release 3.23.0

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

emoji: str | None

Emoji on which the dice throw animation is based. Currently, must be one of ‘’, ‘’, ‘’, ‘’, ‘’, or ‘’. Dice can
have values 1-6 for ‘’, ‘’ and ‘’, values 1-5 for ‘’ and ‘’, and values 1-64 for ‘’. Defaults to ‘’

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

492 Chapter 2. Contents

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.send_dice(...)

Method as object

Imports:

• from aiogram.methods.send_dice import SendDice

• alias: from aiogram.methods import SendDice

With specific bot

result: Message = await bot(SendDice(...))

As reply into Webhook in handler

return SendDice(...)

As shortcut from received object

• aiogram.types.message.Message.answer_dice()

• aiogram.types.message.Message.reply_dice()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_dice()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_dice_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_dice()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_dice()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_dice()

sendDocument

Returns: Message

2.3. Bot API 493

aiogram Documentation, Release 3.23.0

class aiogram.methods.send_document.SendDocument(*, chat_id: int | str, document: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
thumbnail: ~aiogram.types.input_file.InputFile |
None = None, caption: str | None = None,
parse_mode: str | ~aiogram.client.default.Default |
None = <Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] |
None = None, disable_content_type_detection: bool
| None = None, disable_notification: bool | None =
None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters |
None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None =
None, allow_sending_without_reply: bool | None =
None, reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

Use this method to send general files. On success, the sent aiogram.types.message.Message is returned.
Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#senddocument

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

document: InputFileUnion

File to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended),
pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using
multipart/form-data. More information on Sending Files »

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

thumbnail: InputFile | None

Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The

494 Chapter 2. Contents

https://core.telegram.org/bots/api#senddocument

aiogram Documentation, Release 3.23.0

thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should
not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused
and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was
uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

caption: str | None

Document caption (may also be used when resending documents by file_id), 0-1024 characters after entities
parsing

parse_mode: str | Default | None

Mode for parsing entities in the document caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

disable_content_type_detection: bool | None

Disables automatic server-side content type detection for files uploaded using multipart/form-data

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

2.3. Bot API 495

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.send_document(...)

Method as object

Imports:

• from aiogram.methods.send_document import SendDocument

• alias: from aiogram.methods import SendDocument

With specific bot

result: Message = await bot(SendDocument(...))

As reply into Webhook in handler

return SendDocument(...)

As shortcut from received object

• aiogram.types.message.Message.answer_document()

• aiogram.types.message.Message.reply_document()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_document()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_document_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_document()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_document()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_document()

sendGift

Returns: bool

class aiogram.methods.send_gift.SendGift(*, gift_id: str, user_id: int | None = None, chat_id: int | str |
None = None, pay_for_upgrade: bool | None = None, text: str |
None = None, text_parse_mode: str | None = None,
text_entities: list[MessageEntity] | None = None,
**extra_data: Any)

Sends a gift to the given user or channel chat. The gift can’t be converted to Telegram Stars by the receiver.
Returns True on success.

Source: https://core.telegram.org/bots/api#sendgift

496 Chapter 2. Contents

https://core.telegram.org/bots/api#sendgift

aiogram Documentation, Release 3.23.0

gift_id: str

Identifier of the gift

user_id: int | None

Required if chat_id is not specified. Unique identifier of the target user who will receive the gift.

chat_id: ChatIdUnion | None

Required if user_id is not specified. Unique identifier for the chat or username of the channel (in the format
@channelusername) that will receive the gift.

pay_for_upgrade: bool | None

Pass True to pay for the gift upgrade from the bot’s balance, thereby making the upgrade free for the receiver

text: str | None

Text that will be shown along with the gift; 0-128 characters

text_parse_mode: str | None

Mode for parsing entities in the text. See formatting options for more details. Entities other than ‘bold’,
‘italic’, ‘underline’, ‘strikethrough’, ‘spoiler’, and ‘custom_emoji’ are ignored.

text_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the gift text. It can be specified instead of
text_parse_mode. Entities other than ‘bold’, ‘italic’, ‘underline’, ‘strikethrough’, ‘spoiler’, and ‘cus-
tom_emoji’ are ignored.

Usage

As bot method

result: bool = await bot.send_gift(...)

Method as object

Imports:

• from aiogram.methods.send_gift import SendGift

• alias: from aiogram.methods import SendGift

With specific bot

result: bool = await bot(SendGift(...))

2.3. Bot API 497

https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

As reply into Webhook in handler

return SendGift(...)

sendLocation

Returns: Message

class aiogram.methods.send_location.SendLocation(*, chat_id: int | str, latitude: float, longitude: float,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
horizontal_accuracy: float | None = None,
live_period: int | None = None, heading: int | None
= None, proximity_alert_radius: int | None = None,
disable_notification: bool | None = None,
protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters |
None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None =
None, allow_sending_without_reply: bool | None =
None, reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendlocation

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

latitude: float

Latitude of the location

longitude: float

Longitude of the location

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

498 Chapter 2. Contents

https://core.telegram.org/bots/api#sendlocation

aiogram Documentation, Release 3.23.0

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

horizontal_accuracy: float | None

The radius of uncertainty for the location, measured in meters; 0-1500

live_period: int | None

Period in seconds during which the location will be updated (see Live Locations, should be between 60 and
86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

heading: int | None

For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if
specified.

proximity_alert_radius: int | None

For live locations, a maximum distance for proximity alerts about approaching another chat member, in
meters. Must be between 1 and 100000 if specified.

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

2.3. Bot API 499

https://telegram.org/blog/live-locations
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.send_location(...)

Method as object

Imports:

• from aiogram.methods.send_location import SendLocation

• alias: from aiogram.methods import SendLocation

With specific bot

result: Message = await bot(SendLocation(...))

As reply into Webhook in handler

return SendLocation(...)

As shortcut from received object

• aiogram.types.message.Message.answer_location()

• aiogram.types.message.Message.reply_location()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_location()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_location_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_location()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_location()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_location()

sendMediaGroup

Returns: list[Message]

500 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

class aiogram.methods.send_media_group.SendMediaGroup(*, chat_id: int | str, media:
list[~aiogram.types.input_media_audio.InputMediaAudio
|
~aiogram.types.input_media_document.InputMediaDocument
|
~aiogram.types.input_media_photo.InputMediaPhoto
|
~aiogram.types.input_media_video.InputMediaVideo],
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
disable_notification: bool | None = None,
protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
message_effect_id: str | None = None,
reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters
| None = None, allow_sending_without_reply:
bool | None = None, reply_to_message_id: int
| None = None, **extra_data: ~typing.Any)

Use this method to send a group of photos, videos, documents or audios as an album. Documents and audio files
can be only grouped in an album with messages of the same type. On success, an array of aiogram.types.
message.Message objects that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

media: list[MediaUnion]

A JSON-serialized array describing messages to be sent, must include 2-10 items

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the messages will be sent; required if the messages are sent
to a direct messages chat

disable_notification: bool | None

Sends messages silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent messages from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

2.3. Bot API 501

https://core.telegram.org/bots/api#sendmediagroup
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

reply_parameters: ReplyParameters | None

Description of the message to reply to

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the messages are a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: list[Message] = await bot.send_media_group(...)

Method as object

Imports:

• from aiogram.methods.send_media_group import SendMediaGroup

• alias: from aiogram.methods import SendMediaGroup

With specific bot

result: list[Message] = await bot(SendMediaGroup(...))

As reply into Webhook in handler

return SendMediaGroup(...)

As shortcut from received object

• aiogram.types.message.Message.answer_media_group()

• aiogram.types.message.Message.reply_media_group()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_media_group()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_media_group_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_media_group()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_media_group()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_media_group()

502 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

sendMessage

Returns: Message

class aiogram.methods.send_message.SendMessage(*, chat_id: int | str, text: str, business_connection_id:
str | None = None, message_thread_id: int | None =
None, direct_messages_topic_id: int | None = None,
parse_mode: str | ~aiogram.client.default.Default |
None = <Default('parse_mode')>, entities:
list[~aiogram.types.message_entity.MessageEntity] |
None = None, link_preview_options:
~aiogram.types.link_preview_options.LinkPreviewOptions
| ~aiogram.client.default.Default | None =
<Default('link_preview')>, disable_notification: bool |
None = None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast:
bool | None = None, message_effect_id: str | None =
None, suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters |
None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None =
None, allow_sending_without_reply: bool | None =
None, disable_web_page_preview: bool |
~aiogram.client.default.Default | None =
<Default('link_preview_is_disabled')>,
reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

Use this method to send text messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendmessage

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

text: str

Text of the message to be sent, 1-4096 characters after entities parsing

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

2.3. Bot API 503

https://core.telegram.org/bots/api#sendmessage

aiogram Documentation, Release 3.23.0

parse_mode: str | Default | None

Mode for parsing entities in the message text. See formatting options for more details.

entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in message text, which can be specified instead of
parse_mode

link_preview_options: LinkPreviewOptions | Default | None

Link preview generation options for the message

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

disable_web_page_preview: bool | Default | None

Disables link previews for links in this message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

504 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.send_message(...)

Method as object

Imports:

• from aiogram.methods.send_message import SendMessage

• alias: from aiogram.methods import SendMessage

With specific bot

result: Message = await bot(SendMessage(...))

As reply into Webhook in handler

return SendMessage(...)

As shortcut from received object

• aiogram.types.message.Message.answer()

• aiogram.types.message.Message.reply()

• aiogram.types.chat_join_request.ChatJoinRequest.answer()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply()

sendPaidMedia

Returns: Message

2.3. Bot API 505

aiogram Documentation, Release 3.23.0

class aiogram.methods.send_paid_media.SendPaidMedia(*, chat_id: int | str, star_count: int, media:
list[InputPaidMediaPhoto |
InputPaidMediaVideo], business_connection_id:
str | None = None, message_thread_id: int |
None = None, direct_messages_topic_id: int |
None = None, payload: str | None = None,
caption: str | None = None, parse_mode: str |
None = None, caption_entities:
list[MessageEntity] | None = None,
show_caption_above_media: bool | None =
None, disable_notification: bool | None = None,
protect_content: bool | None = None,
allow_paid_broadcast: bool | None = None,
suggested_post_parameters:
SuggestedPostParameters | None = None,
reply_parameters: ReplyParameters | None =
None, reply_markup: InlineKeyboardMarkup |
ReplyKeyboardMarkup | ReplyKeyboardRemove
| ForceReply | None = None, **extra_data: Any)

Use this method to send paid media. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpaidmedia

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername).
If the chat is a channel, all Telegram Star proceeds from this media will be credited to the chat’s balance.
Otherwise, they will be credited to the bot’s balance.

star_count: int

The number of Telegram Stars that must be paid to buy access to the media; 1-10000

media: list[InputPaidMediaUnion]

A JSON-serialized array describing the media to be sent; up to 10 items

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

payload: str | None

Bot-defined paid media payload, 0-128 bytes. This will not be displayed to the user, use it for your internal
processes.

caption: str | None

Media caption, 0-1024 characters after entities parsing

parse_mode: str | None

Mode for parsing entities in the media caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

506 Chapter 2. Contents

https://core.telegram.org/bots/api#sendpaidmedia
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

show_caption_above_media: bool | None

Pass True, if the caption must be shown above the message media

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

Usage

As bot method

result: Message = await bot.send_paid_media(...)

Method as object

Imports:

• from aiogram.methods.send_paid_media import SendPaidMedia

• alias: from aiogram.methods import SendPaidMedia

With specific bot

result: Message = await bot(SendPaidMedia(...))

2.3. Bot API 507

https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

As reply into Webhook in handler

return SendPaidMedia(...)

As shortcut from received object

• aiogram.types.message.Message.answer_paid_media()

• aiogram.types.message.Message.reply_paid_media()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_paid_media()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_paid_media()

sendPhoto

Returns: Message

class aiogram.methods.send_photo.SendPhoto(*, chat_id: int | str, photo: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None, caption: str |
None = None, parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] | None =
None, show_caption_above_media: bool |
~aiogram.client.default.Default | None =
<Default('show_caption_above_media')>, has_spoiler: bool
| None = None, disable_notification: bool | None = None,
protect_content: bool | ~aiogram.client.default.Default |
None = <Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None = None,
allow_sending_without_reply: bool | None = None,
reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

508 Chapter 2. Contents

https://core.telegram.org/bots/api#sendphoto

aiogram Documentation, Release 3.23.0

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

photo: InputFileUnion

Photo to send. Pass a file_id as String to send a photo that exists on the Telegram servers (recommended),
pass an HTTP URL as a String for Telegram to get a photo from the Internet, or upload a new photo using
multipart/form-data. The photo must be at most 10 MB in size. The photo’s width and height must not
exceed 10000 in total. Width and height ratio must be at most 20. More information on Sending Files »

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

caption: str | None

Photo caption (may also be used when resending photos by file_id), 0-1024 characters after entities parsing

parse_mode: str | Default | None

Mode for parsing entities in the photo caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

show_caption_above_media: bool | Default | None

Pass True, if the caption must be shown above the message media

has_spoiler: bool | None

Pass True if the photo needs to be covered with a spoiler animation

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

2.3. Bot API 509

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_photo(...)

Method as object

Imports:

• from aiogram.methods.send_photo import SendPhoto

• alias: from aiogram.methods import SendPhoto

With specific bot

result: Message = await bot(SendPhoto(...))

As reply into Webhook in handler

return SendPhoto(...)

As shortcut from received object

• aiogram.types.message.Message.answer_photo()

• aiogram.types.message.Message.reply_photo()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_photo()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_photo_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_photo()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_photo()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_photo()

510 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

sendPoll

Returns: Message

class aiogram.methods.send_poll.SendPoll(*, chat_id: int | str, question: str, options:
list[~aiogram.types.input_poll_option.InputPollOption | str],
business_connection_id: str | None = None,
message_thread_id: int | None = None, question_parse_mode:
str | ~aiogram.client.default.Default | None =
<Default('parse_mode')>, question_entities:
list[~aiogram.types.message_entity.MessageEntity] | None =
None, is_anonymous: bool | None = None, type: str | None =
None, allows_multiple_answers: bool | None = None,
correct_option_id: int | None = None, explanation: str | None
= None, explanation_parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, explanation_entities:
list[~aiogram.types.message_entity.MessageEntity] | None =
None, open_period: int | None = None, close_date:
~datetime.datetime | ~datetime.timedelta | int | None = None,
is_closed: bool | None = None, disable_notification: bool |
None = None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast: bool |
None = None, message_effect_id: str | None = None,
reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None = None,
allow_sending_without_reply: bool | None = None,
reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpoll

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername).
Polls can’t be sent to channel direct messages chats.

question: str

Poll question, 1-300 characters

options: list[InputPollOptionUnion]

A JSON-serialized list of 2-12 answer options

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

2.3. Bot API 511

https://core.telegram.org/bots/api#sendpoll

aiogram Documentation, Release 3.23.0

question_parse_mode: str | Default | None

Mode for parsing entities in the question. See formatting options for more details. Currently, only custom
emoji entities are allowed

question_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the poll question. It can be specified instead of
question_parse_mode

is_anonymous: bool | None

True, if the poll needs to be anonymous, defaults to True

type: str | None

Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

allows_multiple_answers: bool | None

True, if the poll allows multiple answers, ignored for polls in quiz mode, defaults to False

correct_option_id: int | None

0-based identifier of the correct answer option, required for polls in quiz mode

explanation: str | None

Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll,
0-200 characters with at most 2 line feeds after entities parsing

explanation_parse_mode: str | Default | None

Mode for parsing entities in the explanation. See formatting options for more details.

explanation_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the poll explanation. It can be specified instead of
explanation_parse_mode

open_period: int | None

Amount of time in seconds the poll will be active after creation, 5-600. Can’t be used together with
close_date.

close_date: DateTimeUnion | None

Point in time (Unix timestamp) when the poll will be automatically closed. Must be at least 5 and no more
than 600 seconds in the future. Can’t be used together with open_period.

is_closed: bool | None

Pass True if the poll needs to be immediately closed. This can be useful for poll preview.

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

reply_parameters: ReplyParameters | None

Description of the message to reply to

512 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_poll(...)

Method as object

Imports:

• from aiogram.methods.send_poll import SendPoll

• alias: from aiogram.methods import SendPoll

With specific bot

result: Message = await bot(SendPoll(...))

As reply into Webhook in handler

return SendPoll(...)

As shortcut from received object

• aiogram.types.message.Message.answer_poll()

• aiogram.types.message.Message.reply_poll()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_poll()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_poll_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_poll()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_poll()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_poll()

2.3. Bot API 513

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

sendVenue

Returns: Message

class aiogram.methods.send_venue.SendVenue(*, chat_id: int | str, latitude: float, longitude: float, title: str,
address: str, business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
foursquare_id: str | None = None, foursquare_type: str |
None = None, google_place_id: str | None = None,
google_place_type: str | None = None, disable_notification:
bool | None = None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast: bool |
None = None, message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None = None,
allow_sending_without_reply: bool | None = None,
reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send information about a venue. On success, the sent aiogram.types.message.Message
is returned.

Source: https://core.telegram.org/bots/api#sendvenue

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

latitude: float

Latitude of the venue

longitude: float

Longitude of the venue

title: str

Name of the venue

address: str

Address of the venue

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

514 Chapter 2. Contents

https://core.telegram.org/bots/api#sendvenue

aiogram Documentation, Release 3.23.0

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

foursquare_id: str | None

Foursquare identifier of the venue

foursquare_type: str | None

Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’,
‘arts_entertainment/aquarium’ or ‘food/icecream’.)

google_place_id: str | None

Google Places identifier of the venue

google_place_type: str | None

Google Places type of the venue. (See supported types.)

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

2.3. Bot API 515

https://developers.google.com/places/web-service/supported_types
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.send_venue(...)

Method as object

Imports:

• from aiogram.methods.send_venue import SendVenue

• alias: from aiogram.methods import SendVenue

With specific bot

result: Message = await bot(SendVenue(...))

As reply into Webhook in handler

return SendVenue(...)

As shortcut from received object

• aiogram.types.message.Message.answer_venue()

• aiogram.types.message.Message.reply_venue()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_venue()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_venue_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_venue()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_venue()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_venue()

sendVideo

Returns: Message

516 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

class aiogram.methods.send_video.SendVideo(*, chat_id: int | str, video: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None, duration: int |
None = None, width: int | None = None, height: int | None =
None, thumbnail: ~aiogram.types.input_file.InputFile | None
= None, cover: str | ~aiogram.types.input_file.InputFile |
None = None, start_timestamp: ~datetime.datetime |
~datetime.timedelta | int | None = None, caption: str | None
= None, parse_mode: str | ~aiogram.client.default.Default |
None = <Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] | None =
None, show_caption_above_media: bool |
~aiogram.client.default.Default | None =
<Default('show_caption_above_media')>, has_spoiler: bool
| None = None, supports_streaming: bool | None = None,
disable_notification: bool | None = None, protect_content:
bool | ~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast: bool |
None = None, message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None = None,
allow_sending_without_reply: bool | None = None,
reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent as
aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is re-
turned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvideo

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

video: InputFileUnion

Video to send. Pass a file_id as String to send a video that exists on the Telegram servers (recommended),
pass an HTTP URL as a String for Telegram to get a video from the Internet, or upload a new video using
multipart/form-data. More information on Sending Files »

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

2.3. Bot API 517

https://core.telegram.org/bots/api#sendvideo

aiogram Documentation, Release 3.23.0

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

duration: int | None

Duration of sent video in seconds

width: int | None

Video width

height: int | None

Video height

thumbnail: InputFile | None

Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The
thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should
not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused
and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was
uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

cover: InputFileUnion | None

Cover for the video in the message. Pass a file_id to send a file that exists on the Telegram
servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘at-
tach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name.
More information on Sending Files »

start_timestamp: DateTimeUnion | None

Start timestamp for the video in the message

caption: str | None

Video caption (may also be used when resending videos by file_id), 0-1024 characters after entities parsing

parse_mode: str | Default | None

Mode for parsing entities in the video caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

show_caption_above_media: bool | Default | None

Pass True, if the caption must be shown above the message media

has_spoiler: bool | None

Pass True if the video needs to be covered with a spoiler animation

supports_streaming: bool | None

Pass True if the uploaded video is suitable for streaming

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

518 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_video(...)

Method as object

Imports:

• from aiogram.methods.send_video import SendVideo

• alias: from aiogram.methods import SendVideo

With specific bot

result: Message = await bot(SendVideo(...))

2.3. Bot API 519

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

As reply into Webhook in handler

return SendVideo(...)

As shortcut from received object

• aiogram.types.message.Message.answer_video()

• aiogram.types.message.Message.reply_video()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_video()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_video_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_video()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_video()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_video()

sendVideoNote

Returns: Message

class aiogram.methods.send_video_note.SendVideoNote(*, chat_id: int | str, video_note: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
duration: int | None = None, length: int | None =
None, thumbnail:
~aiogram.types.input_file.InputFile | None =
None, disable_notification: bool | None = None,
protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>,
allow_paid_broadcast: bool | None = None,
message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters
| None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None
= None, allow_sending_without_reply: bool |
None = None, reply_to_message_id: int | None
= None, **extra_data: ~typing.Any)

As of v.4.0, Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this method to
send video messages. On success, the sent aiogram.types.message.Message is returned.

520 Chapter 2. Contents

https://telegram.org/blog/video-messages-and-telescope

aiogram Documentation, Release 3.23.0

Source: https://core.telegram.org/bots/api#sendvideonote

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

video_note: InputFileUnion

Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recom-
mended) or upload a new video using multipart/form-data. More information on Sending Files ». Sending
video notes by a URL is currently unsupported

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

duration: int | None

Duration of sent video in seconds

length: int | None

Video width and height, i.e. diameter of the video message

thumbnail: InputFile | None

Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The
thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should
not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused
and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was
uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

2.3. Bot API 521

https://core.telegram.org/bots/api#sendvideonote
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards

aiogram Documentation, Release 3.23.0

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_video_note(...)

Method as object

Imports:

• from aiogram.methods.send_video_note import SendVideoNote

• alias: from aiogram.methods import SendVideoNote

With specific bot

result: Message = await bot(SendVideoNote(...))

As reply into Webhook in handler

return SendVideoNote(...)

As shortcut from received object

• aiogram.types.message.Message.answer_video_note()

• aiogram.types.message.Message.reply_video_note()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_video_note()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_video_note_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_video_note()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_video_note()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_video_note()

522 Chapter 2. Contents

https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

sendVoice

Returns: Message

class aiogram.methods.send_voice.SendVoice(*, chat_id: int | str, voice: str |
~aiogram.types.input_file.InputFile,
business_connection_id: str | None = None,
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None, caption: str |
None = None, parse_mode: str |
~aiogram.client.default.Default | None =
<Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] | None =
None, duration: int | None = None, disable_notification:
bool | None = None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast: bool |
None = None, message_effect_id: str | None = None,
suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
|
~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
|
~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove
| ~aiogram.types.force_reply.ForceReply | None = None,
allow_sending_without_reply: bool | None = None,
reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message.
For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format, or in .M4A format
(other formats may be sent as aiogram.types.audio.Audio or aiogram.types.document.Document). On
success, the sent aiogram.types.message.Message is returned. Bots can currently send voice messages of
up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

voice: InputFileUnion

Audio file to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended),
pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using
multipart/form-data. More information on Sending Files »

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

2.3. Bot API 523

https://core.telegram.org/bots/api#sendvoice

aiogram Documentation, Release 3.23.0

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

caption: str | None

Voice message caption, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Mode for parsing entities in the voice message caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

duration: int | None

Duration of the voice message in seconds

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: ReplyMarkupUnion | None

Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard,
instructions to remove a reply keyboard or to force a reply from the user

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

524 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/features#keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.send_voice(...)

Method as object

Imports:

• from aiogram.methods.send_voice import SendVoice

• alias: from aiogram.methods import SendVoice

With specific bot

result: Message = await bot(SendVoice(...))

As reply into Webhook in handler

return SendVoice(...)

As shortcut from received object

• aiogram.types.message.Message.answer_voice()

• aiogram.types.message.Message.reply_voice()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_voice()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_voice_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_voice()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_voice()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_voice()

setBusinessAccountBio

Returns: bool

class aiogram.methods.set_business_account_bio.SetBusinessAccountBio(*,
business_connection_id:
str, bio: str | None =
None, **extra_data: Any)

Changes the bio of a managed business account. Requires the can_change_bio business bot right. Returns True
on success.

Source: https://core.telegram.org/bots/api#setbusinessaccountbio

2.3. Bot API 525

https://core.telegram.org/bots/api#setbusinessaccountbio

aiogram Documentation, Release 3.23.0

business_connection_id: str

Unique identifier of the business connection

bio: str | None

The new value of the bio for the business account; 0-140 characters

Usage

As bot method

result: bool = await bot.set_business_account_bio(...)

Method as object

Imports:

• from aiogram.methods.set_business_account_bio import SetBusinessAccountBio

• alias: from aiogram.methods import SetBusinessAccountBio

With specific bot

result: bool = await bot(SetBusinessAccountBio(...))

As reply into Webhook in handler

return SetBusinessAccountBio(...)

setBusinessAccountGiftSettings

Returns: bool

class aiogram.methods.set_business_account_gift_settings.SetBusinessAccountGiftSettings(*,
busi-
ness_connection_id:
str,
show_gift_button:
bool,
ac-
cepted_gift_types:
Ac-
cept-
edGift-
Types,
**ex-
tra_data:
Any)

526 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Changes the privacy settings pertaining to incoming gifts in a managed business account. Requires the
can_change_gift_settings business bot right. Returns True on success.

Source: https://core.telegram.org/bots/api#setbusinessaccountgiftsettings

business_connection_id: str

Unique identifier of the business connection

show_gift_button: bool

Pass True, if a button for sending a gift to the user or by the business account must always be shown in the
input field

accepted_gift_types: AcceptedGiftTypes

Types of gifts accepted by the business account

Usage

As bot method

result: bool = await bot.set_business_account_gift_settings(...)

Method as object

Imports:

• from aiogram.methods.set_business_account_gift_settings import
SetBusinessAccountGiftSettings

• alias: from aiogram.methods import SetBusinessAccountGiftSettings

With specific bot

result: bool = await bot(SetBusinessAccountGiftSettings(...))

As reply into Webhook in handler

return SetBusinessAccountGiftSettings(...)

setBusinessAccountName

Returns: bool

class aiogram.methods.set_business_account_name.SetBusinessAccountName(*, busi-
ness_connection_id:
str, first_name: str,
last_name: str | None =
None, **extra_data:
Any)

2.3. Bot API 527

https://core.telegram.org/bots/api#setbusinessaccountgiftsettings

aiogram Documentation, Release 3.23.0

Changes the first and last name of a managed business account. Requires the can_change_name business bot
right. Returns True on success.

Source: https://core.telegram.org/bots/api#setbusinessaccountname

business_connection_id: str

Unique identifier of the business connection

first_name: str

The new value of the first name for the business account; 1-64 characters

last_name: str | None

The new value of the last name for the business account; 0-64 characters

Usage

As bot method

result: bool = await bot.set_business_account_name(...)

Method as object

Imports:

• from aiogram.methods.set_business_account_name import SetBusinessAccountName

• alias: from aiogram.methods import SetBusinessAccountName

With specific bot

result: bool = await bot(SetBusinessAccountName(...))

As reply into Webhook in handler

return SetBusinessAccountName(...)

setBusinessAccountProfilePhoto

Returns: bool

528 Chapter 2. Contents

https://core.telegram.org/bots/api#setbusinessaccountname

aiogram Documentation, Release 3.23.0

class aiogram.methods.set_business_account_profile_photo.SetBusinessAccountProfilePhoto(*,
busi-
ness_connection_id:
str,
photo:
In-
put-
Pro-
file-
Pho-
to-
Static
|
In-
put-
Pro-
file-
Pho-
toAn-
i-
mated,
is_public:
bool
|
None
=
None,
**ex-
tra_data:
Any)

Changes the profile photo of a managed business account. Requires the can_edit_profile_photo business bot
right. Returns True on success.

Source: https://core.telegram.org/bots/api#setbusinessaccountprofilephoto

business_connection_id: str

Unique identifier of the business connection

photo: InputProfilePhotoUnion

The new profile photo to set

is_public: bool | None

Pass True to set the public photo, which will be visible even if the main photo is hidden by the business
account’s privacy settings. An account can have only one public photo.

2.3. Bot API 529

https://core.telegram.org/bots/api#setbusinessaccountprofilephoto

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_business_account_profile_photo(...)

Method as object

Imports:

• from aiogram.methods.set_business_account_profile_photo import
SetBusinessAccountProfilePhoto

• alias: from aiogram.methods import SetBusinessAccountProfilePhoto

With specific bot

result: bool = await bot(SetBusinessAccountProfilePhoto(...))

As reply into Webhook in handler

return SetBusinessAccountProfilePhoto(...)

setBusinessAccountUsername

Returns: bool

class aiogram.methods.set_business_account_username.SetBusinessAccountUsername(*, busi-
ness_connection_id:
str,
username:
str | None =
None, **ex-
tra_data:
Any)

Changes the username of a managed business account. Requires the can_change_username business bot right.
Returns True on success.

Source: https://core.telegram.org/bots/api#setbusinessaccountusername

business_connection_id: str

Unique identifier of the business connection

username: str | None

The new value of the username for the business account; 0-32 characters

530 Chapter 2. Contents

https://core.telegram.org/bots/api#setbusinessaccountusername

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_business_account_username(...)

Method as object

Imports:

• from aiogram.methods.set_business_account_username import SetBusinessAccountUsername

• alias: from aiogram.methods import SetBusinessAccountUsername

With specific bot

result: bool = await bot(SetBusinessAccountUsername(...))

As reply into Webhook in handler

return SetBusinessAccountUsername(...)

setChatAdministratorCustomTitle

Returns: bool

class aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle(*,
chat_id:
int
|
str,
user_id:
int,
cus-
tom_title:
str,
**ex-
tra_data:
Any)

Use this method to set a custom title for an administrator in a supergroup promoted by the bot. Returns True on
success.

Source: https://core.telegram.org/bots/api#setchatadministratorcustomtitle

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

2.3. Bot API 531

https://core.telegram.org/bots/api#setchatadministratorcustomtitle

aiogram Documentation, Release 3.23.0

user_id: int

Unique identifier of the target user

custom_title: str

New custom title for the administrator; 0-16 characters, emoji are not allowed

Usage

As bot method

result: bool = await bot.set_chat_administrator_custom_title(...)

Method as object

Imports:

• from aiogram.methods.set_chat_administrator_custom_title import
SetChatAdministratorCustomTitle

• alias: from aiogram.methods import SetChatAdministratorCustomTitle

With specific bot

result: bool = await bot(SetChatAdministratorCustomTitle(...))

As reply into Webhook in handler

return SetChatAdministratorCustomTitle(...)

As shortcut from received object

• aiogram.types.chat.Chat.set_administrator_custom_title()

setChatDescription

Returns: bool

class aiogram.methods.set_chat_description.SetChatDescription(*, chat_id: int | str, description: str
| None = None, **extra_data: Any)

Use this method to change the description of a group, a supergroup or a channel. The bot must be an administrator
in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatdescription

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

532 Chapter 2. Contents

https://core.telegram.org/bots/api#setchatdescription

aiogram Documentation, Release 3.23.0

description: str | None

New chat description, 0-255 characters

Usage

As bot method

result: bool = await bot.set_chat_description(...)

Method as object

Imports:

• from aiogram.methods.set_chat_description import SetChatDescription

• alias: from aiogram.methods import SetChatDescription

With specific bot

result: bool = await bot(SetChatDescription(...))

As reply into Webhook in handler

return SetChatDescription(...)

As shortcut from received object

• aiogram.types.chat.Chat.set_description()

setChatMenuButton

Returns: bool

class aiogram.methods.set_chat_menu_button.SetChatMenuButton(*, chat_id: int | None = None,
menu_button:
MenuButtonCommands |
MenuButtonWebApp |
MenuButtonDefault | None = None,
**extra_data: Any)

Use this method to change the bot’s menu button in a private chat, or the default menu button. Returns True on
success.

Source: https://core.telegram.org/bots/api#setchatmenubutton

chat_id: int | None

Unique identifier for the target private chat. If not specified, default bot’s menu button will be changed

2.3. Bot API 533

https://core.telegram.org/bots/api#setchatmenubutton

aiogram Documentation, Release 3.23.0

menu_button: MenuButtonUnion | None

A JSON-serialized object for the bot’s new menu button. Defaults to aiogram.types.
menu_button_default.MenuButtonDefault

Usage

As bot method

result: bool = await bot.set_chat_menu_button(...)

Method as object

Imports:

• from aiogram.methods.set_chat_menu_button import SetChatMenuButton

• alias: from aiogram.methods import SetChatMenuButton

With specific bot

result: bool = await bot(SetChatMenuButton(...))

As reply into Webhook in handler

return SetChatMenuButton(...)

setChatPermissions

Returns: bool

class aiogram.methods.set_chat_permissions.SetChatPermissions(*, chat_id: int
| str, permissions: ChatPermissions,
use_independent_chat_permissions:
bool | None = None, **extra_data:
Any)

Use this method to set default chat permissions for all members. The bot must be an administrator in the group
or a supergroup for this to work and must have the can_restrict_members administrator rights. Returns True on
success.

Source: https://core.telegram.org/bots/api#setchatpermissions

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

permissions: ChatPermissions

A JSON-serialized object for new default chat permissions

534 Chapter 2. Contents

https://core.telegram.org/bots/api#setchatpermissions

aiogram Documentation, Release 3.23.0

use_independent_chat_permissions: bool | None

Pass True if chat permissions are set independently. Otherwise, the can_send_other_messages and
can_add_web_page_previews permissions will imply the can_send_messages, can_send_audios,
can_send_documents, can_send_photos, can_send_videos, can_send_video_notes, and
can_send_voice_notes permissions; the can_send_polls permission will imply the can_send_messages
permission.

Usage

As bot method

result: bool = await bot.set_chat_permissions(...)

Method as object

Imports:

• from aiogram.methods.set_chat_permissions import SetChatPermissions

• alias: from aiogram.methods import SetChatPermissions

With specific bot

result: bool = await bot(SetChatPermissions(...))

As reply into Webhook in handler

return SetChatPermissions(...)

As shortcut from received object

• aiogram.types.chat.Chat.set_permissions()

setChatPhoto

Returns: bool

class aiogram.methods.set_chat_photo.SetChatPhoto(*, chat_id: int | str, photo: InputFile, **extra_data:
Any)

Use this method to set a new profile photo for the chat. Photos can’t be changed for private chats. The bot must
be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True
on success.

Source: https://core.telegram.org/bots/api#setchatphoto

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

2.3. Bot API 535

https://core.telegram.org/bots/api#setchatphoto

aiogram Documentation, Release 3.23.0

photo: InputFile

New chat photo, uploaded using multipart/form-data

Usage

As bot method

result: bool = await bot.set_chat_photo(...)

Method as object

Imports:

• from aiogram.methods.set_chat_photo import SetChatPhoto

• alias: from aiogram.methods import SetChatPhoto

With specific bot

result: bool = await bot(SetChatPhoto(...))

As shortcut from received object

• aiogram.types.chat.Chat.set_photo()

setChatStickerSet

Returns: bool

class aiogram.methods.set_chat_sticker_set.SetChatStickerSet(*, chat_id: int | str,
sticker_set_name: str, **extra_data:
Any)

Use this method to set a new group sticker set for a supergroup. The bot must be an administrator in the chat
for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set optionally
returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this method. Returns
True on success.

Source: https://core.telegram.org/bots/api#setchatstickerset

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

sticker_set_name: str

Name of the sticker set to be set as the group sticker set

536 Chapter 2. Contents

https://core.telegram.org/bots/api#setchatstickerset

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_chat_sticker_set(...)

Method as object

Imports:

• from aiogram.methods.set_chat_sticker_set import SetChatStickerSet

• alias: from aiogram.methods import SetChatStickerSet

With specific bot

result: bool = await bot(SetChatStickerSet(...))

As reply into Webhook in handler

return SetChatStickerSet(...)

As shortcut from received object

• aiogram.types.chat.Chat.set_sticker_set()

setChatTitle

Returns: bool

class aiogram.methods.set_chat_title.SetChatTitle(*, chat_id: int | str, title: str, **extra_data: Any)
Use this method to change the title of a chat. Titles can’t be changed for private chats. The bot must be an
administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on
success.

Source: https://core.telegram.org/bots/api#setchattitle

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

title: str

New chat title, 1-128 characters

2.3. Bot API 537

https://core.telegram.org/bots/api#setchattitle

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_chat_title(...)

Method as object

Imports:

• from aiogram.methods.set_chat_title import SetChatTitle

• alias: from aiogram.methods import SetChatTitle

With specific bot

result: bool = await bot(SetChatTitle(...))

As reply into Webhook in handler

return SetChatTitle(...)

As shortcut from received object

• aiogram.types.chat.Chat.set_title()

setMessageReaction

Returns: bool

class aiogram.methods.set_message_reaction.SetMessageReaction(*, chat_id: int | str, message_id:
int, reaction:
list[ReactionTypeEmoji |
ReactionTypeCustomEmoji |
ReactionTypePaid] | None = None,
is_big: bool | None = None,
**extra_data: Any)

Use this method to change the chosen reactions on a message. Service messages of some types can’t be reacted
to. Automatically forwarded messages from a channel to its discussion group have the same available reactions
as messages in the channel. Bots can’t use paid reactions. Returns True on success.

Source: https://core.telegram.org/bots/api#setmessagereaction

chat_id: int | str

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

538 Chapter 2. Contents

https://core.telegram.org/bots/api#setmessagereaction

aiogram Documentation, Release 3.23.0

message_id: int

Identifier of the target message. If the message belongs to a media group, the reaction is set to the first
non-deleted message in the group instead.

reaction: list[ReactionTypeEmoji | ReactionTypeCustomEmoji | ReactionTypePaid] |
None

A JSON-serialized list of reaction types to set on the message. Currently, as non-premium users, bots can
set up to one reaction per message. A custom emoji reaction can be used if it is either already present on
the message or explicitly allowed by chat administrators. Paid reactions can’t be used by bots.

is_big: bool | None

Pass True to set the reaction with a big animation

Usage

As bot method

result: bool = await bot.set_message_reaction(...)

Method as object

Imports:

• from aiogram.methods.set_message_reaction import SetMessageReaction

• alias: from aiogram.methods import SetMessageReaction

With specific bot

result: bool = await bot(SetMessageReaction(...))

As reply into Webhook in handler

return SetMessageReaction(...)

As shortcut from received object

• aiogram.types.message.Message.react()

2.3. Bot API 539

aiogram Documentation, Release 3.23.0

setMyCommands

Returns: bool

class aiogram.methods.set_my_commands.SetMyCommands(*, commands: list[BotCommand], scope:
BotCommandScopeDefault |
BotCommandScopeAllPrivateChats |
BotCommandScopeAllGroupChats |
BotCommandScopeAllChatAdministrators |
BotCommandScopeChat |
BotCommandScopeChatAdministrators |
BotCommandScopeChatMember | None = None,
language_code: str | None = None,
**extra_data: Any)

Use this method to change the list of the bot’s commands. See this manual for more details about bot commands.
Returns True on success.

Source: https://core.telegram.org/bots/api#setmycommands

commands: list[BotCommand]

A JSON-serialized list of bot commands to be set as the list of the bot’s commands. At most 100 commands
can be specified.

scope: BotCommandScopeUnion | None

A JSON-serialized object, describing scope of users for which the commands are relevant. Defaults to
aiogram.types.bot_command_scope_default.BotCommandScopeDefault.

language_code: str | None

A two-letter ISO 639-1 language code. If empty, commands will be applied to all users from the given
scope, for whose language there are no dedicated commands

Usage

As bot method

result: bool = await bot.set_my_commands(...)

Method as object

Imports:

• from aiogram.methods.set_my_commands import SetMyCommands

• alias: from aiogram.methods import SetMyCommands

540 Chapter 2. Contents

https://core.telegram.org/bots/features#commands
https://core.telegram.org/bots/api#setmycommands

aiogram Documentation, Release 3.23.0

With specific bot

result: bool = await bot(SetMyCommands(...))

As reply into Webhook in handler

return SetMyCommands(...)

setMyDefaultAdministratorRights

Returns: bool

class aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights(*,
rights:
ChatAd-
min-
is-
tra-
tor-
Rights
|
None
=
None,
for_channels:
bool
|
None
=
None,
**ex-
tra_data:
Any)

Use this method to change the default administrator rights requested by the bot when it’s added as an administrator
to groups or channels. These rights will be suggested to users, but they are free to modify the list before adding
the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setmydefaultadministratorrights

rights: ChatAdministratorRights | None

A JSON-serialized object describing new default administrator rights. If not specified, the default admin-
istrator rights will be cleared.

for_channels: bool | None

Pass True to change the default administrator rights of the bot in channels. Otherwise, the default admin-
istrator rights of the bot for groups and supergroups will be changed.

2.3. Bot API 541

https://core.telegram.org/bots/api#setmydefaultadministratorrights

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_my_default_administrator_rights(...)

Method as object

Imports:

• from aiogram.methods.set_my_default_administrator_rights import
SetMyDefaultAdministratorRights

• alias: from aiogram.methods import SetMyDefaultAdministratorRights

With specific bot

result: bool = await bot(SetMyDefaultAdministratorRights(...))

As reply into Webhook in handler

return SetMyDefaultAdministratorRights(...)

setMyDescription

Returns: bool

class aiogram.methods.set_my_description.SetMyDescription(*, description: str | None = None,
language_code: str | None = None,
**extra_data: Any)

Use this method to change the bot’s description, which is shown in the chat with the bot if the chat is empty.
Returns True on success.

Source: https://core.telegram.org/bots/api#setmydescription

description: str | None

New bot description; 0-512 characters. Pass an empty string to remove the dedicated description for the
given language.

language_code: str | None

A two-letter ISO 639-1 language code. If empty, the description will be applied to all users for whose
language there is no dedicated description.

542 Chapter 2. Contents

https://core.telegram.org/bots/api#setmydescription

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_my_description(...)

Method as object

Imports:

• from aiogram.methods.set_my_description import SetMyDescription

• alias: from aiogram.methods import SetMyDescription

With specific bot

result: bool = await bot(SetMyDescription(...))

As reply into Webhook in handler

return SetMyDescription(...)

setMyName

Returns: bool

class aiogram.methods.set_my_name.SetMyName(*, name: str | None = None, language_code: str | None =
None, **extra_data: Any)

Use this method to change the bot’s name. Returns True on success.

Source: https://core.telegram.org/bots/api#setmyname

name: str | None

New bot name; 0-64 characters. Pass an empty string to remove the dedicated name for the given language.

language_code: str | None

A two-letter ISO 639-1 language code. If empty, the name will be shown to all users for whose language
there is no dedicated name.

Usage

As bot method

result: bool = await bot.set_my_name(...)

2.3. Bot API 543

https://core.telegram.org/bots/api#setmyname

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.set_my_name import SetMyName

• alias: from aiogram.methods import SetMyName

With specific bot

result: bool = await bot(SetMyName(...))

As reply into Webhook in handler

return SetMyName(...)

setMyShortDescription

Returns: bool

class aiogram.methods.set_my_short_description.SetMyShortDescription(*, short_description: str |
None = None,
language_code: str | None
= None, **extra_data:
Any)

Use this method to change the bot’s short description, which is shown on the bot’s profile page and is sent together
with the link when users share the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setmyshortdescription

short_description: str | None

New short description for the bot; 0-120 characters. Pass an empty string to remove the dedicated short
description for the given language.

language_code: str | None

A two-letter ISO 639-1 language code. If empty, the short description will be applied to all users for whose
language there is no dedicated short description.

Usage

As bot method

result: bool = await bot.set_my_short_description(...)

544 Chapter 2. Contents

https://core.telegram.org/bots/api#setmyshortdescription

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.set_my_short_description import SetMyShortDescription

• alias: from aiogram.methods import SetMyShortDescription

With specific bot

result: bool = await bot(SetMyShortDescription(...))

As reply into Webhook in handler

return SetMyShortDescription(...)

setUserEmojiStatus

Returns: bool

class aiogram.methods.set_user_emoji_status.SetUserEmojiStatus(*, user_id: int,
emoji_status_custom_emoji_id:
str | None = None,
emoji_status_expiration_date:
datetime | timedelta | int | None =
None, **extra_data: Any)

Changes the emoji status for a given user that previously allowed the bot to manage their emoji status via the
Mini App method requestEmojiStatusAccess. Returns True on success.

Source: https://core.telegram.org/bots/api#setuseremojistatus

user_id: int

Unique identifier of the target user

emoji_status_custom_emoji_id: str | None

Custom emoji identifier of the emoji status to set. Pass an empty string to remove the status.

emoji_status_expiration_date: DateTimeUnion | None

Expiration date of the emoji status, if any

Usage

As bot method

result: bool = await bot.set_user_emoji_status(...)

2.3. Bot API 545

https://core.telegram.org/bots/webapps#initializing-mini-apps
https://core.telegram.org/bots/api#setuseremojistatus

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.set_user_emoji_status import SetUserEmojiStatus

• alias: from aiogram.methods import SetUserEmojiStatus

With specific bot

result: bool = await bot(SetUserEmojiStatus(...))

As reply into Webhook in handler

return SetUserEmojiStatus(...)

transferBusinessAccountStars

Returns: bool

class aiogram.methods.transfer_business_account_stars.TransferBusinessAccountStars(*, busi-
ness_connection_id:
str,
star_count:
int,
**ex-
tra_data:
Any)

Transfers Telegram Stars from the business account balance to the bot’s balance. Requires the can_transfer_stars
business bot right. Returns True on success.

Source: https://core.telegram.org/bots/api#transferbusinessaccountstars

business_connection_id: str

Unique identifier of the business connection

star_count: int

Number of Telegram Stars to transfer; 1-10000

Usage

As bot method

result: bool = await bot.transfer_business_account_stars(...)

546 Chapter 2. Contents

https://core.telegram.org/bots/api#transferbusinessaccountstars

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.transfer_business_account_stars import TransferBusinessAccountStars

• alias: from aiogram.methods import TransferBusinessAccountStars

With specific bot

result: bool = await bot(TransferBusinessAccountStars(...))

As reply into Webhook in handler

return TransferBusinessAccountStars(...)

transferGift

Returns: bool

class aiogram.methods.transfer_gift.TransferGift(*, business_connection_id: str, owned_gift_id: str,
new_owner_chat_id: int, star_count: int | None =
None, **extra_data: Any)

Transfers an owned unique gift to another user. Requires the can_transfer_and_upgrade_gifts business bot right.
Requires can_transfer_stars business bot right if the transfer is paid. Returns True on success.

Source: https://core.telegram.org/bots/api#transfergift

business_connection_id: str

Unique identifier of the business connection

owned_gift_id: str

Unique identifier of the regular gift that should be transferred

new_owner_chat_id: int

Unique identifier of the chat which will own the gift. The chat must be active in the last 24 hours.

star_count: int | None

The amount of Telegram Stars that will be paid for the transfer from the business account balance. If
positive, then the can_transfer_stars business bot right is required.

Usage

As bot method

result: bool = await bot.transfer_gift(...)

2.3. Bot API 547

https://core.telegram.org/bots/api#transfergift

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.transfer_gift import TransferGift

• alias: from aiogram.methods import TransferGift

With specific bot

result: bool = await bot(TransferGift(...))

As reply into Webhook in handler

return TransferGift(...)

unbanChatMember

Returns: bool

class aiogram.methods.unban_chat_member.UnbanChatMember(*, chat_id: int | str, user_id: int,
only_if_banned: bool | None = None,
**extra_data: Any)

Use this method to unban a previously banned user in a supergroup or channel. The user will not return to the
group or channel automatically, but will be able to join via link, etc. The bot must be an administrator for this to
work. By default, this method guarantees that after the call the user is not a member of the chat, but will be able
to join it. So if the user is a member of the chat they will also be removed from the chat. If you don’t want this,
use the parameter only_if_banned. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatmember

chat_id: ChatIdUnion

Unique identifier for the target group or username of the target supergroup or channel (in the format
@channelusername)

user_id: int

Unique identifier of the target user

only_if_banned: bool | None

Do nothing if the user is not banned

Usage

As bot method

result: bool = await bot.unban_chat_member(...)

548 Chapter 2. Contents

https://core.telegram.org/bots/api#unbanchatmember

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.unban_chat_member import UnbanChatMember

• alias: from aiogram.methods import UnbanChatMember

With specific bot

result: bool = await bot(UnbanChatMember(...))

As reply into Webhook in handler

return UnbanChatMember(...)

As shortcut from received object

• aiogram.types.chat.Chat.unban()

unbanChatSenderChat

Returns: bool

class aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat(*, chat_id: int | str,
sender_chat_id: int,
**extra_data: Any)

Use this method to unban a previously banned channel chat in a supergroup or channel. The bot must be an
administrator for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatsenderchat

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

sender_chat_id: int

Unique identifier of the target sender chat

Usage

As bot method

result: bool = await bot.unban_chat_sender_chat(...)

2.3. Bot API 549

https://core.telegram.org/bots/api#unbanchatsenderchat

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.unban_chat_sender_chat import UnbanChatSenderChat

• alias: from aiogram.methods import UnbanChatSenderChat

With specific bot

result: bool = await bot(UnbanChatSenderChat(...))

As reply into Webhook in handler

return UnbanChatSenderChat(...)

As shortcut from received object

• aiogram.types.chat.Chat.unban_sender_chat()

unhideGeneralForumTopic

Returns: bool

class aiogram.methods.unhide_general_forum_topic.UnhideGeneralForumTopic(*, chat_id: int | str,
**extra_data: Any)

Use this method to unhide the ‘General’ topic in a forum supergroup chat. The bot must be an administrator in
the chat for this to work and must have the can_manage_topics administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#unhidegeneralforumtopic

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

Usage

As bot method

result: bool = await bot.unhide_general_forum_topic(...)

550 Chapter 2. Contents

https://core.telegram.org/bots/api#unhidegeneralforumtopic

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.unhide_general_forum_topic import UnhideGeneralForumTopic

• alias: from aiogram.methods import UnhideGeneralForumTopic

With specific bot

result: bool = await bot(UnhideGeneralForumTopic(...))

As reply into Webhook in handler

return UnhideGeneralForumTopic(...)

unpinAllChatMessages

Returns: bool

class aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages(*, chat_id: int | str,
**extra_data: Any)

Use this method to clear the list of pinned messages in a chat. In private chats and channel direct messages chats,
no additional rights are required to unpin all pinned messages. Conversely, the bot must be an administrator
with the ‘can_pin_messages’ right or the ‘can_edit_messages’ right to unpin all pinned messages in groups and
channels respectively. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallchatmessages

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

Usage

As bot method

result: bool = await bot.unpin_all_chat_messages(...)

Method as object

Imports:

• from aiogram.methods.unpin_all_chat_messages import UnpinAllChatMessages

• alias: from aiogram.methods import UnpinAllChatMessages

2.3. Bot API 551

https://core.telegram.org/bots/api#unpinallchatmessages

aiogram Documentation, Release 3.23.0

With specific bot

result: bool = await bot(UnpinAllChatMessages(...))

As reply into Webhook in handler

return UnpinAllChatMessages(...)

As shortcut from received object

• aiogram.types.chat.Chat.unpin_all_messages()

unpinAllForumTopicMessages

Returns: bool

class aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages(*, chat_id:
int | str,
mes-
sage_thread_id:
int, **ex-
tra_data:
Any)

Use this method to clear the list of pinned messages in a forum topic. The bot must be an administrator in the
chat for this to work and must have the can_pin_messages administrator right in the supergroup. Returns True
on success.

Source: https://core.telegram.org/bots/api#unpinallforumtopicmessages

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

message_thread_id: int

Unique identifier for the target message thread of the forum topic

Usage

As bot method

result: bool = await bot.unpin_all_forum_topic_messages(...)

552 Chapter 2. Contents

https://core.telegram.org/bots/api#unpinallforumtopicmessages

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.unpin_all_forum_topic_messages import UnpinAllForumTopicMessages

• alias: from aiogram.methods import UnpinAllForumTopicMessages

With specific bot

result: bool = await bot(UnpinAllForumTopicMessages(...))

As reply into Webhook in handler

return UnpinAllForumTopicMessages(...)

unpinAllGeneralForumTopicMessages

Returns: bool

class aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages(*,
chat_id:
int
|
str,
**ex-
tra_data:
Any)

Use this method to clear the list of pinned messages in a General forum topic. The bot must be an administrator
in the chat for this to work and must have the can_pin_messages administrator right in the supergroup. Returns
True on success.

Source: https://core.telegram.org/bots/api#unpinallgeneralforumtopicmessages

chat_id: int | str

Unique identifier for the target chat or username of the target supergroup (in the format
@supergroupusername)

Usage

As bot method

result: bool = await bot.unpin_all_general_forum_topic_messages(...)

2.3. Bot API 553

https://core.telegram.org/bots/api#unpinallgeneralforumtopicmessages

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.unpin_all_general_forum_topic_messages import
UnpinAllGeneralForumTopicMessages

• alias: from aiogram.methods import UnpinAllGeneralForumTopicMessages

With specific bot

result: bool = await bot(UnpinAllGeneralForumTopicMessages(...))

As reply into Webhook in handler

return UnpinAllGeneralForumTopicMessages(...)

As shortcut from received object

• aiogram.types.chat.Chat.unpin_all_general_forum_topic_messages()

unpinChatMessage

Returns: bool

class aiogram.methods.unpin_chat_message.UnpinChatMessage(*, chat_id: int | str,
business_connection_id: str | None =
None, message_id: int | None = None,
**extra_data: Any)

Use this method to remove a message from the list of pinned messages in a chat. In private chats and channel
direct messages chats, all messages can be unpinned. Conversely, the bot must be an administrator with the
‘can_pin_messages’ right or the ‘can_edit_messages’ right to unpin messages in groups and channels respec-
tively. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinchatmessage

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be unpinned

message_id: int | None

Identifier of the message to unpin. Required if business_connection_id is specified. If not specified, the
most recent pinned message (by sending date) will be unpinned.

554 Chapter 2. Contents

https://core.telegram.org/bots/api#unpinchatmessage

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.unpin_chat_message(...)

Method as object

Imports:

• from aiogram.methods.unpin_chat_message import UnpinChatMessage

• alias: from aiogram.methods import UnpinChatMessage

With specific bot

result: bool = await bot(UnpinChatMessage(...))

As reply into Webhook in handler

return UnpinChatMessage(...)

As shortcut from received object

• aiogram.types.chat.Chat.unpin_message()

• aiogram.types.message.Message.unpin()

upgradeGift

Returns: bool

class aiogram.methods.upgrade_gift.UpgradeGift(*, business_connection_id: str, owned_gift_id: str,
keep_original_details: bool | None = None, star_count:
int | None = None, **extra_data: Any)

Upgrades a given regular gift to a unique gift. Requires the can_transfer_and_upgrade_gifts business bot right.
Additionally requires the can_transfer_stars business bot right if the upgrade is paid. Returns True on success.

Source: https://core.telegram.org/bots/api#upgradegift

business_connection_id: str

Unique identifier of the business connection

owned_gift_id: str

Unique identifier of the regular gift that should be upgraded to a unique one

keep_original_details: bool | None

Pass True to keep the original gift text, sender and receiver in the upgraded gift

2.3. Bot API 555

https://core.telegram.org/bots/api#upgradegift

aiogram Documentation, Release 3.23.0

star_count: int | None

The amount of Telegram Stars that will be paid for the upgrade from the business account balance. If
gift.prepaid_upgrade_star_count > 0, then pass 0, otherwise, the can_transfer_stars business bot
right is required and gift.upgrade_star_count must be passed.

Usage

As bot method

result: bool = await bot.upgrade_gift(...)

Method as object

Imports:

• from aiogram.methods.upgrade_gift import UpgradeGift

• alias: from aiogram.methods import UpgradeGift

With specific bot

result: bool = await bot(UpgradeGift(...))

As reply into Webhook in handler

return UpgradeGift(...)

verifyChat

Returns: bool

class aiogram.methods.verify_chat.VerifyChat(*, chat_id: int | str, custom_description: str | None =
None, **extra_data: Any)

Verifies a chat on behalf of the organization which is represented by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#verifychat

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername).
Channel direct messages chats can’t be verified.

custom_description: str | None

Custom description for the verification; 0-70 characters. Must be empty if the organization isn’t allowed to
provide a custom verification description.

556 Chapter 2. Contents

https://telegram.org/verify#third-party-verification
https://core.telegram.org/bots/api#verifychat

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.verify_chat(...)

Method as object

Imports:

• from aiogram.methods.verify_chat import VerifyChat

• alias: from aiogram.methods import VerifyChat

With specific bot

result: bool = await bot(VerifyChat(...))

As reply into Webhook in handler

return VerifyChat(...)

verifyUser

Returns: bool

class aiogram.methods.verify_user.VerifyUser(*, user_id: int, custom_description: str | None = None,
**extra_data: Any)

Verifies a user on behalf of the organization which is represented by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#verifyuser

user_id: int

Unique identifier of the target user

custom_description: str | None

Custom description for the verification; 0-70 characters. Must be empty if the organization isn’t allowed to
provide a custom verification description.

Usage

As bot method

result: bool = await bot.verify_user(...)

2.3. Bot API 557

https://telegram.org/verify#third-party-verification
https://core.telegram.org/bots/api#verifyuser

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.verify_user import VerifyUser

• alias: from aiogram.methods import VerifyUser

With specific bot

result: bool = await bot(VerifyUser(...))

As reply into Webhook in handler

return VerifyUser(...)

Updating messages

approveSuggestedPost

Returns: bool

class aiogram.methods.approve_suggested_post.ApproveSuggestedPost(*, chat_id: int, message_id:
int, send_date: datetime |
timedelta | int | None = None,
**extra_data: Any)

Use this method to approve a suggested post in a direct messages chat. The bot must have the ‘can_post_messages’
administrator right in the corresponding channel chat. Returns True on success.

Source: https://core.telegram.org/bots/api#approvesuggestedpost

chat_id: int

Unique identifier for the target direct messages chat

message_id: int

Identifier of a suggested post message to approve

send_date: DateTimeUnion | None

Point in time (Unix timestamp) when the post is expected to be published; omit if the date has already been
specified when the suggested post was created. If specified, then the date must be not more than 2678400
seconds (30 days) in the future

558 Chapter 2. Contents

https://core.telegram.org/bots/api#approvesuggestedpost

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.approve_suggested_post(...)

Method as object

Imports:

• from aiogram.methods.approve_suggested_post import ApproveSuggestedPost

• alias: from aiogram.methods import ApproveSuggestedPost

With specific bot

result: bool = await bot(ApproveSuggestedPost(...))

As reply into Webhook in handler

return ApproveSuggestedPost(...)

declineSuggestedPost

Returns: bool

class aiogram.methods.decline_suggested_post.DeclineSuggestedPost(*, chat_id: int, message_id:
int, comment: str | None =
None, **extra_data: Any)

Use this method to decline a suggested post in a direct messages chat. The bot must have the
‘can_manage_direct_messages’ administrator right in the corresponding channel chat. Returns True on suc-
cess.

Source: https://core.telegram.org/bots/api#declinesuggestedpost

chat_id: int

Unique identifier for the target direct messages chat

message_id: int

Identifier of a suggested post message to decline

comment: str | None

Comment for the creator of the suggested post; 0-128 characters

2.3. Bot API 559

https://core.telegram.org/bots/api#declinesuggestedpost

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.decline_suggested_post(...)

Method as object

Imports:

• from aiogram.methods.decline_suggested_post import DeclineSuggestedPost

• alias: from aiogram.methods import DeclineSuggestedPost

With specific bot

result: bool = await bot(DeclineSuggestedPost(...))

As reply into Webhook in handler

return DeclineSuggestedPost(...)

deleteMessage

Returns: bool

class aiogram.methods.delete_message.DeleteMessage(*, chat_id: int | str, message_id: int,
**extra_data: Any)

Use this method to delete a message, including service messages, with the following limitations:

• A message can only be deleted if it was sent less than 48 hours ago.

• Service messages about a supergroup, channel, or forum topic creation can’t be deleted.

• A dice message in a private chat can only be deleted if it was sent more than 24 hours ago.

• Bots can delete outgoing messages in private chats, groups, and supergroups.

• Bots can delete incoming messages in private chats.

• Bots granted can_post_messages permissions can delete outgoing messages in channels.

• If the bot is an administrator of a group, it can delete any message there.

• If the bot has can_delete_messages administrator right in a supergroup or a channel, it can delete any
message there.

• If the bot has can_manage_direct_messages administrator right in a channel, it can delete any message in
the corresponding direct messages chat.

Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessage

560 Chapter 2. Contents

https://core.telegram.org/bots/api#deletemessage

aiogram Documentation, Release 3.23.0

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

message_id: int

Identifier of the message to delete

Usage

As bot method

result: bool = await bot.delete_message(...)

Method as object

Imports:

• from aiogram.methods.delete_message import DeleteMessage

• alias: from aiogram.methods import DeleteMessage

With specific bot

result: bool = await bot(DeleteMessage(...))

As reply into Webhook in handler

return DeleteMessage(...)

As shortcut from received object

• aiogram.types.chat.Chat.delete_message()

• aiogram.types.message.Message.delete()

deleteMessages

Returns: bool

class aiogram.methods.delete_messages.DeleteMessages(*, chat_id: int | str, message_ids: list[int],
**extra_data: Any)

Use this method to delete multiple messages simultaneously. If some of the specified messages can’t be found,
they are skipped. Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessages

chat_id: int | str

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

2.3. Bot API 561

https://core.telegram.org/bots/api#deletemessages

aiogram Documentation, Release 3.23.0

message_ids: list[int]

A JSON-serialized list of 1-100 identifiers of messages to delete. See aiogram.methods.
delete_message.DeleteMessage for limitations on which messages can be deleted

Usage

As bot method

result: bool = await bot.delete_messages(...)

Method as object

Imports:

• from aiogram.methods.delete_messages import DeleteMessages

• alias: from aiogram.methods import DeleteMessages

With specific bot

result: bool = await bot(DeleteMessages(...))

As reply into Webhook in handler

return DeleteMessages(...)

editMessageCaption

Returns: Union[Message, bool]

class aiogram.methods.edit_message_caption.EditMessageCaption(*, business_connection_id: str |
None = None, chat_id: int | str |
None = None, message_id: int |
None = None, inline_message_id:
str | None = None, caption: str |
None = None, parse_mode: str |
~aiogram.client.default.Default |
None = <Default('parse_mode')>,
caption_entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None,
show_caption_above_media: bool |
~aiogram.client.default.Default |
None = <De-
fault('show_caption_above_media')>,
reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None, **extra_data:
~typing.Any)

562 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Use this method to edit captions of messages. On success, if the edited message is not an inline message, the
edited aiogram.types.message.Message is returned, otherwise True is returned. Note that business mes-
sages that were not sent by the bot and do not contain an inline keyboard can only be edited within 48 hours
from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagecaption

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message to be edited was sent

chat_id: ChatIdUnion | None

Required if inline_message_id is not specified. Unique identifier for the target chat or username of the
target channel (in the format @channelusername)

message_id: int | None

Required if inline_message_id is not specified. Identifier of the message to edit

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

caption: str | None

New caption of the message, 0-1024 characters after entities parsing

parse_mode: str | Default | None

Mode for parsing entities in the message caption. See formatting options for more details.

caption_entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in the caption, which can be specified instead of
parse_mode

show_caption_above_media: bool | Default | None

Pass True, if the caption must be shown above the message media. Supported only for animation, photo
and video messages.

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for an inline keyboard.

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_caption(...)

Method as object

Imports:

• from aiogram.methods.edit_message_caption import EditMessageCaption

• alias: from aiogram.methods import EditMessageCaption

2.3. Bot API 563

https://core.telegram.org/bots/api#editmessagecaption
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

With specific bot

result: Union[Message, bool] = await bot(EditMessageCaption(...))

As reply into Webhook in handler

return EditMessageCaption(...)

As shortcut from received object

• aiogram.types.message.Message.edit_caption()

editMessageChecklist

Returns: Message

class aiogram.methods.edit_message_checklist.EditMessageChecklist(*, business_connection_id:
str, chat_id: int, message_id:
int, checklist: InputChecklist,
reply_markup:
InlineKeyboardMarkup | None
= None, **extra_data: Any)

Use this method to edit a checklist on behalf of a connected business account. On success, the edited aiogram.
types.message.Message is returned.

Source: https://core.telegram.org/bots/api#editmessagechecklist

business_connection_id: str

Unique identifier of the business connection on behalf of which the message will be sent

chat_id: int

Unique identifier for the target chat

message_id: int

Unique identifier for the target message

checklist: InputChecklist

A JSON-serialized object for the new checklist

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for the new inline keyboard for the message

564 Chapter 2. Contents

https://core.telegram.org/bots/api#editmessagechecklist

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.edit_message_checklist(...)

Method as object

Imports:

• from aiogram.methods.edit_message_checklist import EditMessageChecklist

• alias: from aiogram.methods import EditMessageChecklist

With specific bot

result: Message = await bot(EditMessageChecklist(...))

As reply into Webhook in handler

return EditMessageChecklist(...)

editMessageLiveLocation

Returns: Union[Message, bool]

class aiogram.methods.edit_message_live_location.EditMessageLiveLocation(*, latitude: float,
longitude: float,
busi-
ness_connection_id:
str | None = None,
chat_id: int | str |
None = None,
message_id: int |
None = None,
inline_message_id:
str | None = None,
live_period: int |
None = None,
horizontal_accuracy:
float | None = None,
heading: int | None
= None, proxim-
ity_alert_radius: int
| None = None,
reply_markup: In-
lineKeyboardMarkup
| None = None,
**extra_data: Any)

2.3. Bot API 565

aiogram Documentation, Release 3.23.0

Use this method to edit live location messages. A location can be edited until its live_period ex-
pires or editing is explicitly disabled by a call to aiogram.methods.stop_message_live_location.
StopMessageLiveLocation. On success, if the edited message is not an inline message, the edited aiogram.
types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagelivelocation

latitude: float

Latitude of new location

longitude: float

Longitude of new location

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message to be edited was sent

chat_id: ChatIdUnion | None

Required if inline_message_id is not specified. Unique identifier for the target chat or username of the
target channel (in the format @channelusername)

message_id: int | None

Required if inline_message_id is not specified. Identifier of the message to edit

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

live_period: int | None

New period in seconds during which the location can be updated, starting from the message send date. If
0x7FFFFFFF is specified, then the location can be updated forever. Otherwise, the new value must not
exceed the current live_period by more than a day, and the live location expiration date must remain within
the next 90 days. If not specified, then live_period remains unchanged

horizontal_accuracy: float | None

The radius of uncertainty for the location, measured in meters; 0-1500

heading: int | None

Direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

proximity_alert_radius: int | None

The maximum distance for proximity alerts about approaching another chat member, in meters. Must be
between 1 and 100000 if specified.

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for a new inline keyboard.

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_live_location(...)

566 Chapter 2. Contents

https://core.telegram.org/bots/api#editmessagelivelocation
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.edit_message_live_location import EditMessageLiveLocation

• alias: from aiogram.methods import EditMessageLiveLocation

With specific bot

result: Union[Message, bool] = await bot(EditMessageLiveLocation(...))

As reply into Webhook in handler

return EditMessageLiveLocation(...)

As shortcut from received object

• aiogram.types.message.Message.edit_live_location()

editMessageMedia

Returns: Union[Message, bool]

class aiogram.methods.edit_message_media.EditMessageMedia(*, media: InputMediaAnimation |
InputMediaDocument |
InputMediaAudio | InputMediaPhoto |
InputMediaVideo,
business_connection_id: str | None =
None, chat_id: int | str | None = None,
message_id: int | None = None,
inline_message_id: str | None = None,
reply_markup: InlineKeyboardMarkup |
None = None, **extra_data: Any)

Use this method to edit animation, audio, document, photo, or video messages, or to add media to text messages.
If a message is part of a message album, then it can be edited only to an audio for audio albums, only to a
document for document albums and to a photo or a video otherwise. When an inline message is edited, a new
file can’t be uploaded; use a previously uploaded file via its file_id or specify a URL. On success, if the edited
message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True
is returned. Note that business messages that were not sent by the bot and do not contain an inline keyboard can
only be edited within 48 hours from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagemedia

media: InputMediaUnion

A JSON-serialized object for a new media content of the message

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message to be edited was sent

2.3. Bot API 567

https://core.telegram.org/bots/api#editmessagemedia

aiogram Documentation, Release 3.23.0

chat_id: ChatIdUnion | None

Required if inline_message_id is not specified. Unique identifier for the target chat or username of the
target channel (in the format @channelusername)

message_id: int | None

Required if inline_message_id is not specified. Identifier of the message to edit

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for a new inline keyboard.

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_media(...)

Method as object

Imports:

• from aiogram.methods.edit_message_media import EditMessageMedia

• alias: from aiogram.methods import EditMessageMedia

With specific bot

result: Union[Message, bool] = await bot(EditMessageMedia(...))

As reply into Webhook in handler

return EditMessageMedia(...)

As shortcut from received object

• aiogram.types.message.Message.edit_media()

568 Chapter 2. Contents

https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

editMessageReplyMarkup

Returns: Union[Message, bool]

class aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup(*, busi-
ness_connection_id: str
| None = None, chat_id:
int | str | None = None,
message_id: int | None
= None,
inline_message_id: str |
None = None,
reply_markup:
InlineKeyboardMarkup
| None = None,
**extra_data: Any)

Use this method to edit only the reply markup of messages. On success, if the edited message is not an inline
message, the edited aiogram.types.message.Message is returned, otherwise True is returned. Note that
business messages that were not sent by the bot and do not contain an inline keyboard can only be edited within
48 hours from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagereplymarkup

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message to be edited was sent

chat_id: ChatIdUnion | None

Required if inline_message_id is not specified. Unique identifier for the target chat or username of the
target channel (in the format @channelusername)

message_id: int | None

Required if inline_message_id is not specified. Identifier of the message to edit

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for an inline keyboard.

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_reply_markup(...)

2.3. Bot API 569

https://core.telegram.org/bots/api#editmessagereplymarkup
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.edit_message_reply_markup import EditMessageReplyMarkup

• alias: from aiogram.methods import EditMessageReplyMarkup

With specific bot

result: Union[Message, bool] = await bot(EditMessageReplyMarkup(...))

As reply into Webhook in handler

return EditMessageReplyMarkup(...)

As shortcut from received object

• aiogram.types.message.Message.edit_reply_markup()

• aiogram.types.message.Message.delete_reply_markup()

editMessageText

Returns: Union[Message, bool]

class aiogram.methods.edit_message_text.EditMessageText(*, text: str, business_connection_id: str |
None = None, chat_id: int | str | None =
None, message_id: int | None = None,
inline_message_id: str | None = None,
parse_mode: str |
~aiogram.client.default.Default
| None = <Default('parse_mode')>, entities:
list[~aiogram.types.message_entity.MessageEntity]
| None = None, link_preview_options:
~aiogram.types.link_preview_options.LinkPreviewOptions
| ~aiogram.client.default.Default | None =
<Default('link_preview')>, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None,
disable_web_page_preview: bool |
~aiogram.client.default.Default | None =
<Default('link_preview_is_disabled')>,
**extra_data: ~typing.Any)

Use this method to edit text and game messages. On success, if the edited message is not an inline message,
the edited aiogram.types.message.Message is returned, otherwise True is returned. Note that business
messages that were not sent by the bot and do not contain an inline keyboard can only be edited within 48 hours
from the time they were sent.

Source: https://core.telegram.org/bots/api#editmessagetext

570 Chapter 2. Contents

https://core.telegram.org/bots/api#games
https://core.telegram.org/bots/api#editmessagetext

aiogram Documentation, Release 3.23.0

text: str

New text of the message, 1-4096 characters after entities parsing

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message to be edited was sent

chat_id: ChatIdUnion | None

Required if inline_message_id is not specified. Unique identifier for the target chat or username of the
target channel (in the format @channelusername)

message_id: int | None

Required if inline_message_id is not specified. Identifier of the message to edit

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

parse_mode: str | Default | None

Mode for parsing entities in the message text. See formatting options for more details.

entities: list[MessageEntity] | None

A JSON-serialized list of special entities that appear in message text, which can be specified instead of
parse_mode

link_preview_options: LinkPreviewOptions | Default | None

Link preview generation options for the message

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for an inline keyboard.

disable_web_page_preview: bool | Default | None

Disables link previews for links in this message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_text(...)

Method as object

Imports:

• from aiogram.methods.edit_message_text import EditMessageText

• alias: from aiogram.methods import EditMessageText

2.3. Bot API 571

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

With specific bot

result: Union[Message, bool] = await bot(EditMessageText(...))

As reply into Webhook in handler

return EditMessageText(...)

As shortcut from received object

• aiogram.types.message.Message.edit_text()

stopMessageLiveLocation

Returns: Union[Message, bool]

class aiogram.methods.stop_message_live_location.StopMessageLiveLocation(*, busi-
ness_connection_id:
str | None = None,
chat_id: int | str |
None = None,
message_id: int |
None = None,
inline_message_id:
str | None = None,
reply_markup: In-
lineKeyboardMarkup
| None = None,
**extra_data: Any)

Use this method to stop updating a live location message before live_period expires. On success, if the message is
not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#stopmessagelivelocation

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message to be edited was sent

chat_id: ChatIdUnion | None

Required if inline_message_id is not specified. Unique identifier for the target chat or username of the
target channel (in the format @channelusername)

message_id: int | None

Required if inline_message_id is not specified. Identifier of the message with live location to stop

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for a new inline keyboard.

572 Chapter 2. Contents

https://core.telegram.org/bots/api#stopmessagelivelocation
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Union[Message, bool] = await bot.stop_message_live_location(...)

Method as object

Imports:

• from aiogram.methods.stop_message_live_location import StopMessageLiveLocation

• alias: from aiogram.methods import StopMessageLiveLocation

With specific bot

result: Union[Message, bool] = await bot(StopMessageLiveLocation(...))

As reply into Webhook in handler

return StopMessageLiveLocation(...)

As shortcut from received object

• aiogram.types.message.Message.stop_live_location()

stopPoll

Returns: Poll

class aiogram.methods.stop_poll.StopPoll(*, chat_id: int | str, message_id: int, business_connection_id:
str | None = None, reply_markup: InlineKeyboardMarkup |
None = None, **extra_data: Any)

Use this method to stop a poll which was sent by the bot. On success, the stopped aiogram.types.poll.Poll
is returned.

Source: https://core.telegram.org/bots/api#stoppoll

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

message_id: int

Identifier of the original message with the poll

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message to be edited was sent

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for a new message inline keyboard.

2.3. Bot API 573

https://core.telegram.org/bots/api#stoppoll
https://core.telegram.org/bots/features#inline-keyboards

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Poll = await bot.stop_poll(...)

Method as object

Imports:

• from aiogram.methods.stop_poll import StopPoll

• alias: from aiogram.methods import StopPoll

With specific bot

result: Poll = await bot(StopPoll(...))

As reply into Webhook in handler

return StopPoll(...)

Inline mode

answerInlineQuery

Returns: bool

574 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

class aiogram.methods.answer_inline_query.AnswerInlineQuery(*, inline_query_id: str, results:
list[InlineQueryResultCachedAudio |
InlineQueryResultCachedDocument |
InlineQueryResultCachedGif |
InlineQueryResultCachedMpeg4Gif |
InlineQueryResultCachedPhoto |
InlineQueryResultCachedSticker |
InlineQueryResultCachedVideo |
InlineQueryResultCachedVoice |
InlineQueryResultArticle |
InlineQueryResultAudio |
InlineQueryResultContact |
InlineQueryResultGame |
InlineQueryResultDocument |
InlineQueryResultGif |
InlineQueryResultLocation |
InlineQueryResultMpeg4Gif |
InlineQueryResultPhoto |
InlineQueryResultVenue |
InlineQueryResultVideo |
InlineQueryResultVoice], cache_time:
int | None = None, is_personal: bool |
None = None, next_offset: str | None
= None, button:
InlineQueryResultsButton | None =
None, switch_pm_parameter: str |
None = None, switch_pm_text: str |
None = None, **extra_data: Any)

Use this method to send answers to an inline query. On success, True is returned.

No more than 50 results per query are allowed.

Source: https://core.telegram.org/bots/api#answerinlinequery

inline_query_id: str

Unique identifier for the answered query

results: list[InlineQueryResultUnion]

A JSON-serialized array of results for the inline query

cache_time: int | None

The maximum amount of time in seconds that the result of the inline query may be cached on the server.
Defaults to 300.

is_personal: bool | None

Pass True if results may be cached on the server side only for the user that sent the query. By default,
results may be returned to any user who sends the same query.

next_offset: str | None

Pass the offset that a client should send in the next query with the same text to receive more results. Pass
an empty string if there are no more results or if you don’t support pagination. Offset length can’t exceed
64 bytes.

button: InlineQueryResultsButton | None

A JSON-serialized object describing a button to be shown above inline query results

2.3. Bot API 575

https://core.telegram.org/bots/api#answerinlinequery

aiogram Documentation, Release 3.23.0

switch_pm_parameter: str | None

Deep-linking parameter for the /start message sent to the bot when user presses the switch button. 1-64
characters, only A-Z, a-z, 0-9, _ and - are allowed.

Deprecated since version API:6.7: https://core.telegram.org/bots/api-changelog#april-21-2023

switch_pm_text: str | None

If passed, clients will display a button with specified text that switches the user to a private chat with the
bot and sends the bot a start message with the parameter switch_pm_parameter

Deprecated since version API:6.7: https://core.telegram.org/bots/api-changelog#april-21-2023

Usage

As bot method

result: bool = await bot.answer_inline_query(...)

Method as object

Imports:

• from aiogram.methods.answer_inline_query import AnswerInlineQuery

• alias: from aiogram.methods import AnswerInlineQuery

With specific bot

result: bool = await bot(AnswerInlineQuery(...))

As reply into Webhook in handler

return AnswerInlineQuery(...)

As shortcut from received object

• aiogram.types.inline_query.InlineQuery.answer()

answerWebAppQuery

Returns: SentWebAppMessage

576 Chapter 2. Contents

https://core.telegram.org/bots/features#deep-linking
https://core.telegram.org/bots/api-changelog#april-21-2023
https://core.telegram.org/bots/api-changelog#april-21-2023

aiogram Documentation, Release 3.23.0

class aiogram.methods.answer_web_app_query.AnswerWebAppQuery(*, web_app_query_id: str, result:
InlineQueryResultCachedAudio |
InlineQueryResultCachedDocument
| InlineQueryResultCachedGif |
InlineQueryResultCachedMpeg4Gif
| InlineQueryResultCachedPhoto |
InlineQueryResultCachedSticker |
InlineQueryResultCachedVideo |
InlineQueryResultCachedVoice |
InlineQueryResultArticle |
InlineQueryResultAudio |
InlineQueryResultContact |
InlineQueryResultGame |
InlineQueryResultDocument |
InlineQueryResultGif |
InlineQueryResultLocation |
InlineQueryResultMpeg4Gif |
InlineQueryResultPhoto |
InlineQueryResultVenue |
InlineQueryResultVideo |
InlineQueryResultVoice,
**extra_data: Any)

Use this method to set the result of an interaction with a Web App and send a corresponding message on behalf of
the user to the chat from which the query originated. On success, a aiogram.types.sent_web_app_message.
SentWebAppMessage object is returned.

Source: https://core.telegram.org/bots/api#answerwebappquery

web_app_query_id: str

Unique identifier for the query to be answered

result: InlineQueryResultUnion

A JSON-serialized object describing the message to be sent

Usage

As bot method

result: SentWebAppMessage = await bot.answer_web_app_query(...)

Method as object

Imports:

• from aiogram.methods.answer_web_app_query import AnswerWebAppQuery

• alias: from aiogram.methods import AnswerWebAppQuery

2.3. Bot API 577

https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/api#answerwebappquery

aiogram Documentation, Release 3.23.0

With specific bot

result: SentWebAppMessage = await bot(AnswerWebAppQuery(...))

As reply into Webhook in handler

return AnswerWebAppQuery(...)

savePreparedInlineMessage

Returns: PreparedInlineMessage

578 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

class aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage(*, user_id: int,
result: Inline-
QueryResult-
CachedAudio |
InlineQueryRe-
sultCachedDoc-
ument |
InlineQueryRe-
sultCachedGif |
InlineQueryRe-
sultCachedM-
peg4Gif |
InlineQueryRe-
sultCached-
Photo |
InlineQueryRe-
sultCached-
Sticker |
InlineQueryRe-
sultCached-
Video |
InlineQueryRe-
sultCached-
Voice |
InlineQueryRe-
sultArticle |
InlineQueryRe-
sultAudio |
InlineQueryRe-
sultContact |
InlineQueryRe-
sultGame |
InlineQueryRe-
sultDocument |
InlineQueryRe-
sultGif |
InlineQueryRe-
sultLocation |
InlineQueryRe-
sultMpeg4Gif |
InlineQueryRe-
sultPhoto |
InlineQueryRe-
sultVenue |
InlineQueryRe-
sultVideo |
InlineQueryRe-
sultVoice,
al-
low_user_chats:
bool | None =
None, al-
low_bot_chats:
bool | None =
None, al-
low_group_chats:
bool | None =
None, al-
low_channel_chats:
bool | None =
None,
**extra_data:
Any)

2.3. Bot API 579

aiogram Documentation, Release 3.23.0

Stores a message that can be sent by a user of a Mini App. Returns a aiogram.types.
prepared_inline_message.PreparedInlineMessage object.

Source: https://core.telegram.org/bots/api#savepreparedinlinemessage

user_id: int

Unique identifier of the target user that can use the prepared message

result: InlineQueryResultUnion

A JSON-serialized object describing the message to be sent

allow_user_chats: bool | None

Pass True if the message can be sent to private chats with users

allow_bot_chats: bool | None

Pass True if the message can be sent to private chats with bots

allow_group_chats: bool | None

Pass True if the message can be sent to group and supergroup chats

allow_channel_chats: bool | None

Pass True if the message can be sent to channel chats

Usage

As bot method

result: PreparedInlineMessage = await bot.save_prepared_inline_message(...)

Method as object

Imports:

• from aiogram.methods.save_prepared_inline_message import SavePreparedInlineMessage

• alias: from aiogram.methods import SavePreparedInlineMessage

With specific bot

result: PreparedInlineMessage = await bot(SavePreparedInlineMessage(...))

As reply into Webhook in handler

return SavePreparedInlineMessage(...)

580 Chapter 2. Contents

https://core.telegram.org/bots/api#savepreparedinlinemessage

aiogram Documentation, Release 3.23.0

Games

getGameHighScores

Returns: list[GameHighScore]

class aiogram.methods.get_game_high_scores.GetGameHighScores(*, user_id: int, chat_id: int | None =
None, message_id: int | None =
None, inline_message_id: str | None
= None, **extra_data: Any)

Use this method to get data for high score tables. Will return the score of the specified user and several of their
neighbors in a game. Returns an Array of aiogram.types.game_high_score.GameHighScore objects.

This method will currently return scores for the target user, plus two of their closest neighbors on each
side. Will also return the top three users if the user and their neighbors are not among them. Please
note that this behavior is subject to change.

Source: https://core.telegram.org/bots/api#getgamehighscores

user_id: int

Target user id

chat_id: int | None

Required if inline_message_id is not specified. Unique identifier for the target chat

message_id: int | None

Required if inline_message_id is not specified. Identifier of the sent message

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

Usage

As bot method

result: list[GameHighScore] = await bot.get_game_high_scores(...)

Method as object

Imports:

• from aiogram.methods.get_game_high_scores import GetGameHighScores

• alias: from aiogram.methods import GetGameHighScores

2.3. Bot API 581

https://core.telegram.org/bots/api#getgamehighscores

aiogram Documentation, Release 3.23.0

With specific bot

result: list[GameHighScore] = await bot(GetGameHighScores(...))

sendGame

Returns: Message

class aiogram.methods.send_game.SendGame(*, chat_id: int, game_short_name: str,
business_connection_id: str | None = None,
message_thread_id: int | None = None, disable_notification:
bool | None = None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast: bool |
None = None, message_effect_id: str | None = None,
reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters | None =
None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None, allow_sending_without_reply: bool | None =
None, reply_to_message_id: int | None = None, **extra_data:
~typing.Any)

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

chat_id: int

Unique identifier for the target chat. Games can’t be sent to channel direct messages chats and channel
chats.

game_short_name: str

Short name of the game, serves as the unique identifier for the game. Set up your games via @BotFather.

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the message will be sent

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

reply_parameters: ReplyParameters | None

Description of the message to reply to

582 Chapter 2. Contents

https://core.telegram.org/bots/api#sendgame
https://t.me/botfather
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once

aiogram Documentation, Release 3.23.0

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for an inline keyboard. If empty, one ‘Play game_title’ button will be shown. If
not empty, the first button must launch the game.

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_game(...)

Method as object

Imports:

• from aiogram.methods.send_game import SendGame

• alias: from aiogram.methods import SendGame

With specific bot

result: Message = await bot(SendGame(...))

As reply into Webhook in handler

return SendGame(...)

As shortcut from received object

• aiogram.types.message.Message.answer_game()

• aiogram.types.message.Message.reply_game()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_game()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_game_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_game()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_game()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_game()

2.3. Bot API 583

https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

setGameScore

Returns: Union[Message, bool]

class aiogram.methods.set_game_score.SetGameScore(*, user_id: int, score: int, force: bool | None =
None, disable_edit_message: bool | None = None,
chat_id: int | None = None, message_id: int | None
= None, inline_message_id: str | None = None,
**extra_data: Any)

Use this method to set the score of the specified user in a game message. On success, if the message is not an
inline message, the aiogram.types.message.Message is returned, otherwise True is returned. Returns an
error, if the new score is not greater than the user’s current score in the chat and force is False.

Source: https://core.telegram.org/bots/api#setgamescore

user_id: int

User identifier

score: int

New score, must be non-negative

force: bool | None

Pass True if the high score is allowed to decrease. This can be useful when fixing mistakes or banning
cheaters

disable_edit_message: bool | None

Pass True if the game message should not be automatically edited to include the current scoreboard

chat_id: int | None

Required if inline_message_id is not specified. Unique identifier for the target chat

message_id: int | None

Required if inline_message_id is not specified. Identifier of the sent message

inline_message_id: str | None

Required if chat_id and message_id are not specified. Identifier of the inline message

Usage

As bot method

result: Union[Message, bool] = await bot.set_game_score(...)

Method as object

Imports:

• from aiogram.methods.set_game_score import SetGameScore

• alias: from aiogram.methods import SetGameScore

584 Chapter 2. Contents

https://core.telegram.org/bots/api#setgamescore

aiogram Documentation, Release 3.23.0

With specific bot

result: Union[Message, bool] = await bot(SetGameScore(...))

As reply into Webhook in handler

return SetGameScore(...)

Payments

answerPreCheckoutQuery

Returns: bool

class aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery(*,
pre_checkout_query_id:
str, ok: bool,
error_message: str |
None = None,
**extra_data: Any)

Once the user has confirmed their payment and shipping details, the Bot API sends the final confirmation in the
form of an aiogram.types.update.Update with the field pre_checkout_query. Use this method to respond
to such pre-checkout queries. On success, True is returned. Note: The Bot API must receive an answer within
10 seconds after the pre-checkout query was sent.

Source: https://core.telegram.org/bots/api#answerprecheckoutquery

pre_checkout_query_id: str

Unique identifier for the query to be answered

ok: bool

Specify True if everything is alright (goods are available, etc.) and the bot is ready to proceed with the
order. Use False if there are any problems.

error_message: str | None

Required if ok is False. Error message in human readable form that explains the reason for failure to
proceed with the checkout (e.g. “Sorry, somebody just bought the last of our amazing black T-shirts while
you were busy filling out your payment details. Please choose a different color or garment!”). Telegram
will display this message to the user.

Usage

As bot method

result: bool = await bot.answer_pre_checkout_query(...)

2.3. Bot API 585

https://core.telegram.org/bots/api#answerprecheckoutquery

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.answer_pre_checkout_query import AnswerPreCheckoutQuery

• alias: from aiogram.methods import AnswerPreCheckoutQuery

With specific bot

result: bool = await bot(AnswerPreCheckoutQuery(...))

As reply into Webhook in handler

return AnswerPreCheckoutQuery(...)

As shortcut from received object

• aiogram.types.pre_checkout_query.PreCheckoutQuery.answer()

answerShippingQuery

Returns: bool

class aiogram.methods.answer_shipping_query.AnswerShippingQuery(*, shipping_query_id: str, ok:
bool, shipping_options:
list[ShippingOption] | None =
None, error_message: str | None
= None, **extra_data: Any)

If you sent an invoice requesting a shipping address and the parameter is_flexible was specified, the Bot API will
send an aiogram.types.update.Update with a shipping_query field to the bot. Use this method to reply to
shipping queries. On success, True is returned.

Source: https://core.telegram.org/bots/api#answershippingquery

shipping_query_id: str

Unique identifier for the query to be answered

ok: bool

Pass True if delivery to the specified address is possible and False if there are any problems (for example,
if delivery to the specified address is not possible)

shipping_options: list[ShippingOption] | None

Required if ok is True. A JSON-serialized array of available shipping options.

error_message: str | None

Required if ok is False. Error message in human readable form that explains why it is impossible to
complete the order (e.g. ‘Sorry, delivery to your desired address is unavailable’). Telegram will display
this message to the user.

586 Chapter 2. Contents

https://core.telegram.org/bots/api#answershippingquery

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.answer_shipping_query(...)

Method as object

Imports:

• from aiogram.methods.answer_shipping_query import AnswerShippingQuery

• alias: from aiogram.methods import AnswerShippingQuery

With specific bot

result: bool = await bot(AnswerShippingQuery(...))

As reply into Webhook in handler

return AnswerShippingQuery(...)

As shortcut from received object

• aiogram.types.shipping_query.ShippingQuery.answer()

2.3. Bot API 587

aiogram Documentation, Release 3.23.0

createInvoiceLink

Returns: str

class aiogram.methods.create_invoice_link.CreateInvoiceLink(*, title: str, description: str, payload:
str, currency: str, prices:
list[LabeledPrice],
business_connection_id: str | None =
None, provider_token: str | None =
None, subscription_period: int | None
= None, max_tip_amount: int | None
= None, suggested_tip_amounts:
list[int] | None = None,
provider_data: str | None = None,
photo_url: str | None = None,
photo_size: int | None = None,
photo_width: int | None = None,
photo_height: int | None = None,
need_name: bool | None = None,
need_phone_number: bool | None =
None, need_email: bool | None =
None, need_shipping_address: bool |
None = None,
send_phone_number_to_provider:
bool | None = None,
send_email_to_provider: bool | None
= None, is_flexible: bool | None =
None, **extra_data: Any)

Use this method to create a link for an invoice. Returns the created invoice link as String on success.

Source: https://core.telegram.org/bots/api#createinvoicelink

title: str

Product name, 1-32 characters

description: str

Product description, 1-255 characters

payload: str

Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use it for your internal
processes.

currency: str

Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for payments in Telegram Stars.

prices: list[LabeledPrice]

Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost,
delivery tax, bonus, etc.). Must contain exactly one item for payments in Telegram Stars.

business_connection_id: str | None

Unique identifier of the business connection on behalf of which the link will be created. For payments in
Telegram Stars only.

provider_token: str | None

Payment provider token, obtained via @BotFather. Pass an empty string for payments in Telegram Stars.

588 Chapter 2. Contents

https://core.telegram.org/bots/api#createinvoicelink
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

subscription_period: int | None

The number of seconds the subscription will be active for before the next payment. The currency must be
set to ‘XTR’ (Telegram Stars) if the parameter is used. Currently, it must always be 2592000 (30 days) if
specified. Any number of subscriptions can be active for a given bot at the same time, including multiple
concurrent subscriptions from the same user. Subscription price must no exceed 10000 Telegram Stars.

max_tip_amount: int | None

The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double).
For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in
currencies.json, it shows the number of digits past the decimal point for each currency (2 for the majority
of currencies). Defaults to 0. Not supported for payments in Telegram Stars.

suggested_tip_amounts: list[int] | None

A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not
float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be
positive, passed in a strictly increased order and must not exceed max_tip_amount.

provider_data: str | None

JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed de-
scription of required fields should be provided by the payment provider.

photo_url: str | None

URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service.

photo_size: int | None

Photo size in bytes

photo_width: int | None

Photo width

photo_height: int | None

Photo height

need_name: bool | None

Pass True if you require the user’s full name to complete the order. Ignored for payments in Telegram Stars.

need_phone_number: bool | None

Pass True if you require the user’s phone number to complete the order. Ignored for payments in Telegram
Stars.

need_email: bool | None

Pass True if you require the user’s email address to complete the order. Ignored for payments in Telegram
Stars.

need_shipping_address: bool | None

Pass True if you require the user’s shipping address to complete the order. Ignored for payments in Telegram
Stars.

send_phone_number_to_provider: bool | None

Pass True if the user’s phone number should be sent to the provider. Ignored for payments in Telegram
Stars.

send_email_to_provider: bool | None

Pass True if the user’s email address should be sent to the provider. Ignored for payments in Telegram
Stars.

is_flexible: bool | None

Pass True if the final price depends on the shipping method. Ignored for payments in Telegram Stars.

2.3. Bot API 589

https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: str = await bot.create_invoice_link(...)

Method as object

Imports:

• from aiogram.methods.create_invoice_link import CreateInvoiceLink

• alias: from aiogram.methods import CreateInvoiceLink

With specific bot

result: str = await bot(CreateInvoiceLink(...))

As reply into Webhook in handler

return CreateInvoiceLink(...)

editUserStarSubscription

Returns: bool

class aiogram.methods.edit_user_star_subscription.EditUserStarSubscription(*, user_id: int,
tele-
gram_payment_charge_id:
str, is_canceled:
bool,
**extra_data:
Any)

Allows the bot to cancel or re-enable extension of a subscription paid in Telegram Stars. Returns True on success.

Source: https://core.telegram.org/bots/api#edituserstarsubscription

user_id: int

Identifier of the user whose subscription will be edited

telegram_payment_charge_id: str

Telegram payment identifier for the subscription

is_canceled: bool

Pass True to cancel extension of the user subscription; the subscription must be active up to the end of the
current subscription period. Pass False to allow the user to re-enable a subscription that was previously
canceled by the bot.

590 Chapter 2. Contents

https://core.telegram.org/bots/api#edituserstarsubscription

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.edit_user_star_subscription(...)

Method as object

Imports:

• from aiogram.methods.edit_user_star_subscription import EditUserStarSubscription

• alias: from aiogram.methods import EditUserStarSubscription

With specific bot

result: bool = await bot(EditUserStarSubscription(...))

As reply into Webhook in handler

return EditUserStarSubscription(...)

getMyStarBalance

Returns: StarAmount

class aiogram.methods.get_my_star_balance.GetMyStarBalance(**extra_data: Any)
A method to get the current Telegram Stars balance of the bot. Requires no parameters. On success, returns a
aiogram.types.star_amount.StarAmount object.

Source: https://core.telegram.org/bots/api#getmystarbalance

Usage

As bot method

result: StarAmount = await bot.get_my_star_balance(...)

2.3. Bot API 591

https://core.telegram.org/bots/api#getmystarbalance

aiogram Documentation, Release 3.23.0

Method as object

Imports:

• from aiogram.methods.get_my_star_balance import GetMyStarBalance

• alias: from aiogram.methods import GetMyStarBalance

With specific bot

result: StarAmount = await bot(GetMyStarBalance(...))

getStarTransactions

Returns: StarTransactions

class aiogram.methods.get_star_transactions.GetStarTransactions(*, offset: int | None = None,
limit: int | None = None,
**extra_data: Any)

Returns the bot’s Telegram Star transactions in chronological order. On success, returns a aiogram.types.
star_transactions.StarTransactions object.

Source: https://core.telegram.org/bots/api#getstartransactions

offset: int | None

Number of transactions to skip in the response

limit: int | None

The maximum number of transactions to be retrieved. Values between 1-100 are accepted. Defaults to 100.

Usage

As bot method

result: StarTransactions = await bot.get_star_transactions(...)

Method as object

Imports:

• from aiogram.methods.get_star_transactions import GetStarTransactions

• alias: from aiogram.methods import GetStarTransactions

592 Chapter 2. Contents

https://core.telegram.org/bots/api#getstartransactions

aiogram Documentation, Release 3.23.0

With specific bot

result: StarTransactions = await bot(GetStarTransactions(...))

refundStarPayment

Returns: bool

class aiogram.methods.refund_star_payment.RefundStarPayment(*, user_id: int,
telegram_payment_charge_id: str,
**extra_data: Any)

Refunds a successful payment in Telegram Stars. Returns True on success.

Source: https://core.telegram.org/bots/api#refundstarpayment

user_id: int

Identifier of the user whose payment will be refunded

telegram_payment_charge_id: str

Telegram payment identifier

Usage

As bot method

result: bool = await bot.refund_star_payment(...)

Method as object

Imports:

• from aiogram.methods.refund_star_payment import RefundStarPayment

• alias: from aiogram.methods import RefundStarPayment

With specific bot

result: bool = await bot(RefundStarPayment(...))

As reply into Webhook in handler

return RefundStarPayment(...)

2.3. Bot API 593

https://t.me/BotNews/90
https://core.telegram.org/bots/api#refundstarpayment

aiogram Documentation, Release 3.23.0

sendInvoice

Returns: Message

class aiogram.methods.send_invoice.SendInvoice(*, chat_id: int | str, title: str, description: str, payload:
str, currency: str, prices:
list[~aiogram.types.labeled_price.LabeledPrice],
message_thread_id: int | None = None,
direct_messages_topic_id: int | None = None,
provider_token: str | None = None, max_tip_amount:
int | None = None, suggested_tip_amounts: list[int] |
None = None, start_parameter: str | None = None,
provider_data: str | None = None, photo_url: str | None
= None, photo_size: int | None = None, photo_width:
int | None = None, photo_height: int | None = None,
need_name: bool | None = None, need_phone_number:
bool | None = None, need_email: bool | None = None,
need_shipping_address: bool | None = None,
send_phone_number_to_provider: bool | None = None,
send_email_to_provider: bool | None = None,
is_flexible: bool | None = None, disable_notification:
bool | None = None, protect_content: bool |
~aiogram.client.default.Default | None =
<Default('protect_content')>, allow_paid_broadcast:
bool | None = None, message_effect_id: str | None =
None, suggested_post_parameters:
~aiogram.types.suggested_post_parameters.SuggestedPostParameters
| None = None, reply_parameters:
~aiogram.types.reply_parameters.ReplyParameters |
None = None, reply_markup:
~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
| None = None, allow_sending_without_reply: bool |
None = None, reply_to_message_id: int | None = None,
**extra_data: ~typing.Any)

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

chat_id: ChatIdUnion

Unique identifier for the target chat or username of the target channel (in the format @channelusername)

title: str

Product name, 1-32 characters

description: str

Product description, 1-255 characters

payload: str

Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use it for your internal
processes.

currency: str

Three-letter ISO 4217 currency code, see more on currencies. Pass ‘XTR’ for payments in Telegram Stars.

594 Chapter 2. Contents

https://core.telegram.org/bots/api#sendinvoice
https://core.telegram.org/bots/payments#supported-currencies
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

prices: list[LabeledPrice]

Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost,
delivery tax, bonus, etc.). Must contain exactly one item for payments in Telegram Stars.

message_thread_id: int | None

Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

direct_messages_topic_id: int | None

Identifier of the direct messages topic to which the message will be sent; required if the message is sent to
a direct messages chat

provider_token: str | None

Payment provider token, obtained via @BotFather. Pass an empty string for payments in Telegram Stars.

max_tip_amount: int | None

The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double).
For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in
currencies.json, it shows the number of digits past the decimal point for each currency (2 for the majority
of currencies). Defaults to 0. Not supported for payments in Telegram Stars.

suggested_tip_amounts: list[int] | None

A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not
float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be
positive, passed in a strictly increased order and must not exceed max_tip_amount.

start_parameter: str | None

Unique deep-linking parameter. If left empty, forwarded copies of the sent message will have a Pay button,
allowing multiple users to pay directly from the forwarded message, using the same invoice. If non-empty,
forwarded copies of the sent message will have a URL button with a deep link to the bot (instead of a Pay
button), with the value used as the start parameter

provider_data: str | None

JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed de-
scription of required fields should be provided by the payment provider.

photo_url: str | None

URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service.
People like it better when they see what they are paying for.

photo_size: int | None

Photo size in bytes

photo_width: int | None

Photo width

photo_height: int | None

Photo height

need_name: bool | None

Pass True if you require the user’s full name to complete the order. Ignored for payments in Telegram Stars.

need_phone_number: bool | None

Pass True if you require the user’s phone number to complete the order. Ignored for payments in Telegram
Stars.

need_email: bool | None

Pass True if you require the user’s email address to complete the order. Ignored for payments in Telegram
Stars.

2.3. Bot API 595

https://t.me/BotNews/90
https://t.me/botfather
https://t.me/BotNews/90
https://core.telegram.org/bots/payments/currencies.json
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90

aiogram Documentation, Release 3.23.0

need_shipping_address: bool | None

Pass True if you require the user’s shipping address to complete the order. Ignored for payments in Telegram
Stars.

send_phone_number_to_provider: bool | None

Pass True if the user’s phone number should be sent to the provider. Ignored for payments in Telegram
Stars.

send_email_to_provider: bool | None

Pass True if the user’s email address should be sent to the provider. Ignored for payments in Telegram
Stars.

is_flexible: bool | None

Pass True if the final price depends on the shipping method. Ignored for payments in Telegram Stars.

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | Default | None

Protects the contents of the sent message from forwarding and saving

allow_paid_broadcast: bool | None

Pass True to allow up to 1000 messages per second, ignoring broadcasting limits for a fee of 0.1 Telegram
Stars per message. The relevant Stars will be withdrawn from the bot’s balance

message_effect_id: str | None

Unique identifier of the message effect to be added to the message; for private chats only

suggested_post_parameters: SuggestedPostParameters | None

A JSON-serialized object containing the parameters of the suggested post to send; for direct messages chats
only. If the message is sent as a reply to another suggested post, then that suggested post is automatically
declined.

reply_parameters: ReplyParameters | None

Description of the message to reply to

reply_markup: InlineKeyboardMarkup | None

A JSON-serialized object for an inline keyboard. If empty, one ‘Pay total price’ button will be shown.
If not empty, the first button must be a Pay button.

allow_sending_without_reply: bool | None

Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

reply_to_message_id: int | None

If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

596 Chapter 2. Contents

https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://t.me/BotNews/90
https://telegram.org/blog/channels-2-0#silent-messages
https://core.telegram.org/bots/faq#how-can-i-message-all-of-my-bot-39s-subscribers-at-once
https://core.telegram.org/bots/features#inline-keyboards
https://core.telegram.org/bots/api-changelog#december-29-2023
https://core.telegram.org/bots/api-changelog#december-29-2023

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: Message = await bot.send_invoice(...)

Method as object

Imports:

• from aiogram.methods.send_invoice import SendInvoice

• alias: from aiogram.methods import SendInvoice

With specific bot

result: Message = await bot(SendInvoice(...))

As reply into Webhook in handler

return SendInvoice(...)

As shortcut from received object

• aiogram.types.message.Message.answer_invoice()

• aiogram.types.message.Message.reply_invoice()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_invoice()

• aiogram.types.chat_join_request.ChatJoinRequest.answer_invoice_pm()

• aiogram.types.chat_member_updated.ChatMemberUpdated.answer_invoice()

• aiogram.types.inaccessible_message.InaccessibleMessage.answer_invoice()

• aiogram.types.inaccessible_message.InaccessibleMessage.reply_invoice()

Getting updates

deleteWebhook

Returns: bool

class aiogram.methods.delete_webhook.DeleteWebhook(*, drop_pending_updates: bool | None = None,
**extra_data: Any)

Use this method to remove webhook integration if you decide to switch back to aiogram.methods.
get_updates.GetUpdates. Returns True on success.

Source: https://core.telegram.org/bots/api#deletewebhook

2.3. Bot API 597

https://core.telegram.org/bots/api#deletewebhook

aiogram Documentation, Release 3.23.0

drop_pending_updates: bool | None

Pass True to drop all pending updates

Usage

As bot method

result: bool = await bot.delete_webhook(...)

Method as object

Imports:

• from aiogram.methods.delete_webhook import DeleteWebhook

• alias: from aiogram.methods import DeleteWebhook

With specific bot

result: bool = await bot(DeleteWebhook(...))

As reply into Webhook in handler

return DeleteWebhook(...)

getUpdates

Returns: list[Update]

class aiogram.methods.get_updates.GetUpdates(*, offset: int | None = None, limit: int | None = None,
timeout: int | None = None, allowed_updates: list[str] |
None = None, **extra_data: Any)

Use this method to receive incoming updates using long polling (wiki). Returns an Array of aiogram.types.
update.Update objects.

Notes

1. This method will not work if an outgoing webhook is set up.

2. In order to avoid getting duplicate updates, recalculate offset after each server response.

Source: https://core.telegram.org/bots/api#getupdates

offset: int | None

Identifier of the first update to be returned. Must be greater by one than the highest among the identifiers of
previously received updates. By default, updates starting with the earliest unconfirmed update are returned.
An update is considered confirmed as soon as aiogram.methods.get_updates.GetUpdates is called
with an offset higher than its update_id. The negative offset can be specified to retrieve updates starting
from -offset update from the end of the updates queue. All previous updates will be forgotten.

598 Chapter 2. Contents

https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://core.telegram.org/bots/api#getupdates

aiogram Documentation, Release 3.23.0

limit: int | None

Limits the number of updates to be retrieved. Values between 1-100 are accepted. Defaults to 100.

timeout: int | None

Timeout in seconds for long polling. Defaults to 0, i.e. usual short polling. Should be positive, short polling
should be used for testing purposes only.

allowed_updates: list[str] | None

A JSON-serialized list of the update types you want your bot to receive. For example, specify ["message",
"edited_channel_post", "callback_query"] to only receive updates of these types. See aiogram.
types.update.Update for a complete list of available update types. Specify an empty list to receive
all update types except chat_member, message_reaction, and message_reaction_count (default). If not
specified, the previous setting will be used.

Usage

As bot method

result: list[Update] = await bot.get_updates(...)

Method as object

Imports:

• from aiogram.methods.get_updates import GetUpdates

• alias: from aiogram.methods import GetUpdates

With specific bot

result: list[Update] = await bot(GetUpdates(...))

getWebhookInfo

Returns: WebhookInfo

class aiogram.methods.get_webhook_info.GetWebhookInfo(**extra_data: Any)
Use this method to get current webhook status. Requires no parameters. On success, returns a aiogram.types.
webhook_info.WebhookInfo object. If the bot is using aiogram.methods.get_updates.GetUpdates,
will return an object with the url field empty.

Source: https://core.telegram.org/bots/api#getwebhookinfo

2.3. Bot API 599

https://core.telegram.org/bots/api#getwebhookinfo

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: WebhookInfo = await bot.get_webhook_info(...)

Method as object

Imports:

• from aiogram.methods.get_webhook_info import GetWebhookInfo

• alias: from aiogram.methods import GetWebhookInfo

With specific bot

result: WebhookInfo = await bot(GetWebhookInfo(...))

setWebhook

Returns: bool

class aiogram.methods.set_webhook.SetWebhook(*, url: str, certificate: InputFile | None = None,
ip_address: str | None = None, max_connections: int |
None = None, allowed_updates: list[str] | None = None,
drop_pending_updates: bool | None = None,
secret_token: str | None = None, **extra_data: Any)

Use this method to specify a URL and receive incoming updates via an outgoing webhook. Whenever there is
an update for the bot, we will send an HTTPS POST request to the specified URL, containing a JSON-serialized
aiogram.types.update.Update. In case of an unsuccessful request (a request with response HTTP status
code different from 2XY), we will repeat the request and give up after a reasonable amount of attempts. Returns
True on success. If you’d like to make sure that the webhook was set by you, you can specify secret data in the
parameter secret_token. If specified, the request will contain a header ‘X-Telegram-Bot-Api-Secret-Token’ with
the secret token as content.

Notes

1. You will not be able to receive updates using aiogram.methods.get_updates.GetUpdates
for as long as an outgoing webhook is set up.

2. To use a self-signed certificate, you need to upload your public key certificate using certificate
parameter. Please upload as InputFile, sending a String will not work.

3. Ports currently supported for webhooks: 443, 80, 88, 8443. If you’re having any trouble setting up
webhooks, please check out this amazing guide to webhooks.

Source: https://core.telegram.org/bots/api#setwebhook

url: str

HTTPS URL to send updates to. Use an empty string to remove webhook integration

600 Chapter 2. Contents

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://core.telegram.org/bots/self-signed
https://core.telegram.org/bots/webhooks
https://core.telegram.org/bots/api#setwebhook

aiogram Documentation, Release 3.23.0

certificate: InputFile | None

Upload your public key certificate so that the root certificate in use can be checked. See our self-signed
guide for details.

ip_address: str | None

The fixed IP address which will be used to send webhook requests instead of the IP address resolved through
DNS

max_connections: int | None

The maximum allowed number of simultaneous HTTPS connections to the webhook for update delivery,
1-100. Defaults to 40. Use lower values to limit the load on your bot’s server, and higher values to increase
your bot’s throughput.

allowed_updates: list[str] | None

A JSON-serialized list of the update types you want your bot to receive. For example, specify ["message",
"edited_channel_post", "callback_query"] to only receive updates of these types. See aiogram.
types.update.Update for a complete list of available update types. Specify an empty list to receive
all update types except chat_member, message_reaction, and message_reaction_count (default). If not
specified, the previous setting will be used.

drop_pending_updates: bool | None

Pass True to drop all pending updates

secret_token: str | None

A secret token to be sent in a header ‘X-Telegram-Bot-Api-Secret-Token’ in every webhook request, 1-256
characters. Only characters A-Z, a-z, 0-9, _ and - are allowed. The header is useful to ensure that the
request comes from a webhook set by you.

Usage

As bot method

result: bool = await bot.set_webhook(...)

Method as object

Imports:

• from aiogram.methods.set_webhook import SetWebhook

• alias: from aiogram.methods import SetWebhook

With specific bot

result: bool = await bot(SetWebhook(...))

2.3. Bot API 601

https://core.telegram.org/bots/self-signed
https://core.telegram.org/bots/self-signed

aiogram Documentation, Release 3.23.0

As reply into Webhook in handler

return SetWebhook(...)

Telegram Passport

setPassportDataErrors

Returns: bool

class aiogram.methods.set_passport_data_errors.SetPassportDataErrors(*, user_id: int, errors:
list[PassportElementErrorDataField
| PassportElementError-
FrontSide |
PassportElementErrorRe-
verseSide |
PassportElementError-
Selfie |
PassportElementErrorFile
| PassportElementError-
Files |
PassportElementError-
TranslationFile |
PassportElementError-
TranslationFiles |
PassportElementErrorUn-
specified], **extra_data:
Any)

Informs a user that some of the Telegram Passport elements they provided contains errors. The user will not be
able to re-submit their Passport to you until the errors are fixed (the contents of the field for which you returned
the error must change). Returns True on success. Use this if the data submitted by the user doesn’t satisfy
the standards your service requires for any reason. For example, if a birthday date seems invalid, a submitted
document is blurry, a scan shows evidence of tampering, etc. Supply some details in the error message to make
sure the user knows how to correct the issues.

Source: https://core.telegram.org/bots/api#setpassportdataerrors

user_id: int

User identifier

errors: list[PassportElementErrorUnion]

A JSON-serialized array describing the errors

602 Chapter 2. Contents

https://core.telegram.org/bots/api#setpassportdataerrors

aiogram Documentation, Release 3.23.0

Usage

As bot method

result: bool = await bot.set_passport_data_errors(...)

Method as object

Imports:

• from aiogram.methods.set_passport_data_errors import SetPassportDataErrors

• alias: from aiogram.methods import SetPassportDataErrors

With specific bot

result: bool = await bot(SetPassportDataErrors(...))

As reply into Webhook in handler

return SetPassportDataErrors(...)

2.3.5 Enums

Here is list of all available enums:

BotCommandScopeType

class aiogram.enums.bot_command_scope_type.BotCommandScopeType(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

This object represents the scope to which bot commands are applied.

Source: https://core.telegram.org/bots/api#botcommandscope

DEFAULT = 'default'

ALL_PRIVATE_CHATS = 'all_private_chats'

ALL_GROUP_CHATS = 'all_group_chats'

ALL_CHAT_ADMINISTRATORS = 'all_chat_administrators'

CHAT = 'chat'

CHAT_ADMINISTRATORS = 'chat_administrators'

CHAT_MEMBER = 'chat_member'

2.3. Bot API 603

https://core.telegram.org/bots/api#botcommandscope

aiogram Documentation, Release 3.23.0

ChatAction

class aiogram.enums.chat_action.ChatAction(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

This object represents bot actions.

Choose one, depending on what the user is about to receive:

• typing for text messages,

• upload_photo for photos,

• record_video or upload_video for videos,

• record_voice or upload_voice for voice notes,

• upload_document for general files,

• choose_sticker for stickers,

• find_location for location data,

• record_video_note or upload_video_note for video notes.

Source: https://core.telegram.org/bots/api#sendchataction

TYPING = 'typing'

UPLOAD_PHOTO = 'upload_photo'

RECORD_VIDEO = 'record_video'

UPLOAD_VIDEO = 'upload_video'

RECORD_VOICE = 'record_voice'

UPLOAD_VOICE = 'upload_voice'

UPLOAD_DOCUMENT = 'upload_document'

CHOOSE_STICKER = 'choose_sticker'

FIND_LOCATION = 'find_location'

RECORD_VIDEO_NOTE = 'record_video_note'

UPLOAD_VIDEO_NOTE = 'upload_video_note'

ChatBoostSourceType

class aiogram.enums.chat_boost_source_type.ChatBoostSourceType(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

This object represents a type of chat boost source.

Source: https://core.telegram.org/bots/api#chatboostsource

PREMIUM = 'premium'

GIFT_CODE = 'gift_code'

GIVEAWAY = 'giveaway'

604 Chapter 2. Contents

https://core.telegram.org/bots/api#sendchataction
https://core.telegram.org/bots/api#chatboostsource

aiogram Documentation, Release 3.23.0

ChatMemberStatus

class aiogram.enums.chat_member_status.ChatMemberStatus(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents chat member status.

Source: https://core.telegram.org/bots/api#chatmember

CREATOR = 'creator'

ADMINISTRATOR = 'administrator'

MEMBER = 'member'

RESTRICTED = 'restricted'

LEFT = 'left'

KICKED = 'kicked'

ChatType

class aiogram.enums.chat_type.ChatType(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

This object represents a chat type

Source: https://core.telegram.org/bots/api#chat

SENDER = 'sender'

PRIVATE = 'private'

GROUP = 'group'

SUPERGROUP = 'supergroup'

CHANNEL = 'channel'

ContentType

class aiogram.enums.content_type.ContentType(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

This object represents a type of content in message

UNKNOWN = 'unknown'

ANY = 'any'

TEXT = 'text'

ANIMATION = 'animation'

AUDIO = 'audio'

DOCUMENT = 'document'

2.3. Bot API 605

https://core.telegram.org/bots/api#chatmember
https://core.telegram.org/bots/api#chat

aiogram Documentation, Release 3.23.0

PAID_MEDIA = 'paid_media'

PHOTO = 'photo'

STICKER = 'sticker'

STORY = 'story'

VIDEO = 'video'

VIDEO_NOTE = 'video_note'

VOICE = 'voice'

CHECKLIST = 'checklist'

CONTACT = 'contact'

DICE = 'dice'

GAME = 'game'

POLL = 'poll'

VENUE = 'venue'

LOCATION = 'location'

NEW_CHAT_MEMBERS = 'new_chat_members'

LEFT_CHAT_MEMBER = 'left_chat_member'

NEW_CHAT_TITLE = 'new_chat_title'

NEW_CHAT_PHOTO = 'new_chat_photo'

DELETE_CHAT_PHOTO = 'delete_chat_photo'

GROUP_CHAT_CREATED = 'group_chat_created'

SUPERGROUP_CHAT_CREATED = 'supergroup_chat_created'

CHANNEL_CHAT_CREATED = 'channel_chat_created'

MESSAGE_AUTO_DELETE_TIMER_CHANGED = 'message_auto_delete_timer_changed'

MIGRATE_TO_CHAT_ID = 'migrate_to_chat_id'

MIGRATE_FROM_CHAT_ID = 'migrate_from_chat_id'

PINNED_MESSAGE = 'pinned_message'

INVOICE = 'invoice'

SUCCESSFUL_PAYMENT = 'successful_payment'

REFUNDED_PAYMENT = 'refunded_payment'

USERS_SHARED = 'users_shared'

CHAT_SHARED = 'chat_shared'

606 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

GIFT = 'gift'

UNIQUE_GIFT = 'unique_gift'

CONNECTED_WEBSITE = 'connected_website'

WRITE_ACCESS_ALLOWED = 'write_access_allowed'

PASSPORT_DATA = 'passport_data'

PROXIMITY_ALERT_TRIGGERED = 'proximity_alert_triggered'

BOOST_ADDED = 'boost_added'

CHAT_BACKGROUND_SET = 'chat_background_set'

CHECKLIST_TASKS_DONE = 'checklist_tasks_done'

CHECKLIST_TASKS_ADDED = 'checklist_tasks_added'

DIRECT_MESSAGE_PRICE_CHANGED = 'direct_message_price_changed'

FORUM_TOPIC_CREATED = 'forum_topic_created'

FORUM_TOPIC_EDITED = 'forum_topic_edited'

FORUM_TOPIC_CLOSED = 'forum_topic_closed'

FORUM_TOPIC_REOPENED = 'forum_topic_reopened'

GENERAL_FORUM_TOPIC_HIDDEN = 'general_forum_topic_hidden'

GENERAL_FORUM_TOPIC_UNHIDDEN = 'general_forum_topic_unhidden'

GIVEAWAY_CREATED = 'giveaway_created'

GIVEAWAY = 'giveaway'

GIVEAWAY_WINNERS = 'giveaway_winners'

GIVEAWAY_COMPLETED = 'giveaway_completed'

PAID_MESSAGE_PRICE_CHANGED = 'paid_message_price_changed'

SUGGESTED_POST_APPROVED = 'suggested_post_approved'

SUGGESTED_POST_APPROVAL_FAILED = 'suggested_post_approval_failed'

SUGGESTED_POST_DECLINED = 'suggested_post_declined'

SUGGESTED_POST_PAID = 'suggested_post_paid'

SUGGESTED_POST_REFUNDED = 'suggested_post_refunded'

VIDEO_CHAT_SCHEDULED = 'video_chat_scheduled'

VIDEO_CHAT_STARTED = 'video_chat_started'

VIDEO_CHAT_ENDED = 'video_chat_ended'

VIDEO_CHAT_PARTICIPANTS_INVITED = 'video_chat_participants_invited'

2.3. Bot API 607

aiogram Documentation, Release 3.23.0

WEB_APP_DATA = 'web_app_data'

USER_SHARED = 'user_shared'

Currency

class aiogram.enums.currency.Currency(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Currencies supported by Telegram Bot API

Source: https://core.telegram.org/bots/payments#supported-currencies

AED = 'AED'

AFN = 'AFN'

ALL = 'ALL'

AMD = 'AMD'

ARS = 'ARS'

AUD = 'AUD'

AZN = 'AZN'

BAM = 'BAM'

BDT = 'BDT'

BGN = 'BGN'

BND = 'BND'

BOB = 'BOB'

BRL = 'BRL'

BYN = 'BYN'

CAD = 'CAD'

CHF = 'CHF'

CLP = 'CLP'

CNY = 'CNY'

COP = 'COP'

CRC = 'CRC'

CZK = 'CZK'

DKK = 'DKK'

DOP = 'DOP'

DZD = 'DZD'

608 Chapter 2. Contents

https://core.telegram.org/bots/payments#supported-currencies

aiogram Documentation, Release 3.23.0

EGP = 'EGP'

ETB = 'ETB'

EUR = 'EUR'

GBP = 'GBP'

GEL = 'GEL'

GTQ = 'GTQ'

HKD = 'HKD'

HNL = 'HNL'

HRK = 'HRK'

HUF = 'HUF'

IDR = 'IDR'

ILS = 'ILS'

INR = 'INR'

ISK = 'ISK'

JMD = 'JMD'

JPY = 'JPY'

KES = 'KES'

KGS = 'KGS'

KRW = 'KRW'

KZT = 'KZT'

LBP = 'LBP'

LKR = 'LKR'

MAD = 'MAD'

MDL = 'MDL'

MNT = 'MNT'

MUR = 'MUR'

MVR = 'MVR'

MXN = 'MXN'

MYR = 'MYR'

MZN = 'MZN'

NGN = 'NGN'

2.3. Bot API 609

aiogram Documentation, Release 3.23.0

NIO = 'NIO'

NOK = 'NOK'

NPR = 'NPR'

NZD = 'NZD'

PAB = 'PAB'

PEN = 'PEN'

PHP = 'PHP'

PKR = 'PKR'

PLN = 'PLN'

PYG = 'PYG'

QAR = 'QAR'

RON = 'RON'

RSD = 'RSD'

RUB = 'RUB'

SAR = 'SAR'

SEK = 'SEK'

SGD = 'SGD'

THB = 'THB'

TJS = 'TJS'

TRY = 'TRY'

TTD = 'TTD'

TWD = 'TWD'

TZS = 'TZS'

UAH = 'UAH'

UGX = 'UGX'

USD = 'USD'

UYU = 'UYU'

UZS = 'UZS'

VND = 'VND'

YER = 'YER'

ZAR = 'ZAR'

610 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

DiceEmoji

class aiogram.enums.dice_emoji.DiceEmoji(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Emoji on which the dice throw animation is based

Source: https://core.telegram.org/bots/api#dice

DICE = ''

DART = ''

BASKETBALL = ''

FOOTBALL = ''

SLOT_MACHINE = ''

BOWLING = ''

EncryptedPassportElement

class aiogram.enums.encrypted_passport_element.EncryptedPassportElement(value, names=None,
*, module=None,
qualname=None,
type=None, start=1,
boundary=None)

This object represents type of encrypted passport element.

Source: https://core.telegram.org/bots/api#encryptedpassportelement

PERSONAL_DETAILS = 'personal_details'

PASSPORT = 'passport'

DRIVER_LICENSE = 'driver_license'

IDENTITY_CARD = 'identity_card'

INTERNAL_PASSPORT = 'internal_passport'

ADDRESS = 'address'

UTILITY_BILL = 'utility_bill'

BANK_STATEMENT = 'bank_statement'

RENTAL_AGREEMENT = 'rental_agreement'

PASSPORT_REGISTRATION = 'passport_registration'

TEMPORARY_REGISTRATION = 'temporary_registration'

PHONE_NUMBER = 'phone_number'

EMAIL = 'email'

2.3. Bot API 611

https://core.telegram.org/bots/api#dice
https://core.telegram.org/bots/api#encryptedpassportelement

aiogram Documentation, Release 3.23.0

InlineQueryResultType

class aiogram.enums.inline_query_result_type.InlineQueryResultType(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

Type of inline query result

Source: https://core.telegram.org/bots/api#inlinequeryresult

AUDIO = 'audio'

DOCUMENT = 'document'

GIF = 'gif'

MPEG4_GIF = 'mpeg4_gif'

PHOTO = 'photo'

STICKER = 'sticker'

VIDEO = 'video'

VOICE = 'voice'

ARTICLE = 'article'

CONTACT = 'contact'

GAME = 'game'

LOCATION = 'location'

VENUE = 'venue'

InputMediaType

class aiogram.enums.input_media_type.InputMediaType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents input media type

Source: https://core.telegram.org/bots/api#inputmedia

ANIMATION = 'animation'

AUDIO = 'audio'

DOCUMENT = 'document'

PHOTO = 'photo'

VIDEO = 'video'

612 Chapter 2. Contents

https://core.telegram.org/bots/api#inlinequeryresult
https://core.telegram.org/bots/api#inputmedia

aiogram Documentation, Release 3.23.0

InputPaidMediaType

class aiogram.enums.input_paid_media_type.InputPaidMediaType(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

This object represents the type of a media in a paid message.

Source: https://core.telegram.org/bots/api#inputpaidmedia

PHOTO = 'photo'

VIDEO = 'video'

InputProfilePhotoType

class aiogram.enums.input_profile_photo_type.InputProfilePhotoType(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

This object represents input profile photo type

Source: https://core.telegram.org/bots/api#inputprofilephoto

STATIC = 'static'

ANIMATED = 'animated'

InputStoryContentType

class aiogram.enums.input_story_content_type.InputStoryContentType(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

This object represents input story content photo type.

Source: https://core.telegram.org/bots/api#inputstorycontentphoto

PHOTO = 'photo'

VIDEO = 'video'

KeyboardButtonPollTypeType

2.3. Bot API 613

https://core.telegram.org/bots/api#inputpaidmedia
https://core.telegram.org/bots/api#inputprofilephoto
https://core.telegram.org/bots/api#inputstorycontentphoto

aiogram Documentation, Release 3.23.0

class aiogram.enums.keyboard_button_poll_type_type.KeyboardButtonPollTypeType(value,
names=None,
*,
module=None,
qual-
name=None,
type=None,
start=1,
bound-
ary=None)

This object represents type of a poll, which is allowed to be created and sent when the corresponding button is
pressed.

Source: https://core.telegram.org/bots/api#keyboardbuttonpolltype

QUIZ = 'quiz'

REGULAR = 'regular'

MaskPositionPoint

class aiogram.enums.mask_position_point.MaskPositionPoint(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

The part of the face relative to which the mask should be placed.

Source: https://core.telegram.org/bots/api#maskposition

FOREHEAD = 'forehead'

EYES = 'eyes'

MOUTH = 'mouth'

CHIN = 'chin'

MenuButtonType

class aiogram.enums.menu_button_type.MenuButtonType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents an type of Menu button

Source: https://core.telegram.org/bots/api#menubuttondefault

DEFAULT = 'default'

COMMANDS = 'commands'

WEB_APP = 'web_app'

614 Chapter 2. Contents

https://core.telegram.org/bots/api#keyboardbuttonpolltype
https://core.telegram.org/bots/api#maskposition
https://core.telegram.org/bots/api#menubuttondefault

aiogram Documentation, Release 3.23.0

MessageEntityType

class aiogram.enums.message_entity_type.MessageEntityType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents type of message entity

Source: https://core.telegram.org/bots/api#messageentity

MENTION = 'mention'

HASHTAG = 'hashtag'

CASHTAG = 'cashtag'

BOT_COMMAND = 'bot_command'

URL = 'url'

EMAIL = 'email'

PHONE_NUMBER = 'phone_number'

BOLD = 'bold'

ITALIC = 'italic'

UNDERLINE = 'underline'

STRIKETHROUGH = 'strikethrough'

SPOILER = 'spoiler'

BLOCKQUOTE = 'blockquote'

EXPANDABLE_BLOCKQUOTE = 'expandable_blockquote'

CODE = 'code'

PRE = 'pre'

TEXT_LINK = 'text_link'

TEXT_MENTION = 'text_mention'

CUSTOM_EMOJI = 'custom_emoji'

MessageOriginType

class aiogram.enums.message_origin_type.MessageOriginType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents origin of a message.

Source: https://core.telegram.org/bots/api#messageorigin

USER = 'user'

2.3. Bot API 615

https://core.telegram.org/bots/api#messageentity
https://core.telegram.org/bots/api#messageorigin

aiogram Documentation, Release 3.23.0

HIDDEN_USER = 'hidden_user'

CHAT = 'chat'

CHANNEL = 'channel'

OwnedGiftType

class aiogram.enums.owned_gift_type.OwnedGiftType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents owned gift type

Source: https://core.telegram.org/bots/api#ownedgift

REGULAR = 'regular'

UNIQUE = 'unique'

PaidMediaType

class aiogram.enums.paid_media_type.PaidMediaType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents the type of a media in a paid message.

Source: https://core.telegram.org/bots/api#paidmedia

PHOTO = 'photo'

PREVIEW = 'preview'

VIDEO = 'video'

ParseMode

class aiogram.enums.parse_mode.ParseMode(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Formatting options

Source: https://core.telegram.org/bots/api#formatting-options

MARKDOWN_V2 = 'MarkdownV2'

MARKDOWN = 'Markdown'

HTML = 'HTML'

616 Chapter 2. Contents

https://core.telegram.org/bots/api#ownedgift
https://core.telegram.org/bots/api#paidmedia
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

PassportElementErrorType

class aiogram.enums.passport_element_error_type.PassportElementErrorType(value, names=None,
*, module=None,
qualname=None,
type=None, start=1,
boundary=None)

This object represents a passport element error type.

Source: https://core.telegram.org/bots/api#passportelementerror

DATA = 'data'

FRONT_SIDE = 'front_side'

REVERSE_SIDE = 'reverse_side'

SELFIE = 'selfie'

FILE = 'file'

FILES = 'files'

TRANSLATION_FILE = 'translation_file'

TRANSLATION_FILES = 'translation_files'

UNSPECIFIED = 'unspecified'

PollType

class aiogram.enums.poll_type.PollType(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

This object represents poll type

Source: https://core.telegram.org/bots/api#poll

REGULAR = 'regular'

QUIZ = 'quiz'

ReactionTypeType

class aiogram.enums.reaction_type_type.ReactionTypeType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents reaction type.

Source: https://core.telegram.org/bots/api#reactiontype

EMOJI = 'emoji'

CUSTOM_EMOJI = 'custom_emoji'

PAID = 'paid'

2.3. Bot API 617

https://core.telegram.org/bots/api#passportelementerror
https://core.telegram.org/bots/api#poll
https://core.telegram.org/bots/api#reactiontype

aiogram Documentation, Release 3.23.0

RevenueWithdrawalStateType

class aiogram.enums.revenue_withdrawal_state_type.RevenueWithdrawalStateType(value,
names=None,
*,
module=None,
qual-
name=None,
type=None,
start=1, bound-
ary=None)

This object represents a revenue withdrawal state type

Source: https://core.telegram.org/bots/api#revenuewithdrawalstate

FAILED = 'failed'

PENDING = 'pending'

SUCCEEDED = 'succeeded'

StickerFormat

class aiogram.enums.sticker_format.StickerFormat(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Format of the sticker

Source: https://core.telegram.org/bots/api#createnewstickerset

STATIC = 'static'

ANIMATED = 'animated'

VIDEO = 'video'

StickerType

class aiogram.enums.sticker_type.StickerType(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

The part of the face relative to which the mask should be placed.

Source: https://core.telegram.org/bots/api#maskposition

REGULAR = 'regular'

MASK = 'mask'

CUSTOM_EMOJI = 'custom_emoji'

618 Chapter 2. Contents

https://core.telegram.org/bots/api#revenuewithdrawalstate
https://core.telegram.org/bots/api#createnewstickerset
https://core.telegram.org/bots/api#maskposition

aiogram Documentation, Release 3.23.0

StoryAreaTypeType

class aiogram.enums.story_area_type_type.StoryAreaTypeType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

This object represents input profile photo type

Source: https://core.telegram.org/bots/api#storyareatype

LOCATION = 'location'

SUGGESTED_REACTION = 'suggested_reaction'

LINK = 'link'

WEATHER = 'weather'

UNIQUE_GIFT = 'unique_gift'

TopicIconColor

class aiogram.enums.topic_icon_color.TopicIconColor(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Color of the topic icon in RGB format.

Source: https://github.com/telegramdesktop/tdesktop/blob/991fe491c5ae62705d77aa8fdd44a79caf639c45/
Telegram/SourceFiles/data/data_forum_topic.cpp#L51-L56

BLUE = 7322096

YELLOW = 16766590

VIOLET = 13338331

GREEN = 9367192

ROSE = 16749490

RED = 16478047

TransactionPartnerType

class aiogram.enums.transaction_partner_type.TransactionPartnerType(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

This object represents a type of transaction partner.

Source: https://core.telegram.org/bots/api#transactionpartner

FRAGMENT = 'fragment'

OTHER = 'other'

2.3. Bot API 619

https://core.telegram.org/bots/api#storyareatype
https://github.com/telegramdesktop/tdesktop/blob/991fe491c5ae62705d77aa8fdd44a79caf639c45/Telegram/SourceFiles/data/data_forum_topic.cpp#L51-L56
https://github.com/telegramdesktop/tdesktop/blob/991fe491c5ae62705d77aa8fdd44a79caf639c45/Telegram/SourceFiles/data/data_forum_topic.cpp#L51-L56
https://core.telegram.org/bots/api#transactionpartner

aiogram Documentation, Release 3.23.0

USER = 'user'

TELEGRAM_ADS = 'telegram_ads'

TELEGRAM_API = 'telegram_api'

AFFILIATE_PROGRAM = 'affiliate_program'

CHAT = 'chat'

TransactionPartnerUserTransactionTypeEnum

class aiogram.enums.transaction_partner_user_transaction_type_enum.TransactionPartnerUserTransactionTypeEnum(value,
names=None,
*,
mod-
ule=None,
qual-
name=None,
type=None,
start=1,
bound-
ary=None)

This object represents type of the transaction that were made by partner user.

Source: https://core.telegram.org/bots/api#transactionpartneruser

INVOICE_PAYMENT = 'invoice_payment'

PAID_MEDIA_PAYMENT = 'paid_media_payment'

GIFT_PURCHASE = 'gift_purchase'

PREMIUM_PURCHASE = 'premium_purchase'

BUSINESS_ACCOUNT_TRANSFER = 'business_account_transfer'

UpdateType

class aiogram.enums.update_type.UpdateType(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

This object represents the complete list of allowed update types

Source: https://core.telegram.org/bots/api#update

MESSAGE = 'message'

EDITED_MESSAGE = 'edited_message'

CHANNEL_POST = 'channel_post'

EDITED_CHANNEL_POST = 'edited_channel_post'

BUSINESS_CONNECTION = 'business_connection'

BUSINESS_MESSAGE = 'business_message'

620 Chapter 2. Contents

https://core.telegram.org/bots/api#transactionpartneruser
https://core.telegram.org/bots/api#update

aiogram Documentation, Release 3.23.0

EDITED_BUSINESS_MESSAGE = 'edited_business_message'

DELETED_BUSINESS_MESSAGES = 'deleted_business_messages'

MESSAGE_REACTION = 'message_reaction'

MESSAGE_REACTION_COUNT = 'message_reaction_count'

INLINE_QUERY = 'inline_query'

CHOSEN_INLINE_RESULT = 'chosen_inline_result'

CALLBACK_QUERY = 'callback_query'

SHIPPING_QUERY = 'shipping_query'

PRE_CHECKOUT_QUERY = 'pre_checkout_query'

PURCHASED_PAID_MEDIA = 'purchased_paid_media'

POLL = 'poll'

POLL_ANSWER = 'poll_answer'

MY_CHAT_MEMBER = 'my_chat_member'

CHAT_MEMBER = 'chat_member'

CHAT_JOIN_REQUEST = 'chat_join_request'

CHAT_BOOST = 'chat_boost'

REMOVED_CHAT_BOOST = 'removed_chat_boost'

2.3.6 How to download file?

Download file manually

First, you must get the file_id of the file you want to download. Information about files sent to the bot is contained in
Message.

For example, download the document that came to the bot.

file_id = message.document.file_id

Then use the getFile method to get file_path.

file = await bot.get_file(file_id)
file_path = file.file_path

After that, use the download_file method from the bot object.

2.3. Bot API 621

types/message.html
methods/get_file.html

aiogram Documentation, Release 3.23.0

download_file(. . .)

Download file by file_path to destination.

If you want to automatically create destination (io.BytesIO) use default value of destination and handle result of this
method.

async Bot.download_file(file_path: str | Path, destination: BinaryIO | Path | str | None = None, timeout: int =
30, chunk_size: int = 65536, seek: bool = True)→ BinaryIO | None

Download file by file_path to destination.

If you want to automatically create destination (io.BytesIO) use default value of destination and handle result
of this method.

Parameters

• file_path – File path on Telegram server (You can get it from aiogram.types.File)

• destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO, de-
faults to None

• timeout – Total timeout in seconds, defaults to 30

• chunk_size – File chunks size, defaults to 64 kb

• seek – Go to start of file when downloading is finished. Used only for destination with
typing.BinaryIO type, defaults to True

There are two options where you can download the file: to disk or to binary I/O object.

Download file to disk

To download file to disk, you must specify the file name or path where to download the file. In this case, the function
will return nothing.

await bot.download_file(file_path, "text.txt")

Download file to binary I/O object

To download file to binary I/O object, you must specify an object with the typing.BinaryIO type or use the default
(None) value.

In the first case, the function will return your object:

my_object = MyBinaryIO()
result: MyBinaryIO = await bot.download_file(file_path, my_object)
print(result is my_object) # True

If you leave the default value, an io.BytesIO object will be created and returned.

result: io.BytesIO = await bot.download_file(file_path)

622 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Download file in short way

Getting file_path manually every time is boring, so you should use the download method.

download(. . .)

Download file by file_id or Downloadable object to destination.

If you want to automatically create destination (io.BytesIO) use default value of destination and handle result of this
method.

async Bot.download(file: str | Downloadable, destination: BinaryIO | Path | str | None = None, timeout: int = 30,
chunk_size: int = 65536, seek: bool = True)→ BinaryIO | None

Download file by file_id or Downloadable object to destination.

If you want to automatically create destination (io.BytesIO) use default value of destination and handle result
of this method.

Parameters

• file – file_id or Downloadable object

• destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO, de-
faults to None

• timeout – Total timeout in seconds, defaults to 30

• chunk_size – File chunks size, defaults to 64 kb

• seek – Go to start of file when downloading is finished. Used only for destination with
typing.BinaryIO type, defaults to True

It differs from download_file only in that it accepts file_id or an Downloadable object (object that contains the file_id
attribute) instead of file_path.

You can download a file to disk or to a binary I/O object in the same way.

Example:

document = message.document
await bot.download(document)

2.3.7 How to upload file?

As says official Telegram Bot API documentation there are three ways to send files (photos, stickers, audio, media,
etc.):

If the file is already stored somewhere on the Telegram servers or file is available by the URL, you don’t need to reupload
it.

But if you need to upload a new file just use subclasses of InputFile.

Here are the three different available builtin types of input file:

• aiogram.types.input_file.FSInputFile - uploading from file system

• aiogram.types.input_file.BufferedInputFile - uploading from buffer

• aiogram.types.input_file.URLInputFile - uploading from URL

2.3. Bot API 623

https://core.telegram.org/bots/api#sending-files
types/input_file.html

aiogram Documentation, Release 3.23.0

. Warning

Be respectful to Telegram

Instances of InputFile are reusable. That means you can create an instance of InputFile and send it multiple times.
However, Telegram does not recommend doing this. Instead, once you upload a file, save its file_id and reuse that
later.

Upload from file system

By first step you will need to import InputFile wrapper:

from aiogram.types import FSInputFile

Then you can use it:

cat = FSInputFile("cat.png")
agenda = FSInputFile("my-document.pdf", filename="agenda-2019-11-19.pdf")

class aiogram.types.input_file.FSInputFile(path: str | Path, filename: str | None = None, chunk_size: int
= 65536)

__init__(path: str | Path, filename: str | None = None, chunk_size: int = 65536)
Represents object for uploading files from filesystem

Parameters

• path – Path to file

• filename – Filename to be propagated to telegram. By default, will be parsed from path

• chunk_size – Uploading chunk size

Upload from buffer

Files can be also passed from buffer (For example you generate image using Pillow and you want to send it to Telegram):

Import wrapper:

from aiogram.types import BufferedInputFile

And then you can use it:

text_file = BufferedInputFile(b"Hello, world!", filename="file.txt")

class aiogram.types.input_file.BufferedInputFile(file: bytes, filename: str, chunk_size: int = 65536)

__init__(file: bytes, filename: str, chunk_size: int = 65536)
Represents object for uploading files from filesystem

Parameters

• file – Bytes

• filename – Filename to be propagated to telegram.

• chunk_size – Uploading chunk size

624 Chapter 2. Contents

https://pillow.readthedocs.io/en/stable/

aiogram Documentation, Release 3.23.0

Upload from url

If you need to upload a file from another server, but the direct link is bound to your server’s IP, or you want to bypass
native upload limits by URL, you can use aiogram.types.input_file.URLInputFile.

Import wrapper:

from aiogram.types import URLInputFile

And then you can use it:

image = URLInputFile(
"https://www.python.org/static/community_logos/python-powered-h-140x182.png",
filename="python-logo.png"

)

class aiogram.types.input_file.URLInputFile(url: str, headers: Dict[str, Any] | None = None, filename:
str | None = None, chunk_size: int = 65536, timeout: int =
30, bot: 'Bot' | None = None)

2.3.8 Global defaults

aiogram provides mechanism to set some global defaults for all requests to Telegram Bot API in your application using
aiogram.client.default.DefaultBotProperties class.

There are some properties that can be set:

class aiogram.client.default.DefaultBotProperties(*, parse_mode: str | None = None,
disable_notification: bool | None = None,
protect_content: bool | None = None,
allow_sending_without_reply: bool | None = None,
link_preview: LinkPreviewOptions | None = None,
link_preview_is_disabled: bool | None = None,
link_preview_prefer_small_media: bool | None =
None, link_preview_prefer_large_media: bool |
None = None, link_preview_show_above_text: bool
| None = None, show_caption_above_media: bool |
None = None)

Default bot properties.

parse_mode: str | None

Default parse mode for messages.

disable_notification: bool | None

Sends the message silently. Users will receive a notification with no sound.

protect_content: bool | None

Protects content from copying.

allow_sending_without_reply: bool | None

Allows to send messages without reply.

link_preview: LinkPreviewOptions | None

Link preview settings.

2.3. Bot API 625

https://core.telegram.org/bots/api#sending-files

aiogram Documentation, Release 3.23.0

link_preview_is_disabled: bool | None

Disables link preview.

link_preview_prefer_small_media: bool | None

Prefer small media in link preview.

link_preview_prefer_large_media: bool | None

Prefer large media in link preview.

link_preview_show_above_text: bool | None

Show link preview above text.

show_caption_above_media: bool | None

Show caption above media.

ò Note

If you need to override default properties for some requests, you should use
aiogram.client.default.DefaultBotProperties only for properties that you want to set as defaults and pass
explicit values for other properties.

³ Danger

If you upgrading from aiogram 3.0-3.6 to 3.7, you should update your code to use
aiogram.client.default.DefaultBotProperties.

Example

Here is an example of setting default parse mode for all requests to Telegram Bot API:

bot = Bot(
token=...,
default=DefaultBotProperties(

parse_mode=ParseMode.HTML,
)

)

In this case all messages sent by this bot will be parsed as HTML, so you don’t need to specify parse_mode in every
message you send.

Instead of

await bot.send_message(chat_id, text, parse_mode=ParseMode.HTML)

you can use

await bot.send_message(chat_id, text)

and the message will be sent with HTML parse mode.

In some cases you may want to override default properties for some requests. You can do it by passing explicit values
to the method:

626 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

await bot.send_message(chat_id, text, parse_mode=ParseMode.MARKDOWN_V2)

In this case the message will be sent with Markdown parse mode instead of default HTML.

Another example of overriding default properties:

await bot.send_message(chat_id, text, parse_mode=None)

In this case the message will be send withoout parse mode, even if default parse mode is set it may be useful if you
want to send message with plain text or aiogram.types.message_entity.MessageEntity.

await bot.send_message(
chat_id=chat_id,
text=text,
entities=[MessageEntity(type='bold', offset=0, length=4)],
parse_mode=None

)

2.4 Handling events

aiogram includes Dispatcher mechanism. Dispatcher is needed for handling incoming updates from Telegram.

With dispatcher you can do:

• Handle incoming updates;

• Filter incoming events before it will be processed by specific handler;

• Modify event and related data in middlewares;

• Separate bot functionality between different handlers, modules and packages

Dispatcher is also separated into two entities - Router and Dispatcher. Dispatcher is subclass of router and should be
always is root router.

Telegram supports two ways of receiving updates:

• Webhook - you should configure your web server to receive updates from Telegram;

• Long polling - you should request updates from Telegram.

So, you can use both of them with aiogram.

2.4.1 Router

Usage:

from aiogram import Router
from aiogram.types import Message

my_router = Router(name=__name__)

@my_router.message()
async def message_handler(message: Message) -> Any:

await message.answer('Hello from my router!')

2.4. Handling events 627

aiogram Documentation, Release 3.23.0

class aiogram.dispatcher.router.Router(*, name: str | None = None)
Bases: object

Router can route update, and it nested update types like messages, callback query, polls and all other event types.

Event handlers can be registered in observer by two ways:

• By observer method - router.<event_type>.register(handler, <filters, ...>)

• By decorator - @router.<event_type>(<filters, ...>)

__init__(*, name: str | None = None)→ None

Parameters
name – Optional router name, can be useful for debugging

include_router(router: Router)→ Router
Attach another router.

Parameters
router

Returns

include_routers(*routers: Router)→ None
Attach multiple routers.

Parameters
routers

Returns

resolve_used_update_types(skip_events: set[str] | None = None)→ list[str]
Resolve registered event names

Is useful for getting updates only for registered event types.

Parameters
skip_events – skip specified event names

Returns
set of registered names

Event observers

. Warning

All handlers always should be asynchronous. The name of the handler function is not important. The event argument
name is also not important but it is recommended to not overlap the name with contextual data in due to function
can not accept two arguments with the same name.

Here is the list of available observers and examples of how to register handlers

In these examples only decorator-style registering handlers are used, but if you don’t like @decorators just use <event
type>.register(...) method instead.

628 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Message

. Attention

Be attentive with filtering this event

You should expect that this event can be with different sets of attributes in different cases

(For example text, sticker and document are always of different content types of message)

Recommended way to check field availability before usage, for example via magic filter: F.text to handle text,
F.sticker to handle stickers only and etc.

@router.message()
async def message_handler(message: types.Message) -> Any: pass

Edited message

@router.edited_message()
async def edited_message_handler(edited_message: types.Message) -> Any: pass

Channel post

@router.channel_post()
async def channel_post_handler(channel_post: types.Message) -> Any: pass

Edited channel post

@router.edited_channel_post()
async def edited_channel_post_handler(edited_channel_post: types.Message) -> Any: pass

Inline query

@router.inline_query()
async def inline_query_handler(inline_query: types.InlineQuery) -> Any: pass

2.4. Handling events 629

aiogram Documentation, Release 3.23.0

Chosen inline query

@router.chosen_inline_result()
async def chosen_inline_result_handler(chosen_inline_result: types.ChosenInlineResult) ->
→˓ Any: pass

Callback query

@router.callback_query()
async def callback_query_handler(callback_query: types.CallbackQuery) -> Any: pass

Shipping query

@router.shipping_query()
async def shipping_query_handler(shipping_query: types.ShippingQuery) -> Any: pass

Pre checkout query

@router.pre_checkout_query()
async def pre_checkout_query_handler(pre_checkout_query: types.PreCheckoutQuery) -> Any:␣
→˓pass

Poll

@router.poll()
async def poll_handler(poll: types.Poll) -> Any: pass

Poll answer

@router.poll_answer()
async def poll_answer_handler(poll_answer: types.PollAnswer) -> Any: pass

My chat member

@router.my_chat_member()
async def my_chat_member_handler(my_chat_member: types.ChatMemberUpdated) -> Any: pass

630 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Chat member

@router.chat_member()
async def chat_member_handler(chat_member: types.ChatMemberUpdated) -> Any: pass

Chat join request

@router.chat_join_request()
async def chat_join_request_handler(chat_join_request: types.ChatJoinRequest) -> Any:␣
→˓pass

Message reaction

@router.message_reaction()
async def message_reaction_handler(message_reaction: types.MessageReactionUpdated) ->␣
→˓Any: pass

Message reaction count

@router.message_reaction_count()
async def message_reaction_count_handler(message_reaction_count: types.
→˓MessageReactionCountUpdated) -> Any: pass

Chat boost

@router.chat_boost()
async def chat_boost_handler(chat_boost: types.ChatBoostUpdated) -> Any: pass

Remove chat boost

@router.removed_chat_boost()
async def removed_chat_boost_handler(removed_chat_boost: types.ChatBoostRemoved) -> Any:␣
→˓pass

Errors

@router.errors()
async def error_handler(exception: types.ErrorEvent) -> Any: pass

Is useful for handling errors from other handlers, error event described here

2.4. Handling events 631

aiogram Documentation, Release 3.23.0

Nested routers

. Warning

Routers by the way can be nested to an another routers with some limitations:
1. Router CAN NOT include itself 1. Routers CAN NOT be used for circular including (router 1 include
router 2, router 2 include router 3, router 3 include router 1)

Example:

Listing 1: module_1.py

router2 = Router()

@router2.message()
...

Listing 2: module_2.py

from module_2 import router2

router1 = Router()
router1.include_router(router2)

Update

@dispatcher.update()
async def message_handler(update: types.Update) -> Any: pass

. Warning

The only root Router (Dispatcher) can handle this type of event.

ò Note

Dispatcher already has default handler for this event type, so you can use it for handling all updates that are not
handled by any other handlers.

632 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

How it works?

For example, dispatcher has 2 routers, the last router also has one nested router:

In this case update propagation flow will have form:

2.4.2 Dispatcher

Dispatcher is root Router and in code Dispatcher can be used directly for routing updates or attach another routers
into dispatcher.

Here is only listed base information about Dispatcher. All about writing handlers, filters and etc. you can find in next
pages:

• Router

• Filtering events

class aiogram.dispatcher.dispatcher.Dispatcher(*, storage: BaseStorage | None = None, fsm_strategy:
FSMStrategy = FSMStrategy.USER_IN_CHAT ,
events_isolation: BaseEventIsolation | None = None,
disable_fsm: bool = False, name: str | None = None,
**kwargs: Any)

2.4. Handling events 633

aiogram Documentation, Release 3.23.0

Root router

__init__(*, storage: BaseStorage | None = None, fsm_strategy: FSMStrategy =
FSMStrategy.USER_IN_CHAT , events_isolation: BaseEventIsolation | None = None, disable_fsm:
bool = False, name: str | None = None, **kwargs: Any)→ None

Root router

Parameters

• storage – Storage for FSM

• fsm_strategy – FSM strategy

• events_isolation – Events isolation

• disable_fsm – Disable FSM, note that if you disable FSM then you should not use storage
and events isolation

• kwargs – Other arguments, will be passed as keyword arguments to handlers

async feed_raw_update(bot: Bot, update: dict[str, Any], **kwargs: Any)→ Any
Main entry point for incoming updates with automatic Dict->Update serializer

Parameters

• bot

• update

• kwargs

async feed_update(bot: Bot, update: Update, **kwargs: Any)→ Any
Main entry point for incoming updates Response of this method can be used as Webhook response

Parameters

• bot

• update

run_polling(*bots: Bot, polling_timeout: int = 10, handle_as_tasks: bool = True, backoff_config:
BackoffConfig = BackoffConfig(min_delay=1.0, max_delay=5.0, factor=1.3, jitter=0.1),
allowed_updates: list[str] | UNSET_TYPE | None = sentinel.UNSET , handle_signals: bool =
True, close_bot_session: bool = True, tasks_concurrency_limit: int | None = None, **kwargs:
Any)→ None

Run many bots with polling

Parameters

• bots – Bot instances (one or more)

• polling_timeout – Long-polling wait time

• handle_as_tasks – Run task for each event and no wait result

• backoff_config – backoff-retry config

• allowed_updates – List of the update types you want your bot to receive

• handle_signals – handle signals (SIGINT/SIGTERM)

• close_bot_session – close bot sessions on shutdown

• tasks_concurrency_limit – Maximum number of concurrent updates to process (None
= no limit), used only if handle_as_tasks is True

634 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

• kwargs – contextual data

Returns

async start_polling(*bots: Bot, polling_timeout: int = 10, handle_as_tasks: bool = True,
backoff_config: BackoffConfig = BackoffConfig(min_delay=1.0, max_delay=5.0,
factor=1.3, jitter=0.1), allowed_updates: list[str] | UNSET_TYPE | None =
sentinel.UNSET , handle_signals: bool = True, close_bot_session: bool = True,
tasks_concurrency_limit: int | None = None, **kwargs: Any)→ None

Polling runner

Parameters

• bots – Bot instances (one or more)

• polling_timeout – Long-polling wait time

• handle_as_tasks – Run task for each event and no wait result

• backoff_config – backoff-retry config

• allowed_updates – List of the update types you want your bot to receive By default, all
used update types are enabled (resolved from handlers)

• handle_signals – handle signals (SIGINT/SIGTERM)

• close_bot_session – close bot sessions on shutdown

• tasks_concurrency_limit – Maximum number of concurrent updates to process (None
= no limit), used only if handle_as_tasks is True

• kwargs – contextual data

Returns

async stop_polling()→ None
Execute this method if you want to stop polling programmatically

Returns

Simple usage

Example:

dp = Dispatcher()

@dp.message()
async def message_handler(message: types.Message) -> None:

await SendMessage(chat_id=message.from_user.id, text=message.text)

Including routers

Example:

dp = Dispatcher()
router1 = Router()
dp.include_router(router1)

2.4. Handling events 635

aiogram Documentation, Release 3.23.0

Handling updates

All updates can be propagated to the dispatcher by feed_update() method:

from aiogram import Bot, Dispatcher

async def update_handler(update: Update, bot: Bot, dispatcher: Dispatcher):
result = await dp.feed_update(bot, update)

Also you can feed raw update (dictionary) object to the dispatcher by feed_raw_update() method:

from aiogram import Bot, Dispatcher

async def update_handler(raw_update: dict[str, Any], bot: Bot, dispatcher: Dispatcher):
result = await dp.feed_raw_update(bot, raw_update)

2.4.3 Dependency injection

Dependency injection is a programming technique that makes a class independent of its dependencies. It achieves that
by decoupling the usage of an object from its creation. This helps you to follow SOLID’s dependency inversion and
single responsibility principles.

How it works in aiogram

For each update aiogram.dispatcher.dispatcher.Dispatcher passes handling context data. Filters and mid-
dleware can also make changes to the context.

To access contextual data you should specify corresponding keyword parameter in handler or filter. For example, to get
aiogram.fsm.context.FSMContext we do it like that:

@router.message(ProfileCompletion.add_photo, F.photo)
async def add_photo(

message: types.Message, bot: Bot, state: FSMContext
) -> Any:

... # do something with photo

Injecting own dependencies

Aiogram provides several ways to complement / modify contextual data.

The first and easiest way is to simply specify the named arguments in aiogram.dispatcher.
dispatcher.Dispatcher initialization, polling start methods or aiogram.webhook.aiohttp_server.
SimpleRequestHandler initialization if you use webhooks.

async def main() -> None:
dp = Dispatcher(..., foo=42)
return await dp.start_polling(

bot, bar="Bazz"
)

Analogy for webhook:

636 Chapter 2. Contents

https://en.wikipedia.org/wiki/SOLID

aiogram Documentation, Release 3.23.0

async def main() -> None:
dp = Dispatcher(..., foo=42)
handler = SimpleRequestHandler(dispatcher=dp, bot=bot, bar="Bazz")
... # starting webhook

aiogram.dispatcher.dispatcher.Dispatcher’s workflow data also can be supplemented by setting values as in
a dictionary:

dp = Dispatcher(...)
dp["eggs"] = Spam()

The middlewares updates the context quite often. You can read more about them on this page:

• Middlewares

The last way is to return a dictionary from the filter:

from typing import Any

from aiogram import Router
from aiogram.filters import Filter
from aiogram.types import Message, User

router = Router(name=__name__)

class HelloFilter(Filter):
def __init__(self, name: str | None = None) -> None:

self.name = name

async def __call__(
self,
message: Message,
event_from_user: User,
Filters also can accept keyword parameters like in handlers

) -> bool | dict[str, Any]:
if message.text.casefold() == "hello":

Returning a dictionary that will update the context data
return {"name": event_from_user.mention_html(name=self.name)}

return False

@router.message(HelloFilter())
async def my_handler(

message: Message,
name: str, # Now we can accept "name" as named parameter

) -> Any:
return message.answer(f"Hello, {name}!")

. . . or using MagicFilter with .as_(...) method.

2.4. Handling events 637

aiogram Documentation, Release 3.23.0

Using type hints

ò Note

Type-hinting middleware data is optional and is not required for the correct operation of the dispatcher. However,
it is recommended to use it to improve the readability of the code.

You can use type hints to specify the type of the context data in the middlewares, filters and handlers.

The default middleware data typed dict can be found in aiogram.dispatcher.middlewares.data.
MiddlewareData.

In case when you have extended the context data, you can use the aiogram.dispatcher.middlewares.data.
MiddlewareData as a base class and specify the type hints for the new fields.

. Warning

If you using type checking tools like mypy, you can experience warnings about that this type hint against Liskov
substitution principle in due stricter type is not a subclass of dict[str, Any]. This is a known issue and it is not
a bug. You can ignore this warning or use # type: ignore comment.

Example of using type hints:

from aiogram.dispatcher.middlewares.data import MiddlewareData

class MyMiddlewareData(MiddlewareData, total=False):
my_custom_value: int

class MyMessageMiddleware(BaseMiddleware):
async def __call__(

self,
handler: Callable[[Message, MyMiddlewareData], Awaitable[Any]],
event: Message,
data: MyMiddlewareData,

) -> Any:
bot = data["bot"] # <-- IDE will show you that data has `bot` key and its type␣

→˓is `Bot`

data["my_custom_value"] = bot.id * 42 # <-- IDE will show you that you can set␣
→˓`my_custom_value` key with int value and warn you if you try to set it with other type

return await handler(event, data)

638 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Available context data type helpers

class aiogram.dispatcher.middlewares.data.MiddlewareData

Data passed to the handler by the middlewares.

You can add your own data by extending this class.

dispatcher: Dispatcher

bot: Bot

bots: NotRequired[list[Bot]]

event_update: Update

event_router: Router

handler: NotRequired[HandlerObject]

event_context: EventContext

event_from_user: NotRequired[User]

event_chat: NotRequired[Chat]

event_thread_id: NotRequired[int]

event_business_connection_id: NotRequired[str]

fsm_storage: BaseStorage

state: NotRequired[FSMContext]

raw_state: NotRequired[str | None]

class aiogram.dispatcher.middlewares.data.I18nData

I18n related data.

Is not included by default, you need to add it to your own Data class if you need it.

i18n: I18n

I18n object.

i18n_middleware: I18nMiddleware

I18n middleware.

2.4.4 Filtering events

Filters is needed for routing updates to the specific handler. Searching of handler is always stops on first match set of
filters are pass. By default, all handlers has empty set of filters, so all updates will be passed to first handler that has
empty set of filters.

aiogram has some builtin useful filters or you can write own filters.

2.4. Handling events 639

aiogram Documentation, Release 3.23.0

Builtin filters

Here is list of builtin filters:

Command

Usage

1. Filter single variant of commands: Command("start")

2. Handle command by regexp pattern: Command(re.compile(r"item_(\d+)"))

3. Match command by multiple variants: Command("item", re.compile(r"item_(\d+)"))

4. Handle commands in public chats intended for other bots: Command("command", ignore_mention=True)

5. Use aiogram.types.bot_command.BotCommand object as command reference
Command(BotCommand(command="command", description="My awesome command")

. Warning

Command cannot include spaces or any whitespace

class aiogram.filters.command.Command(*values: CommandPatternType, commands:
Sequence[CommandPatternType] | CommandPatternType | None =
None, prefix: str = '/', ignore_case: bool = False, ignore_mention:
bool = False, magic: MagicFilter | None = None)

This filter can be helpful for handling commands from the text messages.

Works only with aiogram.types.message.Message events which have the text.

__init__(*values: CommandPatternType, commands: Sequence[CommandPatternType] |
CommandPatternType | None = None, prefix: str = '/', ignore_case: bool = False, ignore_mention:
bool = False, magic: MagicFilter | None = None)

List of commands (string or compiled regexp patterns)

Parameters

• prefix – Prefix for command. Prefix is always a single char but here you can pass all of
allowed prefixes, for example: "/!" will work with commands prefixed by "/" or "!".

• ignore_case – Ignore case (Does not work with regexp, use flags instead)

• ignore_mention – Ignore bot mention. By default, bot can not handle commands in-
tended for other bots

• magic – Validate command object via Magic filter after all checks done

When filter is passed the aiogram.filters.command.CommandObject will be passed to the handler argument
command

class aiogram.filters.command.CommandObject(prefix: str = '/', command: str = '', mention: str | None =
None, args: str | None = None, regexp_match: Match[str] |
None = None, magic_result: Any | None = None)

Instance of this object is always has command and it prefix. Can be passed as keyword argument command to
the handler

640 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

prefix: str = '/'

Command prefix

command: str = ''

Command without prefix and mention

mention: str | None = None

Mention (if available)

args: str | None = None

Command argument

regexp_match: Match[str] | None = None

Will be presented match result if the command is presented as regexp in filter

magic_result: Any | None = None

property mentioned: bool

This command has mention?

property text: str

Generate original text from object

Allowed handlers

Allowed update types for this filter:

• message

• edited_message

ChatMemberUpdated

Usage

Handle user leave or join events

from aiogram.filters import IS_MEMBER, IS_NOT_MEMBER

@router.chat_member(ChatMemberUpdatedFilter(IS_MEMBER >> IS_NOT_MEMBER))
async def on_user_leave(event: ChatMemberUpdated): ...

@router.chat_member(ChatMemberUpdatedFilter(IS_NOT_MEMBER >> IS_MEMBER))
async def on_user_join(event: ChatMemberUpdated): ...

Or construct your own terms via using pre-defined set of statuses and transitions.

2.4. Handling events 641

aiogram Documentation, Release 3.23.0

Explanation

class aiogram.filters.chat_member_updated.ChatMemberUpdatedFilter(member_status_changed:
_MemberStatusMarker |
_MemberStatusGroupMarker
| _MemberStatusTransition)

member_status_changed

You can import from aiogram.filters all available variants of statuses, status groups or transitions:

Statuses

name Description
CREATOR Chat owner
ADMINISTRATOR Chat administrator
MEMBER Member of the chat
RESTRICTED Restricted user (can be not member)
LEFT Isn’t member of the chat
KICKED Kicked member by administrators

Statuses can be extended with is_member flag by prefixing with + (for is_member == True) or - (for is_member
== False) symbol, like +RESTRICTED or -RESTRICTED

Status groups

The particular statuses can be combined via bitwise or operator, like CREATOR | ADMINISTRATOR

name Description
IS_MEMBER Combination of (CREATOR | ADMINISTRATOR | MEMBER | +RESTRICTED) statuses.
IS_ADMIN Combination of (CREATOR | ADMINISTRATOR) statuses.
IS_NOT_MEMBER Combination of (LEFT | KICKED | -RESTRICTED) statuses.

Transitions

Transitions can be defined via bitwise shift operators >> and <<. Old chat member status should be defined in the left
side for >> operator (right side for <<) and new status should be specified on the right side for >> operator (left side for
<<)

The direction of transition can be changed via bitwise inversion operator: ~JOIN_TRANSITION will produce swap of
old and new statuses.

name Description
JOIN_TRANSITIONMeans status changed from IS_NOT_MEMBER to IS_MEMBER (IS_NOT_MEMBER >> IS_MEMBER)
LEAVE_TRANSITIONMeans status changed from IS_MEMBER to IS_NOT_MEMBER (~JOIN_TRANSITION)
PROMOTED_TRANSITIONMeans status changed from (MEMBER | RESTRICTED | LEFT | KICKED) >>

ADMINISTRATOR ((MEMBER | RESTRICTED | LEFT | KICKED) >> ADMINISTRATOR)

642 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

ò Note

Note that if you define the status unions (via |) you will need to add brackets for the statement before use shift
operator in due to operator priorities.

Allowed handlers

Allowed update types for this filter:

• my_chat_member

• chat_member

Magic filters

ò Note

This page still in progress. Has many incorrectly worded sentences.

Is external package maintained by aiogram core team.

By default installs with aiogram and also is available on PyPi - magic-filter. That’s mean you can install it and use with
any other libraries and in own projects without depending aiogram installed.

Usage

The magic_filter package implements class shortly named magic_filter.F that’s mean F can be imported from
aiogram or magic_filter. F is alias for MagicFilter.

ò Note

Note that aiogram has an small extension over magic-filter and if you want to use this extension you should import
magic from aiogram instead of magic_filter package

The MagicFilter object is callable, supports some actions and memorize the attributes chain and the action which
should be checked on demand.

So that’s mean you can chain attribute getters, describe simple data validations and then call the resulted object passing
single object as argument, for example make attributes chain F.foo.bar.baz then add action ‘F.foo.bar.baz ==
'spam' and then call the resulted object - (F.foo.bar.baz == 'spam').resolve(obj)

2.4. Handling events 643

https://pypi.org/project/magic-filter/

aiogram Documentation, Release 3.23.0

Possible actions

Magic filter object supports some of basic logical operations over object attributes

Exists or not None

Default actions.

F.photo # lambda message: message.photo

Equals

F.text == 'hello' # lambda message: message.text == 'hello'
F.from_user.id == 42 # lambda message: message.from_user.id == 42
F.text != 'spam' # lambda message: message.text != 'spam'

Is one of

Can be used as method named in_ or as matmul operator @ with any iterable

F.from_user.id.in_({42, 1000, 123123}) # lambda query: query.from_user.id in {42, 1000,␣
→˓123123}
F.data.in_({'foo', 'bar', 'baz'}) # lambda query: query.data in {'foo', 'bar', 'baz'}

Contains

F.text.contains('foo') # lambda message: 'foo' in message.text

String startswith/endswith

Can be applied only for text attributes

F.text.startswith('foo') # lambda message: message.text.startswith('foo')
F.text.endswith('bar') # lambda message: message.text.startswith('bar')

Regexp

F.text.regexp(r'Hello, .+') # lambda message: re.match(r'Hello, .+', message.text)

644 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Custom function

Accepts any callable. Callback will be called when filter checks result

F.chat.func(lambda chat: chat.id == -42) # lambda message: (lambda chat: chat.id == -
→˓42)(message.chat)

Inverting result

Any of available operation can be inverted by bitwise inversion - ~

~F.text # lambda message: not message.text
~F.text.startswith('spam') # lambda message: not message.text.startswith('spam')

Combining

All operations can be combined via bitwise and/or operators - &/|

(F.from_user.id == 42) & (F.text == 'admin')
F.text.startswith('a') | F.text.endswith('b')
(F.from_user.id.in_({42, 777, 911})) & (F.text.startswith('!') | F.text.startswith('/'))␣
→˓& F.text.contains('ban')

Attribute modifiers - string manipulations

Make text upper- or lower-case

Can be used only with string attributes.

F.text.lower() == 'test' # lambda message: message.text.lower() == 'test'
F.text.upper().in_({'FOO', 'BAR'}) # lambda message: message.text.upper() in {'FOO', 'BAR'}
F.text.len() == 5 # lambda message: len(message.text) == 5

Get filter result as handler argument

This part is not available in magic-filter directly but can be used with aiogram

from aiogram import F

...

@router.message(F.text.regexp(r"^(\d+)$").as_("digits"))
async def any_digits_handler(message: Message, digits: Match[str]):

await message.answer(html.quote(str(digits)))

2.4. Handling events 645

aiogram Documentation, Release 3.23.0

Usage in aiogram

@router.message(F.text == 'hello')
@router.inline_query(F.data == 'button:1')
@router.message(F.text.startswith('foo'))
@router.message(F.content_type.in_({'text', 'sticker'}))
@router.message(F.text.regexp(r'\d+'))

...

Many others cases when you will need to check any of available event attribute

MagicData

Usage

1. MagicData(F.event.from_user.id == F.config.admin_id) (Note that config should be passed from
middleware)

Explanation

class aiogram.filters.magic_data.MagicData(magic_data: MagicFilter)
This filter helps to filter event with contextual data

magic_data

Can be imported:

• from aiogram.filters import MagicData

Allowed handlers

Allowed update types for this filter:

• message

• edited_message

• channel_post

• edited_channel_post

• inline_query

• chosen_inline_result

• callback_query

• shipping_query

• pre_checkout_query

• poll

• poll_answer

• my_chat_member

646 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

• chat_member

• chat_join_request

• error

Callback Data Factory & Filter

class aiogram.filters.callback_data.CallbackData

Base class for callback data wrapper

This class should be used as super-class of user-defined callbacks.

The class-keyword prefix is required to define prefix and also the argument sep can be passed to define sepa-
rator (default is :).

pack()→ str
Generate callback data string

Returns
valid callback data for Telegram Bot API

classmethod unpack(value: str)→ Self
Parse callback data string

Parameters
value – value from Telegram

Returns
instance of CallbackData

classmethod filter(rule: MagicFilter | None = None)→ CallbackQueryFilter
Generates a filter for callback query with rule

Parameters
rule – magic rule

Returns
instance of filter

Usage

Create subclass of CallbackData:

class MyCallback(CallbackData, prefix="my"):
foo: str
bar: int

After that you can generate any callback based on this class, for example:

cb1 = MyCallback(foo="demo", bar=42)
cb1.pack() # returns 'my:demo:42'
cb1.unpack('my:demo:42') # returns <MyCallback(foo="demo", bar=42)>

So. . . Now you can use this class to generate any callbacks with defined structure

2.4. Handling events 647

aiogram Documentation, Release 3.23.0

...
Pass it into the markup
InlineKeyboardButton(

text="demo",
callback_data=MyCallback(foo="demo", bar="42").pack() # value should be packed to␣

→˓string
)
...

. . . and handle by specific rules

Filter callback by type and value of field :code:`foo`
@router.callback_query(MyCallback.filter(F.foo == "demo"))
async def my_callback_foo(query: CallbackQuery, callback_data: MyCallback):

await query.answer(...)
...
print("bar =", callback_data.bar)

Also can be used in Keyboard builder:

builder = InlineKeyboardBuilder()
builder.button(

text="demo",
callback_data=MyCallback(foo="demo", bar="42") # Value can be not packed to string␣

→˓inplace, because builder knows what to do with callback instance
)

Another abstract example:

class Action(str, Enum):
ban = "ban"
kick = "kick"
warn = "warn"

class AdminAction(CallbackData, prefix="adm"):
action: Action
chat_id: int
user_id: int

...
Inside handler
builder = InlineKeyboardBuilder()
for action in Action:

builder.button(
text=action.value.title(),
callback_data=AdminAction(action=action, chat_id=chat_id, user_id=user_id),

)
await bot.send_message(

chat_id=admins_chat,
text=f"What do you want to do with {html.quote(name)}",
reply_markup=builder.as_markup(),

)
...

(continues on next page)

648 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

@router.callback_query(AdminAction.filter(F.action == Action.ban))
async def ban_user(query: CallbackQuery, callback_data: AdminAction, bot: Bot):

await bot.ban_chat_member(
chat_id=callback_data.chat_id,
user_id=callback_data.user_id,
...

)

Known limitations

Allowed types and their subclasses:

• str

• int

• bool

• float

• Decimal (from decimal import Decimal)

• Fraction (from fractions import Fraction)

• UUID (from uuid import UUID)

• Enum (from enum import Enum, only for string enums)

• IntEnum (from enum import IntEnum, only for int enums)

ò Note

Note that the integer Enum’s should be always is subclasses of IntEnum in due to parsing issues.

Exceptions

This filters can be helpful for handling errors from the text messages.

class aiogram.filters.exception.ExceptionTypeFilter(*exceptions: type[Exception])
Allows to match exception by type

exceptions

class aiogram.filters.exception.ExceptionMessageFilter(pattern: str | Pattern[str])
Allow to match exception by message

pattern

2.4. Handling events 649

aiogram Documentation, Release 3.23.0

Allowed handlers

Allowed update types for this filters:

• error

Writing own filters

Filters can be:

• Asynchronous function (async def my_filter(*args, **kwargs): pass)

• Synchronous function (def my_filter(*args, **kwargs): pass)

• Anonymous function (lambda event: True)

• Any awaitable object

• Subclass of aiogram.filters.base.Filter

• Instances of MagicFilter

and should return bool or dict. If the dictionary is passed as result of filter - resulted data will be propagated to the next
filters and handler as keywords arguments.

Base class for own filters

class aiogram.filters.base.Filter

If you want to register own filters like builtin filters you will need to write subclass of this class with overriding
the __call__ method and adding filter attributes.

abstract async __call__(*args: Any, **kwargs: Any)→ bool | dict[str, Any]
This method should be overridden.

Accepts incoming event and should return boolean or dict.

Returns
bool or Dict[str, Any]

update_handler_flags(flags: dict[str, Any])→ None
Also if you want to extend handler flags with using this filter you should implement this method

Parameters
flags – existing flags, can be updated directly

Own filter example

For example if you need to make simple text filter:

from aiogram import Router
from aiogram.filters import Filter
from aiogram.types import Message

router = Router()

(continues on next page)

650 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

class MyFilter(Filter):
def __init__(self, my_text: str) -> None:

self.my_text = my_text

async def __call__(self, message: Message) -> bool:
return message.text == self.my_text

@router.message(MyFilter("hello"))
async def my_handler(message: Message) -> None: ...

Combining Filters

In general, all filters can be combined in two ways

Recommended way

If you specify multiple filters in a row, it will be checked with an “and” condition:

@<router>.message(F.text.startswith("show"), F.text.endswith("example"))

Also, if you want to use two alternative ways to run the same handler (“or” condition) you can register the handler twice
or more times as you like

@<router>.message(F.text == "hi")
@<router>.message(CommandStart())

Also sometimes you will need to invert the filter result, for example you have an IsAdmin filter and you want to check
if the user is not an admin

@<router>.message(~IsAdmin())

Another possible way

An alternative way is to combine using special functions (and_f(), or_f(), invert_f() from aiogram.filters
module):

and_f(F.text.startswith("show"), F.text.endswith("example"))
or_f(F.text(text="hi"), CommandStart())
invert_f(IsAdmin())
and_f(<A>, or_f(, <C>))

2.4. Handling events 651

aiogram Documentation, Release 3.23.0

2.4.5 Long-polling

Long-polling is a technology that allows a Telegram server to send updates in case when you don’t have dedicated IP
address or port to receive webhooks for example on a developer machine.

To use long-polling mode you should use aiogram.dispatcher.dispatcher.Dispatcher.start_polling() or
aiogram.dispatcher.dispatcher.Dispatcher.run_polling() methods.

ò Note

You can use polling from only one polling process per single Bot token, in other case Telegram server will return
an error.

ò Note

If you will need to scale your bot, you should use webhooks instead of long-polling.

ò Note

If you will use multibot mode, you should use webhook mode for all bots.

Example

This example will show you how to create simple echo bot based on long-polling.

import asyncio
import logging
import sys
from os import getenv

from aiogram import Bot, Dispatcher, html
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import Message

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

All handlers should be attached to the Router (or Dispatcher)

dp = Dispatcher()

@dp.message(CommandStart())
async def command_start_handler(message: Message) -> None:

"""
This handler receives messages with `/start` command
"""

(continues on next page)

652 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

Most event objects have aliases for API methods that can be called in events'␣
→˓context
For example if you want to answer to incoming message you can use `message.answer(.

→˓..)` alias
and the target chat will be passed to :ref:`aiogram.methods.send_message.

→˓SendMessage`
method automatically or call API method directly via
Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
await message.answer(f"Hello, {html.bold(message.from_user.full_name)}!")

@dp.message()
async def echo_handler(message: Message) -> None:

"""
Handler will forward receive a message back to the sender

By default, message handler will handle all message types (like a text, photo,␣
→˓sticker etc.)
"""
try:

Send a copy of the received message
await message.send_copy(chat_id=message.chat.id)

except TypeError:
But not all the types is supported to be copied so need to handle it
await message.answer("Nice try!")

async def main() -> None:
Initialize Bot instance with default bot properties which will be passed to all␣

→˓API calls
bot = Bot(token=TOKEN, default=DefaultBotProperties(parse_mode=ParseMode.HTML))

And the run events dispatching
await dp.start_polling(bot)

if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
asyncio.run(main())

2.4.6 Finite State Machine

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply
a state machine, is a mathematical model of computation.

It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM
can change from one state to another in response to some inputs; the change from one state to another is
called a transition.

An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition.

Source: WikiPedia

2.4. Handling events 653

aiogram Documentation, Release 3.23.0

Usage example

Not all functionality of the bot can be implemented as single handler, for example you will need to collect some data
from user in separated steps you will need to use FSM.

654 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Let’s see how to do that step-by-step

2.4. Handling events 655

aiogram Documentation, Release 3.23.0

Step by step

Before handle any states you will need to specify what kind of states you want to handle

class Form(StatesGroup):
name = State()
like_bots = State()
language = State()

And then write handler for each state separately from the start of dialog

Here is dialog can be started only via command /start, so lets handle it and make transition user to state Form.name

@form_router.message(CommandStart())
async def command_start(message: Message, state: FSMContext) -> None:

await state.set_state(Form.name)
await message.answer(

"Hi there! What's your name?",
reply_markup=ReplyKeyboardRemove(),

)

After that you will need to save some data to the storage and make transition to next step.

@form_router.message(Form.name)
async def process_name(message: Message, state: FSMContext) -> None:

await state.update_data(name=message.text)
await state.set_state(Form.like_bots)
await message.answer(

f"Nice to meet you, {html.quote(message.text)}!\nDid you like to write bots?",
reply_markup=ReplyKeyboardMarkup(

keyboard=[
[

KeyboardButton(text="Yes"),
KeyboardButton(text="No"),

],
],
resize_keyboard=True,

),
)

At the next steps user can make different answers, it can be yes, no or any other

Handle yes and soon we need to handle Form.language state

@form_router.message(Form.like_bots, F.text.casefold() == "yes")
async def process_like_write_bots(message: Message, state: FSMContext) -> None:

await state.set_state(Form.language)

await message.reply(
"Cool! I'm too!\nWhat programming language did you use for it?",
reply_markup=ReplyKeyboardRemove(),

)

Handle no

656 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

@form_router.message(Form.like_bots, F.text.casefold() == "no")
async def process_dont_like_write_bots(message: Message, state: FSMContext) -> None:

data = await state.get_data()
await state.clear()
await message.answer(

"Not bad not terrible.\nSee you soon.",
reply_markup=ReplyKeyboardRemove(),

)
await show_summary(message=message, data=data, positive=False)

And handle any other answers

@form_router.message(Form.like_bots)
async def process_unknown_write_bots(message: Message) -> None:

await message.reply("I don't understand you :(")

All possible cases of like_bots step was covered, let’s implement finally step

@form_router.message(Form.language)
async def process_language(message: Message, state: FSMContext) -> None:

data = await state.update_data(language=message.text)
await state.clear()

if message.text.casefold() == "python":
await message.reply(

"Python, you say? That's the language that makes my circuits light up! ",
)

await show_summary(message=message, data=data)

async def show_summary(message: Message, data: dict[str, Any], positive: bool = True) ->␣
→˓None:

name = data["name"]
language = data.get("language", "<something unexpected>")
text = f"I'll keep in mind that, {html.quote(name)}, "
text += (

f"you like to write bots with {html.quote(language)}."
if positive
else "you don't like to write bots, so sad..."

)
await message.answer(text=text, reply_markup=ReplyKeyboardRemove())

And now you have covered all steps from the image, but you can make possibility to cancel conversation, lets do that
via command or text

@form_router.message(Command("cancel"))
@form_router.message(F.text.casefold() == "cancel")
async def cancel_handler(message: Message, state: FSMContext) -> None:

"""
Allow user to cancel any action
"""
current_state = await state.get_state()
if current_state is None:

(continues on next page)

2.4. Handling events 657

aiogram Documentation, Release 3.23.0

(continued from previous page)

return

logging.info("Cancelling state %r", current_state)
await state.clear()
await message.answer(

"Cancelled.",
reply_markup=ReplyKeyboardRemove(),

)

Complete example

1 import asyncio
2 import logging
3 import sys
4 from os import getenv
5 from typing import Any
6

7 from aiogram import Bot, Dispatcher, F, Router, html
8 from aiogram.client.default import DefaultBotProperties
9 from aiogram.enums import ParseMode

10 from aiogram.filters import Command, CommandStart
11 from aiogram.fsm.context import FSMContext
12 from aiogram.fsm.state import State, StatesGroup
13 from aiogram.types import (
14 KeyboardButton,
15 Message,
16 ReplyKeyboardMarkup,
17 ReplyKeyboardRemove,
18)
19

20 TOKEN = getenv("BOT_TOKEN")
21

22 form_router = Router()
23

24

25 class Form(StatesGroup):
26 name = State()
27 like_bots = State()
28 language = State()
29

30

31 @form_router.message(CommandStart())
32 async def command_start(message: Message, state: FSMContext) -> None:
33 await state.set_state(Form.name)
34 await message.answer(
35 "Hi there! What's your name?",
36 reply_markup=ReplyKeyboardRemove(),
37)
38

39

(continues on next page)

658 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

40 @form_router.message(Command("cancel"))
41 @form_router.message(F.text.casefold() == "cancel")
42 async def cancel_handler(message: Message, state: FSMContext) -> None:
43 """
44 Allow user to cancel any action
45 """
46 current_state = await state.get_state()
47 if current_state is None:
48 return
49

50 logging.info("Cancelling state %r", current_state)
51 await state.clear()
52 await message.answer(
53 "Cancelled.",
54 reply_markup=ReplyKeyboardRemove(),
55)
56

57

58 @form_router.message(Form.name)
59 async def process_name(message: Message, state: FSMContext) -> None:
60 await state.update_data(name=message.text)
61 await state.set_state(Form.like_bots)
62 await message.answer(
63 f"Nice to meet you, {html.quote(message.text)}!\nDid you like to write bots?",
64 reply_markup=ReplyKeyboardMarkup(
65 keyboard=[
66 [
67 KeyboardButton(text="Yes"),
68 KeyboardButton(text="No"),
69],
70],
71 resize_keyboard=True,
72),
73)
74

75

76 @form_router.message(Form.like_bots, F.text.casefold() == "no")
77 async def process_dont_like_write_bots(message: Message, state: FSMContext) -> None:
78 data = await state.get_data()
79 await state.clear()
80 await message.answer(
81 "Not bad not terrible.\nSee you soon.",
82 reply_markup=ReplyKeyboardRemove(),
83)
84 await show_summary(message=message, data=data, positive=False)
85

86

87 @form_router.message(Form.like_bots, F.text.casefold() == "yes")
88 async def process_like_write_bots(message: Message, state: FSMContext) -> None:
89 await state.set_state(Form.language)
90

91 await message.reply(

(continues on next page)

2.4. Handling events 659

aiogram Documentation, Release 3.23.0

(continued from previous page)

92 "Cool! I'm too!\nWhat programming language did you use for it?",
93 reply_markup=ReplyKeyboardRemove(),
94)
95

96

97 @form_router.message(Form.like_bots)
98 async def process_unknown_write_bots(message: Message) -> None:
99 await message.reply("I don't understand you :(")

100

101

102 @form_router.message(Form.language)
103 async def process_language(message: Message, state: FSMContext) -> None:
104 data = await state.update_data(language=message.text)
105 await state.clear()
106

107 if message.text.casefold() == "python":
108 await message.reply(
109 "Python, you say? That's the language that makes my circuits light up! ",
110)
111

112 await show_summary(message=message, data=data)
113

114

115 async def show_summary(message: Message, data: dict[str, Any], positive: bool = True) ->␣
→˓None:

116 name = data["name"]
117 language = data.get("language", "<something unexpected>")
118 text = f"I'll keep in mind that, {html.quote(name)}, "
119 text += (
120 f"you like to write bots with {html.quote(language)}."
121 if positive
122 else "you don't like to write bots, so sad..."
123)
124 await message.answer(text=text, reply_markup=ReplyKeyboardRemove())
125

126

127 async def main() -> None:
128 # Initialize Bot instance with default bot properties which will be passed to all␣

→˓API calls
129 bot = Bot(token=TOKEN, default=DefaultBotProperties(parse_mode=ParseMode.HTML))
130

131 dp = Dispatcher()
132

133 dp.include_router(form_router)
134

135 # Start event dispatching
136 await dp.start_polling(bot)
137

138

139 if __name__ == "__main__":
140 logging.basicConfig(level=logging.INFO, stream=sys.stdout)
141 asyncio.run(main())

660 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Changing state for another user

In some cases, you might need to change the state for a user other than the one who triggered the current handler. For
example, you might want to change the state of a user based on an admin’s command.

To do this, you can use the get_context method of the FSM middleware through the dispatcher:

@example_router.message(Command("example"))
async def command_example(message: Message, dispatcher: Dispatcher, bot: Bot):

user_id = ... # Get the user ID in the way that you need
state = await dispatcher.fsm.get_context(

bot=bot,
chat_id=user_id,
user_id=user_id,

)

Now you can use the state context to change the state for the specified user
await state.set_state(YourState.some_state)

Or store data in the state
await state.update_data(some_key="some_value")

Or clear the state
await state.clear()

This allows you to manage the state of any user in your bot, not just the one who triggered the current handler.

Read more

Storages

Storages out of the box

MemoryStorage

class aiogram.fsm.storage.memory.MemoryStorage

Default FSM storage, stores all data in dict and loss everything on shutdown

. Warning

Is not recommended using in production in due to you will lose all data when your bot restarts

__init__()→ None

2.4. Handling events 661

aiogram Documentation, Release 3.23.0

RedisStorage

class aiogram.fsm.storage.redis.RedisStorage(redis: ~redis.asyncio.client.Redis, key_builder:
~aiogram.fsm.storage.base.KeyBuilder | None = None,
state_ttl: int | ~datetime.timedelta | None = None,
data_ttl: int | ~datetime.timedelta | None = None,
json_loads: ~collections.abc.Callable[[...], ~typing.Any]
= <function loads>, json_dumps:
~collections.abc.Callable[[...], str] = <function dumps>)

Redis storage required redis package installed (pip install redis)

__init__(redis: ~redis.asyncio.client.Redis, key_builder: ~aiogram.fsm.storage.base.KeyBuilder | None =
None, state_ttl: int | ~datetime.timedelta | None = None, data_ttl: int | ~datetime.timedelta | None
= None, json_loads: ~collections.abc.Callable[[...], ~typing.Any] = <function loads>,
json_dumps: ~collections.abc.Callable[[...], str] = <function dumps>)→ None

Parameters

• redis – Instance of Redis connection

• key_builder – builder that helps to convert contextual key to string

• state_ttl – TTL for state records

• data_ttl – TTL for data records

classmethod from_url(url: str, connection_kwargs: dict[str, Any] | None = None, **kwargs: Any)→
RedisStorage

Create an instance of RedisStorage with specifying the connection string

Parameters

• url – for example redis://user:password@host:port/db

• connection_kwargs – see redis docs

• kwargs – arguments to be passed to RedisStorage

Returns
an instance of RedisStorage

MongoStorage

class aiogram.fsm.storage.pymongo.PyMongoStorage(client: AsyncMongoClient[Any], key_builder:
KeyBuilder | None = None, db_name: str =
'aiogram_fsm', collection_name: str =
'states_and_data')

MongoDB storage required pymongo package installed (pip install pymongo).

__init__(client: AsyncMongoClient[Any], key_builder: KeyBuilder | None = None, db_name: str =
'aiogram_fsm', collection_name: str = 'states_and_data')→ None

Parameters

• client – Instance of AsyncMongoClient

• key_builder – builder that helps to convert contextual key to string

• db_name – name of the MongoDB database for FSM

662 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

• collection_name – name of the collection for storing FSM states and data

classmethod from_url(url: str, connection_kwargs: dict[str, Any] | None = None, **kwargs: Any)→
PyMongoStorage

Create an instance of PyMongoStorage with specifying the connection string

Parameters

• url – for example mongodb://user:password@host:port

• connection_kwargs – see pymongo docs

• kwargs – arguments to be passed to PyMongoStorage

Returns
an instance of PyMongoStorage

class aiogram.fsm.storage.mongo.MongoStorage(client: AsyncIOMotorClient, key_builder: KeyBuilder |
None = None, db_name: str = 'aiogram_fsm',
collection_name: str = 'states_and_data')

. Warning

DEPRECATED: Use PyMongoStorage instead. This class will be removed in future versions.

MongoDB storage required motor package installed (pip install motor)

__init__(client: AsyncIOMotorClient, key_builder: KeyBuilder | None = None, db_name: str =
'aiogram_fsm', collection_name: str = 'states_and_data')→ None

Parameters

• client – Instance of AsyncIOMotorClient

• key_builder – builder that helps to convert contextual key to string

• db_name – name of the MongoDB database for FSM

• collection_name – name of the collection for storing FSM states and data

classmethod from_url(url: str, connection_kwargs: dict[str, Any] | None = None, **kwargs: Any)→
MongoStorage

Create an instance of MongoStorage with specifying the connection string

Parameters

• url – for example mongodb://user:password@host:port

• connection_kwargs – see motor docs

• kwargs – arguments to be passed to MongoStorage

Returns
an instance of MongoStorage

2.4. Handling events 663

aiogram Documentation, Release 3.23.0

KeyBuilder

Keys inside Redis and Mongo storages can be customized via key builders:

class aiogram.fsm.storage.base.KeyBuilder

Base class for key builder.

abstract build(key: StorageKey, part: Literal['data', 'state', 'lock'] | None = None)→ str
Build key to be used in storage’s db queries

Parameters

• key – contextual key

• part – part of the record

Returns
key to be used in storage’s db queries

class aiogram.fsm.storage.base.DefaultKeyBuilder(*, prefix: str = 'fsm', separator: str = ':',
with_bot_id: bool = False,
with_business_connection_id: bool = False,
with_destiny: bool = False)

Simple key builder with default prefix.

Generates a colon-joined string with prefix, chat_id, user_id, optional bot_id, business_connection_id, destiny
and field.

Format:
<prefix>:<bot_id?>:<business_connection_id?>:<chat_id>:<user_id>:<destiny?
>:<field?>

build(key: StorageKey, part: Literal['data', 'state', 'lock'] | None = None)→ str
Build key to be used in storage’s db queries

Parameters

• key – contextual key

• part – part of the record

Returns
key to be used in storage’s db queries

Writing own storages

class aiogram.fsm.storage.base.BaseStorage

Base class for all FSM storages

abstract async set_state(key: StorageKey, state: str | State | None = None)→ None
Set state for specified key

Parameters

• key – storage key

• state – new state

664 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

abstract async get_state(key: StorageKey)→ str | None
Get key state

Parameters
key – storage key

Returns
current state

abstract async set_data(key: StorageKey, data: Mapping[str, Any])→ None
Write data (replace)

Parameters

• key – storage key

• data – new data

abstract async get_data(key: StorageKey)→ dict[str, Any]
Get current data for key

Parameters
key – storage key

Returns
current data

async update_data(key: StorageKey, data: Mapping[str, Any])→ dict[str, Any]
Update date in the storage for key (like dict.update)

Parameters

• key – storage key

• data – partial data

Returns
new data

abstract async close()→ None
Close storage (database connection, file or etc.)

Strategy

This module provides the FSMStrategy enumeration which is used to define the strategy of the finite state machine.

class aiogram.fsm.strategy.FSMStrategy(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

FSM strategy for storage key generation.

CHAT = 2

State will be stored for each chat globally without separating by users.

CHAT_TOPIC = 5

State will be stored for each chat and topic, but not separated by users.

GLOBAL_USER = 3

State will be stored globally for each user globally.

2.4. Handling events 665

aiogram Documentation, Release 3.23.0

USER_IN_CHAT = 1

State will be stored for each user in chat.

USER_IN_TOPIC = 4

State will be stored for each user in chat and topic.

Scenes Wizard

Added in version 3.2.

. Warning

This feature is experimental and may be changed in future versions.

aiogram’s basics API is easy to use and powerful, allowing the implementation of simple interactions such as triggering
a command or message for a response. However, certain tasks require a dialogue between the user and the bot. This is
where Scenes come into play.

Understanding Scenes

A Scene in aiogram is like an abstract, isolated namespace or room that a user can be ushered into via the code. When
a user is within a Scene, most other global commands or message handlers are bypassed, unless they are specifically
designed to function outside of the Scenes. This helps in creating an experience of focused interactions. Scenes
provide a structure for more complex interactions, effectively isolating and managing contexts for different stages of
the conversation. They allow you to control and manage the flow of the conversation in a more organized manner.

Scene Lifecycle

Each Scene can be “entered”, “left” or “exited”, allowing for clear transitions between different stages of the conver-
sation. For instance, in a multi-step form filling interaction, each step could be a Scene - the bot guides the user from
one Scene to the next as they provide the required information.

Scene Listeners

Scenes have their own hooks which are command or message listeners that only act while the user is within the Scene.
These hooks react to user actions while the user is ‘inside’ the Scene, providing the responses or actions appropriate
for that context. When the user is ushered from one Scene to another, the actions and responses change accordingly
as the user is now interacting with the set of listeners inside the new Scene. These ‘Scene-specific’ hooks or listeners,
detached from the global listening context, allow for more streamlined and organized bot-user interactions.

666 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Scene Interactions

Each Scene is like a self-contained world, with interactions defined within the scope of that Scene. As such, only the
handlers defined within the specific Scene will react to user’s input during the lifecycle of that Scene.

Scene Benefits

Scenes can help manage more complex interaction workflows and enable more interactive and dynamic dialogs between
the user and the bot. This offers great flexibility in handling multi-step interactions or conversations with the users.

How to use Scenes

For example we have a quiz bot, which asks the user a series of questions and then displays the results.

Lets start with the data models, in this example simple data models are used to represent the questions and answers, in
real life you would probably use a database to store the data.

Listing 3: Questions list

@dataclass
class Answer:

"""
Represents an answer to a question.
"""

text: str
"""The answer text"""
is_correct: bool = False
"""Indicates if the answer is correct"""

@dataclass
class Question:

"""
Class representing a quiz with a question and a list of answers.
"""

text: str
"""The question text"""
answers: list[Answer]
"""List of answers"""

correct_answer: str = field(init=False)

def __post_init__(self):
self.correct_answer = next(answer.text for answer in self.answers if answer.is_

→˓correct)

Fake data, in real application you should use a database or something else
QUESTIONS = [

Question(
(continues on next page)

2.4. Handling events 667

aiogram Documentation, Release 3.23.0

(continued from previous page)

text="What is the capital of France?",
answers=[

Answer("Paris", is_correct=True),
Answer("London"),
Answer("Berlin"),
Answer("Madrid"),

],
),
Question(

text="What is the capital of Spain?",
answers=[

Answer("Paris"),
Answer("London"),
Answer("Berlin"),
Answer("Madrid", is_correct=True),

],
),
Question(

text="What is the capital of Germany?",
answers=[

Answer("Paris"),
Answer("London"),
Answer("Berlin", is_correct=True),
Answer("Madrid"),

],
),
Question(

text="What is the capital of England?",
answers=[

Answer("Paris"),
Answer("London", is_correct=True),
Answer("Berlin"),
Answer("Madrid"),

],
),
Question(

text="What is the capital of Italy?",
answers=[

Answer("Paris"),
Answer("London"),
Answer("Berlin"),
Answer("Rome", is_correct=True),

],
),

]

Then, we need to create a Scene class that will represent the quiz game scene:

ò Note

Keyword argument passed into class definition describes the scene name - is the same as state of the scene.

668 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Listing 4: Quiz Scene

class QuizScene(Scene, state="quiz"):
"""
This class represents a scene for a quiz game.

It inherits from Scene class and is associated with the state "quiz".
It handles the logic and flow of the quiz game.
"""

Also we need to define a handler that helps to start the quiz game:

Listing 5: Start command handler

quiz_router = Router(name=__name__)
Add handler that initializes the scene
quiz_router.message.register(QuizScene.as_handler(), Command("quiz"))

Once the scene is defined, we need to register it in the SceneRegistry:

Listing 6: Registering the scene

def create_dispatcher() -> Dispatcher:
Event isolation is needed to correctly handle fast user responses
dispatcher = Dispatcher(

events_isolation=SimpleEventIsolation(),
)
dispatcher.include_router(quiz_router)

To use scenes, you should create a SceneRegistry and register your scenes there
scene_registry = SceneRegistry(dispatcher)
... and then register a scene in the registry
by default, Scene will be mounted to the router that passed to the SceneRegistry,
but you can specify the router explicitly using the `router` argument
scene_registry.add(QuizScene)

return dispatcher

So, now we can implement the quiz game logic, each question is sent to the user one by one, and the user’s answer is
checked at the end of all questions.

Now we need to write an entry point for the question handler:

Listing 7: Question handler entry point

@on.message.enter()
async def on_enter(self, message: Message, state: FSMContext, step: int | None = 0) -

→˓> Any:
"""
Method triggered when the user enters the quiz scene.

It displays the current question and answer options to the user.

:param message:
(continues on next page)

2.4. Handling events 669

aiogram Documentation, Release 3.23.0

(continued from previous page)

:param state:
:param step: Scene argument, can be passed to the scene using the wizard
:return:
"""
if not step:

This is the first step, so we should greet the user
await message.answer("Welcome to the quiz!")

try:
quiz = QUESTIONS[step]

except IndexError:
This error means that the question's list is over
return await self.wizard.exit()

markup = ReplyKeyboardBuilder()
markup.add(*[KeyboardButton(text=answer.text) for answer in quiz.answers])

if step > 0:
markup.button(text=" Back")

markup.button(text=" Exit")

await state.update_data(step=step)
return await message.answer(

text=QUESTIONS[step].text,
reply_markup=markup.adjust(2).as_markup(resize_keyboard=True),

)

Once scene is entered, we should expect the user’s answer, so we need to write a handler for it, this handler should
expect the text message, save the answer and retake the question handler for the next question:

Listing 8: Answer handler

@on.message(F.text)
async def answer(self, message: Message, state: FSMContext) -> None:

"""
Method triggered when the user selects an answer.

It stores the answer and proceeds to the next question.

:param message:
:param state:
:return:
"""
data = await state.get_data()
step = data["step"]
answers = data.get("answers", {})
answers[step] = message.text
await state.update_data(answers=answers)

await self.wizard.retake(step=step + 1)

When user answer with unknown message, we should expect the text message again:

670 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Listing 9: Unknown message handler

@on.message()
async def unknown_message(self, message: Message) -> None:

"""
Method triggered when the user sends a message that is not a command or an␣

→˓answer.

It asks the user to select an answer.

:param message: The message received from the user.
:return: None
"""
await message.answer("Please select an answer.")

When all questions are answered, we should show the results to the user, as you can see in the code below, we use await
self.wizard.exit() to exit from the scene when questions list is over in the QuizScene.on_enter handler.

Thats means that we need to write an exit handler to show the results to the user:

Listing 10: Show results handler

@on.message.exit()
async def on_exit(self, message: Message, state: FSMContext) -> None:

"""
Method triggered when the user exits the quiz scene.

It calculates the user's answers, displays the summary, and clears the stored␣
→˓answers.

:param message:
:param state:
:return:
"""
data = await state.get_data()
answers = data.get("answers", {})

correct = 0
incorrect = 0
user_answers = []
for step, quiz in enumerate(QUESTIONS):

answer = answers.get(step)
is_correct = answer == quiz.correct_answer
if is_correct:

correct += 1
icon = ""

else:
incorrect += 1
icon = ""

if answer is None:
answer = "no answer"

user_answers.append(f"{quiz.text} ({icon} {html.quote(answer)})")

(continues on next page)

2.4. Handling events 671

aiogram Documentation, Release 3.23.0

(continued from previous page)

content = as_list(
as_section(

Bold("Your answers:"),
as_numbered_list(*user_answers),

),
"",
as_section(

Bold("Summary:"),
as_list(

as_key_value("Correct", correct),
as_key_value("Incorrect", incorrect),

),
),

)

await message.answer(**content.as_kwargs(), reply_markup=ReplyKeyboardRemove())
await state.set_data({})

Also we can implement a actions to exit from the quiz game or go back to the previous question:

Listing 11: Exit handler

@on.message(F.text == " Exit")
async def exit(self, message: Message) -> None:

"""
Method triggered when the user selects the "Exit" button.

It exits the quiz.

:param message:
:return:
"""
await self.wizard.exit()

Listing 12: Back handler

@on.message(F.text == " Back")
async def back(self, message: Message, state: FSMContext) -> None:

"""
Method triggered when the user selects the "Back" button.

It allows the user to go back to the previous question.

:param message:
:param state:
:return:
"""
data = await state.get_data()
step = data["step"]

previous_step = step - 1
if previous_step < 0:

(continues on next page)

672 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

In case when the user tries to go back from the first question,
we just exit the quiz
return await self.wizard.exit()

return await self.wizard.back(step=previous_step)

Now we can run the bot and test the quiz game:

Listing 13: Run the bot

async def main() -> None:
dp = create_dispatcher()
bot = Bot(token=TOKEN)
await dp.start_polling(bot)

if __name__ == "__main__":
Alternatively, you can use aiogram-cli:
`aiogram run polling quiz_scene:create_dispatcher --log-level info --token BOT_

→˓TOKEN`
logging.basicConfig(level=logging.INFO)
asyncio.run(main())

Complete them all

Listing 14: Quiz Example

import asyncio
import logging
from dataclasses import dataclass, field
from os import getenv
from typing import Any

from aiogram import Bot, Dispatcher, F, Router, html
from aiogram.filters import Command
from aiogram.fsm.context import FSMContext
from aiogram.fsm.scene import Scene, SceneRegistry, ScenesManager, on
from aiogram.fsm.storage.memory import SimpleEventIsolation
from aiogram.types import KeyboardButton, Message, ReplyKeyboardRemove
from aiogram.utils.formatting import (

Bold,
as_key_value,
as_list,
as_numbered_list,
as_section,

)
from aiogram.utils.keyboard import ReplyKeyboardBuilder

TOKEN = getenv("BOT_TOKEN")

@dataclass
class Answer:

"""
(continues on next page)

2.4. Handling events 673

aiogram Documentation, Release 3.23.0

(continued from previous page)

Represents an answer to a question.
"""

text: str
"""The answer text"""
is_correct: bool = False
"""Indicates if the answer is correct"""

@dataclass
class Question:

"""
Class representing a quiz with a question and a list of answers.
"""

text: str
"""The question text"""
answers: list[Answer]
"""List of answers"""

correct_answer: str = field(init=False)

def __post_init__(self):
self.correct_answer = next(answer.text for answer in self.answers if answer.is_

→˓correct)

Fake data, in real application you should use a database or something else
QUESTIONS = [

Question(
text="What is the capital of France?",
answers=[

Answer("Paris", is_correct=True),
Answer("London"),
Answer("Berlin"),
Answer("Madrid"),

],
),
Question(

text="What is the capital of Spain?",
answers=[

Answer("Paris"),
Answer("London"),
Answer("Berlin"),
Answer("Madrid", is_correct=True),

],
),
Question(

text="What is the capital of Germany?",
answers=[

Answer("Paris"),
Answer("London"),

(continues on next page)

674 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

Answer("Berlin", is_correct=True),
Answer("Madrid"),

],
),
Question(

text="What is the capital of England?",
answers=[

Answer("Paris"),
Answer("London", is_correct=True),
Answer("Berlin"),
Answer("Madrid"),

],
),
Question(

text="What is the capital of Italy?",
answers=[

Answer("Paris"),
Answer("London"),
Answer("Berlin"),
Answer("Rome", is_correct=True),

],
),

]

class QuizScene(Scene, state="quiz"):
"""
This class represents a scene for a quiz game.

It inherits from Scene class and is associated with the state "quiz".
It handles the logic and flow of the quiz game.
"""

@on.message.enter()
async def on_enter(self, message: Message, state: FSMContext, step: int | None = 0) -

→˓> Any:
"""
Method triggered when the user enters the quiz scene.

It displays the current question and answer options to the user.

:param message:
:param state:
:param step: Scene argument, can be passed to the scene using the wizard
:return:
"""
if not step:

This is the first step, so we should greet the user
await message.answer("Welcome to the quiz!")

try:
quiz = QUESTIONS[step]

(continues on next page)

2.4. Handling events 675

aiogram Documentation, Release 3.23.0

(continued from previous page)

except IndexError:
This error means that the question's list is over
return await self.wizard.exit()

markup = ReplyKeyboardBuilder()
markup.add(*[KeyboardButton(text=answer.text) for answer in quiz.answers])

if step > 0:
markup.button(text=" Back")

markup.button(text=" Exit")

await state.update_data(step=step)
return await message.answer(

text=QUESTIONS[step].text,
reply_markup=markup.adjust(2).as_markup(resize_keyboard=True),

)

@on.message.exit()
async def on_exit(self, message: Message, state: FSMContext) -> None:

"""
Method triggered when the user exits the quiz scene.

It calculates the user's answers, displays the summary, and clears the stored␣
→˓answers.

:param message:
:param state:
:return:
"""
data = await state.get_data()
answers = data.get("answers", {})

correct = 0
incorrect = 0
user_answers = []
for step, quiz in enumerate(QUESTIONS):

answer = answers.get(step)
is_correct = answer == quiz.correct_answer
if is_correct:

correct += 1
icon = ""

else:
incorrect += 1
icon = ""

if answer is None:
answer = "no answer"

user_answers.append(f"{quiz.text} ({icon} {html.quote(answer)})")

content = as_list(
as_section(

Bold("Your answers:"),
as_numbered_list(*user_answers),

(continues on next page)

676 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

),
"",
as_section(

Bold("Summary:"),
as_list(

as_key_value("Correct", correct),
as_key_value("Incorrect", incorrect),

),
),

)

await message.answer(**content.as_kwargs(), reply_markup=ReplyKeyboardRemove())
await state.set_data({})

@on.message(F.text == " Back")
async def back(self, message: Message, state: FSMContext) -> None:

"""
Method triggered when the user selects the "Back" button.

It allows the user to go back to the previous question.

:param message:
:param state:
:return:
"""
data = await state.get_data()
step = data["step"]

previous_step = step - 1
if previous_step < 0:

In case when the user tries to go back from the first question,
we just exit the quiz
return await self.wizard.exit()

return await self.wizard.back(step=previous_step)

@on.message(F.text == " Exit")
async def exit(self, message: Message) -> None:

"""
Method triggered when the user selects the "Exit" button.

It exits the quiz.

:param message:
:return:
"""
await self.wizard.exit()

@on.message(F.text)
async def answer(self, message: Message, state: FSMContext) -> None:

"""
Method triggered when the user selects an answer.

(continues on next page)

2.4. Handling events 677

aiogram Documentation, Release 3.23.0

(continued from previous page)

It stores the answer and proceeds to the next question.

:param message:
:param state:
:return:
"""
data = await state.get_data()
step = data["step"]
answers = data.get("answers", {})
answers[step] = message.text
await state.update_data(answers=answers)

await self.wizard.retake(step=step + 1)

@on.message()
async def unknown_message(self, message: Message) -> None:

"""
Method triggered when the user sends a message that is not a command or an␣

→˓answer.

It asks the user to select an answer.

:param message: The message received from the user.
:return: None
"""
await message.answer("Please select an answer.")

quiz_router = Router(name=__name__)
Add handler that initializes the scene
quiz_router.message.register(QuizScene.as_handler(), Command("quiz"))

@quiz_router.message(Command("start"))
async def command_start(message: Message, scenes: ScenesManager) -> None:

await scenes.close()
await message.answer(

"Hi! This is a quiz bot. To start the quiz, use the /quiz command.",
reply_markup=ReplyKeyboardRemove(),

)

def create_dispatcher() -> Dispatcher:
Event isolation is needed to correctly handle fast user responses
dispatcher = Dispatcher(

events_isolation=SimpleEventIsolation(),
)
dispatcher.include_router(quiz_router)

To use scenes, you should create a SceneRegistry and register your scenes there
scene_registry = SceneRegistry(dispatcher)
... and then register a scene in the registry

(continues on next page)

678 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

by default, Scene will be mounted to the router that passed to the SceneRegistry,
but you can specify the router explicitly using the `router` argument
scene_registry.add(QuizScene)

return dispatcher

async def main() -> None:
dp = create_dispatcher()
bot = Bot(token=TOKEN)
await dp.start_polling(bot)

if __name__ == "__main__":
Alternatively, you can use aiogram-cli:
`aiogram run polling quiz_scene:create_dispatcher --log-level info --token BOT_

→˓TOKEN`
logging.basicConfig(level=logging.INFO)
asyncio.run(main())

Components

• aiogram.fsm.scene.Scene - represents a scene, contains handlers

• aiogram.fsm.scene.SceneRegistry - container for all scenes in the bot, used to register scenes and resolve
them by name

• aiogram.fsm.scene.ScenesManager - manages scenes for each user, used to enter, leave and resolve current
scene for user

• aiogram.fsm.scene.SceneConfig - scene configuration, used to configure scene

• aiogram.fsm.scene.SceneWizard - scene wizard, used to interact with user in scene from active scene han-
dler

• Markers - marker for scene handlers, used to mark scene handlers

class aiogram.fsm.scene.Scene(wizard: SceneWizard)
Represents a scene in a conversation flow.

A scene is a specific state in a conversation where certain actions can take place.

Each scene has a set of filters that determine when it should be triggered, and a set of handlers that define the
actions to be executed when the scene is active.

ò Note

This class is not meant to be used directly. Instead, it should be subclassed to define custom scenes.

classmethod add_to_router(router: Router)→ None
Adds the scene to the given router.

Parameters
router

2.4. Handling events 679

aiogram Documentation, Release 3.23.0

Returns

classmethod as_handler(**handler_kwargs: Any)→ Callable[[...], Any]
Create an entry point handler for the scene, can be used to simplify the handler that starts the scene.

>>> router.message.register(MyScene.as_handler(), Command("start"))

classmethod as_router(name: str | None = None)→ Router
Returns the scene as a router.

Returns
new router

class aiogram.fsm.scene.SceneRegistry(router: Router, register_on_add: bool = True)
A class that represents a registry for scenes in a Telegram bot.

add(*scenes: type[Scene], router: Router | None = None)→ None
This method adds the specified scenes to the registry and optionally registers it to the router.

If a scene with the same state already exists in the registry, a SceneException is raised.

. Warning

If the router is not specified, the scenes will not be registered to the router. You will need to include the
scenes manually to the router or use the register method.

Parameters

• scenes – A variable length parameter that accepts one or more types of scenes. These
scenes are instances of the Scene class.

• router – An optional parameter that specifies the router to which the scenes should be
added.

Returns
None

get(scene: type[Scene] | State | str | None)→ type[Scene]
This method returns the registered Scene object for the specified scene. The scene parameter can be either
a Scene object, State object or a string representing the name of the scene. If a Scene object is provided, the
state attribute of the SceneConfig object associated with the Scene object will be used as the scene name.
If a State object is provided, the state attribute of the State object will be used as the scene name. If None
or an invalid type is provided, a SceneException will be raised.

If the specified scene is not registered in the SceneRegistry object, a SceneException will be raised.

Parameters
scene – A Scene object, State object or a string representing the name of the scene.

Returns
The registered Scene object corresponding to the given scene parameter.

register(*scenes: type[Scene])→ None
Registers one or more scenes to the SceneRegistry.

Parameters
scenes – One or more scene classes to register.

680 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Returns
None

class aiogram.fsm.scene.ScenesManager(registry: SceneRegistry, update_type: str, event: TelegramObject,
state: FSMContext, data: dict[str, Any])

The ScenesManager class is responsible for managing scenes in an application. It provides methods for entering
and exiting scenes, as well as retrieving the active scene.

async close(**kwargs: Any)→ None
Close method is used to exit the currently active scene in the ScenesManager.

Parameters
kwargs – Additional keyword arguments passed to the scene’s exit method.

Returns
None

async enter(scene_type: type[Scene] | State | str | None, _check_active: bool = True, **kwargs: Any)→
None

Enters the specified scene.

Parameters

• scene_type – Optional Type[Scene], State or str representing the scene type to enter.

• _check_active – Optional bool indicating whether to check if there is an active scene to
exit before entering the new scene. Defaults to True.

• kwargs – Additional keyword arguments to pass to the scene’s wizard.enter() method.

Returns
None

class aiogram.fsm.scene.SceneConfig(state: 'str | None', handlers: 'list[HandlerContainer]', actions:
'dict[SceneAction, dict[str, CallableObject]]', reset_data_on_enter:
'bool | None' = None, reset_history_on_enter: 'bool | None' = None,
callback_query_without_state: 'bool | None' = None, attrs_resolver:
'ClassAttrsResolver' = <function get_sorted_mro_attrs_resolver at
0x73f8ce7e2340>)

actions: dict[SceneAction, dict[str, CallableObject]]

Scene actions

attrs_resolver()→ Generator[tuple[str, Any], None, None]
Attributes resolver.

³ Danger

This attribute should only be changed when you know what you are doing.

Added in version 3.19.0.

callback_query_without_state: bool | None = None

Allow callback query without state

handlers: list[HandlerContainer]

Scene handlers

2.4. Handling events 681

aiogram Documentation, Release 3.23.0

reset_data_on_enter: bool | None = None

Reset scene data on enter

reset_history_on_enter: bool | None = None

Reset scene history on enter

state: str | None

Scene state

class aiogram.fsm.scene.SceneWizard(scene_config: SceneConfig, manager: ScenesManager, state:
FSMContext, update_type: str, event: TelegramObject, data: dict[str,
Any])

A class that represents a wizard for managing scenes in a Telegram bot.

Instance of this class is passed to each scene as a parameter. So, you can use it to transition between scenes, get
and set data, etc.

ò Note

This class is not meant to be used directly. Instead, it should be used as a parameter in the scene constructor.

async back(**kwargs: Any)→ None
This method is used to go back to the previous scene.

Parameters
kwargs – Keyword arguments that can be passed to the method.

Returns
None

async clear_data()→ None
Clears the data.

Returns
None

async enter(**kwargs: Any)→ None
Enter method is used to transition into a scene in the SceneWizard class. It sets the state, clears data and
history if specified, and triggers entering event of the scene.

Parameters
kwargs – Additional keyword arguments.

Returns
None

async exit(**kwargs: Any)→ None
Exit the current scene and enter the default scene/state.

Parameters
kwargs – Additional keyword arguments.

Returns
None

async get_data()→ dict[str, Any]
This method returns the data stored in the current state.

682 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Returns
A dictionary containing the data stored in the scene state.

async goto(scene: type[Scene] | State | str, **kwargs: Any)→ None
The goto method transitions to a new scene. It first calls the leave method to perform any necessary cleanup
in the current scene, then calls the enter event to enter the specified scene.

Parameters

• scene – The scene to transition to. Can be either a Scene instance State instance or a string
representing the scene.

• kwargs – Additional keyword arguments to pass to the enter method of the scene manager.

Returns
None

async leave(_with_history: bool = True, **kwargs: Any)→ None
Leaves the current scene. This method is used to exit a scene and transition to the next scene.

Parameters

• _with_history – Whether to include history in the snapshot. Defaults to True.

• kwargs – Additional keyword arguments.

Returns
None

async retake(**kwargs: Any)→ None
This method allows to re-enter the current scene.

Parameters
kwargs – Additional keyword arguments to pass to the scene.

Returns
None

async set_data(data: Mapping[str, Any])→ None
Sets custom data in the current state.

Parameters
data – A mapping containing the custom data to be set in the current state.

Returns
None

async update_data(data: Mapping[str, Any] | None = None, **kwargs: Any)→ dict[str, Any]
This method updates the data stored in the current state

Parameters

• data – Optional mapping of data to update.

• kwargs – Additional key-value pairs of data to update.

Returns
Dictionary of updated data

2.4. Handling events 683

aiogram Documentation, Release 3.23.0

Markers

Markers are similar to the Router event registering mechanism, but they are used to mark scene handlers in the Scene
class.

It can be imported from from aiogram.fsm.scene import on and should be used as decorator.

Allowed event types:

• message

• edited_message

• channel_post

• edited_channel_post

• inline_query

• chosen_inline_result

• callback_query

• shipping_query

• pre_checkout_query

• poll

• poll_answer

• my_chat_member

• chat_member

• chat_join_request

Each event type can be filtered in the same way as in the Router.

Also each event type can be marked as scene entry point, exit point or leave point.

If you want to mark the scene can be entered from message or inline query, you should use on.message or on.
inline_query marker:

class MyScene(Scene, name="my_scene"):
@on.message.enter()
async def on_enter(self, message: types.Message):

pass

@on.callback_query.enter()
async def on_enter(self, callback_query: types.CallbackQuery):

pass

Scene has only three points for transitions:

• enter point - when user enters to the scene

• leave point - when user leaves the scene and the enter another scene

• exit point - when user exits from the scene

684 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

How to enter the scene

There are several ways to enter a scene in aiogram. Each approach has specific use cases and advantages

1. Directly using the scene’s entry point as a handler:

You can convert a scene’s entry point to a handler and register it like any other handler:

router.message.register(SettingsScene.as_handler(), Command("settings"))

2. From a regular handler using ScenesManager:

Enter a scene from any regular handler by using the ScenesManager:

ò Note

When using ScenesManager, you need to explicitly pass all dependencies required by the scene’s entry point
handler as arguments to the enter method.

@router.message(Command("settings"))
async def settings_handler(message: Message, scenes: ScenesManager):

await scenes.enter(SettingsScene, some_data="data") # pass additional␣
→˓arguments to the scene

3. From another scene using After.goto marker:

Transition to another scene after a handler is executed using the After marker:

class MyScene(Scene, state="my_scene"):

...

@on.message(F.text.startswith(""), after=After.goto(AnotherScene))
async def on_message(self, message: Message, some_repo: SomeRepository, db:␣

→˓AsyncSession):
Persist some data before going to another scene
await some_repo.save(user_id=message.from_user.id, value=message.text)
await db.commit()

...

4. Using explicit transition with wizard.goto:

For more control over the transition, use the wizard.goto method from within a scene handler:

ò Note

Dependencies will be injected into the handler normally and then extended with the arguments specified in
the goto method.

class MyScene(Scene, state="my_scene"):
...

(continues on next page)

2.4. Handling events 685

aiogram Documentation, Release 3.23.0

(continued from previous page)

@on.message(F.text.startswith(""))
async def on_message(self, message: Message):

Direct control over when and how to transition
await self.wizard.goto(AnotherScene, value=message.text)

...

Each method offers different levels of control and integration with your application’s architecture. Choose the approach
that best fits your specific use case and coding style.

2.4.7 Middlewares

aiogram provides powerful mechanism for customizing event handlers via middlewares.

Middlewares in bot framework seems like Middlewares mechanism in web-frameworks like aiohttp, fastapi, Django or
etc.) with small difference - here is implemented two layers of middlewares (before and after filters).

ò Note

Middleware is function that triggered on every event received from Telegram Bot API in many points on processing
pipeline.

Base theory

As many books and other literature in internet says:

Middleware is reusable software that leverages patterns and frameworks to bridge the gap between the
functional requirements of applications and the underlying operating systems, network protocol stacks,
and databases.

Middleware can modify, extend or reject processing event in many places of pipeline.

Basics

Middleware instance can be applied for every type of Telegram Event (Update, Message, etc.) in two places

1. Outer scope - before processing filters (<router>.<event>.outer_middleware(...))

2. Inner scope - after processing filters but before handler (<router>.<event>.middleware(...))

686 Chapter 2. Contents

https://docs.aiohttp.org/en/stable/web_advanced.html#aiohttp-web-middlewares
https://fastapi.tiangolo.com/tutorial/middleware/
https://docs.djangoproject.com/en/3.0/topics/http/middleware/

aiogram Documentation, Release 3.23.0

. Attention

Middleware should be subclass of BaseMiddleware (from aiogram import BaseMiddleware) or any async
callable

Arguments specification

class aiogram.dispatcher.middlewares.base.BaseMiddleware

Bases: ABC

Generic middleware class

abstract async __call__(handler: Callable[[TelegramObject, dict[str, Any]], Awaitable[Any]], event:
TelegramObject, data: dict[str, Any])→ Any

Execute middleware

Parameters

• handler – Wrapped handler in middlewares chain

• event – Incoming event (Subclass of aiogram.types.base.TelegramObject)

• data – Contextual data. Will be mapped to handler arguments

Returns
Any

2.4. Handling events 687

aiogram Documentation, Release 3.23.0

Examples

³ Danger

Middleware should always call await handler(event, data) to propagate event for next middleware/handler.
If you want to stop processing event in middleware you should not call await handler(event, data).

Class-based

from aiogram import BaseMiddleware
from aiogram.types import Message

class CounterMiddleware(BaseMiddleware):
def __init__(self) -> None:

self.counter = 0

async def __call__(
self,
handler: Callable[[Message, Dict[str, Any]], Awaitable[Any]],
event: Message,
data: Dict[str, Any]

) -> Any:
self.counter += 1
data['counter'] = self.counter
return await handler(event, data)

and then

router = Router()
router.message.middleware(CounterMiddleware())

Function-based

@dispatcher.update.outer_middleware()
async def database_transaction_middleware(

handler: Callable[[Update, Dict[str, Any]], Awaitable[Any]],
event: Update,
data: Dict[str, Any]

) -> Any:
async with database.transaction():

return await handler(event, data)

688 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Facts

1. Middlewares from outer scope will be called on every incoming event

2. Middlewares from inner scope will be called only when filters pass

3. Inner middlewares is always calls for aiogram.types.update.Update event type in due to all incoming up-
dates going to specific event type handler through built in update handler

2.4.8 Errors

Handling errors

Is recommended way that you should use errors inside handlers using try-except block, but in common cases you can
use global errors handler at router or dispatcher level.

If you specify errors handler for router - it will be used for all handlers inside this router.

If you specify errors handler for dispatcher - it will be used for all handlers inside all routers.

@router.error(ExceptionTypeFilter(MyCustomException), F.update.message.as_("message"))
async def handle_my_custom_exception(event: ErrorEvent, message: Message):

do something with error
await message.answer("Oops, something went wrong!")

@router.error()
async def error_handler(event: ErrorEvent):

logger.critical("Critical error caused by %s", event.exception, exc_info=True)
do something with error
...

ErrorEvent

class aiogram.types.error_event.ErrorEvent(*, update: Update, exception: Exception, **extra_data:
Any)

Internal event, should be used to receive errors while processing Updates from Telegram

Source: https://core.telegram.org/bots/api#error-event

update: Update

Received update

exception: Exception

Exception

2.4. Handling events 689

https://core.telegram.org/bots/api#error-event

aiogram Documentation, Release 3.23.0

Error types

exception aiogram.exceptions.AiogramError

Base exception for all aiogram errors.

exception aiogram.exceptions.DetailedAiogramError(message: str)
Base exception for all aiogram errors with detailed message.

exception aiogram.exceptions.CallbackAnswerException

Exception for callback answer.

exception aiogram.exceptions.SceneException

Exception for scenes.

exception aiogram.exceptions.UnsupportedKeywordArgument(message: str)
Exception raised when a keyword argument is passed as filter.

exception aiogram.exceptions.TelegramAPIError(method: TelegramMethod, message: str)
Base exception for all Telegram API errors.

exception aiogram.exceptions.TelegramNetworkError(method: TelegramMethod, message: str)
Base exception for all Telegram network errors.

exception aiogram.exceptions.TelegramRetryAfter(method: TelegramMethod, message: str, retry_after:
int)

Exception raised when flood control exceeds.

exception aiogram.exceptions.TelegramMigrateToChat(method: TelegramMethod, message: str,
migrate_to_chat_id: int)

Exception raised when chat has been migrated to a supergroup.

exception aiogram.exceptions.TelegramBadRequest(method: TelegramMethod, message: str)
Exception raised when request is malformed.

exception aiogram.exceptions.TelegramNotFound(method: TelegramMethod, message: str)
Exception raised when chat, message, user, etc. not found.

exception aiogram.exceptions.TelegramConflictError(method: TelegramMethod, message: str)
Exception raised when bot token is already used by another application in polling mode.

exception aiogram.exceptions.TelegramUnauthorizedError(method: TelegramMethod, message: str)
Exception raised when bot token is invalid.

exception aiogram.exceptions.TelegramForbiddenError(method: TelegramMethod, message: str)
Exception raised when bot is kicked from chat or etc.

exception aiogram.exceptions.TelegramServerError(method: TelegramMethod, message: str)
Exception raised when Telegram server returns 5xx error.

exception aiogram.exceptions.RestartingTelegram(method: TelegramMethod, message: str)
Exception raised when Telegram server is restarting.

It seems like this error is not used by Telegram anymore, but it’s still here for backward compatibility.

Currently, you should expect that Telegram can raise RetryAfter (with timeout 5 seconds)
error instead of this one.

690 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

exception aiogram.exceptions.TelegramEntityTooLarge(method: TelegramMethod, message: str)
Exception raised when you are trying to send a file that is too large.

exception aiogram.exceptions.ClientDecodeError(message: str, original: Exception, data: Any)
Exception raised when client can’t decode response. (Malformed response, etc.)

exception aiogram.exceptions.DataNotDictLikeError(message: str)
Exception raised when data is not dict-like.

2.4.9 Flags

Flags is a markers for handlers that can be used in middlewares or special utilities to make classification of the handlers.

Flags can be added to the handler via decorators, handlers registration or filters.

Via decorators

For example mark handler with chat_action flag

from aiogram import flags

@flags.chat_action
async def my_handler(message: Message)

Or just for rate-limit or something else

from aiogram import flags

@flags.rate_limit(rate=2, key="something")
async def my_handler(message: Message)

Via handler registration method

@router.message(..., flags={'chat_action': 'typing', 'rate_limit': {'rate': 5}})

Via filters

class Command(Filter):
...

def update_handler_flags(self, flags: Dict[str, Any]) -> None:
commands = flags.setdefault("commands", [])
commands.append(self)

2.4. Handling events 691

aiogram Documentation, Release 3.23.0

Use in middlewares

aiogram.dispatcher.flags.check_flags(handler: HandlerObject | dict[str, Any], magic: MagicFilter)→
Any

Check flags via magic filter

Parameters

• handler – handler object or data

• magic – instance of the magic

Returns
the result of magic filter check

aiogram.dispatcher.flags.extract_flags(handler: HandlerObject | dict[str, Any])→ dict[str, Any]
Extract flags from handler or middleware context data

Parameters
handler – handler object or data

Returns
dictionary with all handler flags

aiogram.dispatcher.flags.get_flag(handler: HandlerObject | dict[str, Any], name: str, *, default: Any |
None = None)→ Any

Get flag by name

Parameters

• handler – handler object or data

• name – name of the flag

• default – default value (None)

Returns
value of the flag or default

Example in middlewares

async def my_middleware(handler, event, data):
typing = get_flag(data, "typing") # Check that handler marked with `typing` flag
if not typing:

return await handler(event, data)

async with ChatActionSender.typing(chat_id=event.chat.id):
return await handler(event, data)

692 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Use in utilities

For example you can collect all registered commands with handler description and then it can be used for generating
commands help

def collect_commands(router: Router) -> Generator[Tuple[Command, str], None, None]:
for handler in router.message.handlers:

if "commands" not in handler.flags: # ignore all handler without commands
continue

the Command filter adds the flag with list of commands attached to the handler
for command in handler.flags["commands"]:

yield command, handler.callback.__doc__ or ""
Recursively extract commands from nested routers
for sub_router in router.sub_routers:

yield from collect_commands(sub_router)

2.4.10 Webhook

Telegram Bot API supports webhook. If you set webhook for your bot, Telegram will send updates to the specified
url. You can use aiogram.methods.set_webhook.SetWebhook() method to specify a url and receive incoming
updates on it.

ò Note

If you use webhook, you can’t use long polling at the same time.

Before start i’ll recommend you to read official Telegram’s documentation about webhook

After you read it, you can start to read this section.

Generally to use webhook with aiogram you should use any async web framework. By out of the box aiogram has an
aiohttp integration, so we’ll use it.

ò Note

You can use any async web framework you want, but you should write your own integration if you don’t use aiohttp.

aiohttp integration

Out of the box aiogram has aiohttp integration, so you can use it.

Here is available few ways to do it using different implementations of the webhook controller:

• aiogram.webhook.aiohttp_server.BaseRequestHandler - Abstract class for aiohttp webhook controller

• aiogram.webhook.aiohttp_server.SimpleRequestHandler - Simple webhook controller, uses single Bot
instance

• aiogram.webhook.aiohttp_server.TokenBasedRequestHandler - Token based webhook controller, uses
multiple Bot instances and tokens

You can use it as is or inherit from it and override some methods.

2.4. Handling events 693

https://core.telegram.org/bots/webhooks

aiogram Documentation, Release 3.23.0

class aiogram.webhook.aiohttp_server.BaseRequestHandler(dispatcher: Dispatcher,
handle_in_background: bool = False,
**data: Any)

__init__(dispatcher: Dispatcher, handle_in_background: bool = False, **data: Any)→ None
Base handler that helps to handle incoming request from aiohttp and propagate it to the Dispatcher

Parameters

• dispatcher – instance of aiogram.dispatcher.dispatcher.Dispatcher

• handle_in_background – immediately responds to the Telegram instead of a waiting end
of a handler process

register(app: Application, / , path: str, **kwargs: Any)→ None
Register route and shutdown callback

Parameters

• app – instance of aiohttp Application

• path – route path

• kwargs

abstract async resolve_bot(request: Request)→ Bot
This method should be implemented in subclasses of this class.

Resolve Bot instance from request.

Parameters
request

Returns
Bot instance

class aiogram.webhook.aiohttp_server.SimpleRequestHandler(dispatcher: Dispatcher, bot: Bot,
handle_in_background: bool = True,
secret_token: str | None = None, **data:
Any)

__init__(dispatcher: Dispatcher, bot: Bot, handle_in_background: bool = True, secret_token: str | None =
None, **data: Any)→ None

Handler for single Bot instance

Parameters

• dispatcher – instance of aiogram.dispatcher.dispatcher.Dispatcher

• handle_in_background – immediately responds to the Telegram instead of a waiting end
of handler process

• bot – instance of aiogram.client.bot.Bot

async close()→ None
Close bot session

register(app: Application, / , path: str, **kwargs: Any)→ None
Register route and shutdown callback

Parameters

• app – instance of aiohttp Application

694 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

• path – route path

• kwargs

async resolve_bot(request: Request)→ Bot
This method should be implemented in subclasses of this class.

Resolve Bot instance from request.

Parameters
request

Returns
Bot instance

class aiogram.webhook.aiohttp_server.TokenBasedRequestHandler(dispatcher: Dispatcher,
handle_in_background: bool =
True, bot_settings: dict[str, Any] |
None = None, **data: Any)

__init__(dispatcher: Dispatcher, handle_in_background: bool = True, bot_settings: dict[str, Any] | None =
None, **data: Any)→ None

Handler that supports multiple bots the context will be resolved from path variable ‘bot_token’

ò Note

This handler is not recommended in due to token is available in URL and can be logged by reverse
proxy server or other middleware.

Parameters

• dispatcher – instance of aiogram.dispatcher.dispatcher.Dispatcher

• handle_in_background – immediately responds to the Telegram instead of a waiting end
of handler process

• bot_settings – kwargs that will be passed to new Bot instance

register(app: Application, / , path: str, **kwargs: Any)→ None
Validate path, register route and shutdown callback

Parameters

• app – instance of aiohttp Application

• path – route path

• kwargs

async resolve_bot(request: Request)→ Bot
Get bot token from a path and create or get from cache Bot instance

Parameters
request

Returns

2.4. Handling events 695

aiogram Documentation, Release 3.23.0

Security

Telegram supports two methods to verify incoming requests that they are from Telegram:

Using a secret token

When you set webhook, you can specify a secret token and then use it to verify incoming requests.

Using IP filtering

You can specify a list of IP addresses from which you expect incoming requests, and then use it to verify incoming
requests.

It can be acy using firewall rules or nginx configuration or middleware on application level.

So, aiogram has an implementation of the IP filtering middleware for aiohttp.

aiogram.webhook.aiohttp_server.ip_filter_middleware(ip_filter: IPFilter)→ Callable[[Request,
Callable[[Request],
Awaitable[StreamResponse]]], Awaitable[Any]]

Parameters
ip_filter

Returns

class aiogram.webhook.security.IPFilter(ips: Sequence[str | IPv4Network | IPv4Address] | None = None)

__init__(ips: Sequence[str | IPv4Network | IPv4Address] | None = None)

Examples

Behind reverse proxy

In this example we’ll use aiohttp as web framework and nginx as reverse proxy.

"""
This example shows how to use webhook on behind of any reverse proxy (nginx, traefik,␣
→˓ingress etc.)
"""

import logging
import sys
from os import getenv

from aiohttp import web

from aiogram import Bot, Dispatcher, Router
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import Message

(continues on next page)

696 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

from aiogram.utils.markdown import hbold
from aiogram.webhook.aiohttp_server import SimpleRequestHandler, setup_application

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

Webserver settings
bind localhost only to prevent any external access
WEB_SERVER_HOST = "127.0.0.1"
Port for incoming request from reverse proxy. Should be any available port
WEB_SERVER_PORT = 8080

Path to webhook route, on which Telegram will send requests
WEBHOOK_PATH = "/webhook"
Secret key to validate requests from Telegram (optional)
WEBHOOK_SECRET = "my-secret"
Base URL for webhook will be used to generate webhook URL for Telegram,
in this example it is used public DNS with HTTPS support
BASE_WEBHOOK_URL = "https://aiogram.dev"

All handlers should be attached to the Router (or Dispatcher)
router = Router()

@router.message(CommandStart())
async def command_start_handler(message: Message) -> None:

"""
This handler receives messages with `/start` command
"""
Most event objects have aliases for API methods that can be called in events'␣

→˓context
For example if you want to answer to incoming message you can use `message.answer(.

→˓..)` alias
and the target chat will be passed to :ref:`aiogram.methods.send_message.

→˓SendMessage`
method automatically or call API method directly via
Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
await message.answer(f"Hello, {hbold(message.from_user.full_name)}!")

@router.message()
async def echo_handler(message: Message) -> None:

"""
Handler will forward receive a message back to the sender

By default, message handler will handle all message types (like text, photo, sticker␣
→˓etc.)
"""
try:

Send a copy of the received message
await message.send_copy(chat_id=message.chat.id)

except TypeError:

(continues on next page)

2.4. Handling events 697

aiogram Documentation, Release 3.23.0

(continued from previous page)

But not all the types is supported to be copied so need to handle it
await message.answer("Nice try!")

async def on_startup(bot: Bot) -> None:
If you have a self-signed SSL certificate, then you will need to send a public
certificate to Telegram
await bot.set_webhook(f"{BASE_WEBHOOK_URL}{WEBHOOK_PATH}", secret_token=WEBHOOK_

→˓SECRET)

def main() -> None:
Dispatcher is a root router
dp = Dispatcher()
... and all other routers should be attached to Dispatcher
dp.include_router(router)

Register startup hook to initialize webhook
dp.startup.register(on_startup)

Initialize Bot instance with default bot properties which will be passed to all␣
→˓API calls

bot = Bot(token=TOKEN, default=DefaultBotProperties(parse_mode=ParseMode.HTML))

Create aiohttp.web.Application instance
app = web.Application()

Create an instance of request handler,
aiogram has few implementations for different cases of usage
In this example we use SimpleRequestHandler which is designed to handle simple␣

→˓cases
webhook_requests_handler = SimpleRequestHandler(

dispatcher=dp,
bot=bot,
secret_token=WEBHOOK_SECRET,

)
Register webhook handler on application
webhook_requests_handler.register(app, path=WEBHOOK_PATH)

Mount dispatcher startup and shutdown hooks to aiohttp application
setup_application(app, dp, bot=bot)

And finally start webserver
web.run_app(app, host=WEB_SERVER_HOST, port=WEB_SERVER_PORT)

if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
main()

When you use nginx as reverse proxy, you should set proxy_pass to your aiohttp server address.

698 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

location /webhook {
proxy_set_header Host $http_host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_redirect off;
proxy_buffering off;
proxy_pass http://127.0.0.1:8080;

}

Without reverse proxy (not recommended)

In case without using reverse proxy, you can use aiohttp’s ssl context.

Also this example contains usage with self-signed certificate.

"""
This example shows how to use webhook with SSL certificate.
"""

import logging
import ssl
import sys
from os import getenv

from aiohttp import web

from aiogram import Bot, Dispatcher, Router
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import FSInputFile, Message
from aiogram.utils.markdown import hbold
from aiogram.webhook.aiohttp_server import SimpleRequestHandler, setup_application

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

Webserver settings
bind localhost only to prevent any external access
WEB_SERVER_HOST = "127.0.0.1"
Port for incoming request from reverse proxy. Should be any available port
WEB_SERVER_PORT = 8080

Path to webhook route, on which Telegram will send requests
WEBHOOK_PATH = "/webhook"
Secret key to validate requests from Telegram (optional)
WEBHOOK_SECRET = "my-secret"
Base URL for webhook will be used to generate webhook URL for Telegram,
in this example it is used public address with TLS support
BASE_WEBHOOK_URL = "https://aiogram.dev"

Path to SSL certificate and private key for self-signed certificate.
WEBHOOK_SSL_CERT = "/path/to/cert.pem"

(continues on next page)

2.4. Handling events 699

aiogram Documentation, Release 3.23.0

(continued from previous page)

WEBHOOK_SSL_PRIV = "/path/to/private.key"

All handlers should be attached to the Router (or Dispatcher)
router = Router()

@router.message(CommandStart())
async def command_start_handler(message: Message) -> None:

"""
This handler receives messages with `/start` command
"""
Most event objects have aliases for API methods that can be called in events'␣

→˓context
For example if you want to answer to incoming message you can use `message.answer(.

→˓..)` alias
and the target chat will be passed to :ref:`aiogram.methods.send_message.

→˓SendMessage`
method automatically or call API method directly via
Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
await message.answer(f"Hello, {hbold(message.from_user.full_name)}!")

@router.message()
async def echo_handler(message: Message) -> None:

"""
Handler will forward receive a message back to the sender

By default, message handler will handle all message types (like text, photo, sticker␣
→˓etc.)
"""
try:

Send a copy of the received message
await message.send_copy(chat_id=message.chat.id)

except TypeError:
But not all the types is supported to be copied so need to handle it
await message.answer("Nice try!")

async def on_startup(bot: Bot) -> None:
In case when you have a self-signed SSL certificate, you need to send the␣

→˓certificate
itself to Telegram servers for validation purposes
(see https://core.telegram.org/bots/self-signed)
But if you have a valid SSL certificate, you SHOULD NOT send it to Telegram␣

→˓servers.
await bot.set_webhook(

f"{BASE_WEBHOOK_URL}{WEBHOOK_PATH}",
certificate=FSInputFile(WEBHOOK_SSL_CERT),
secret_token=WEBHOOK_SECRET,

)

(continues on next page)

700 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

(continued from previous page)

def main() -> None:
Dispatcher is a root router
dp = Dispatcher()
... and all other routers should be attached to Dispatcher
dp.include_router(router)

Register startup hook to initialize webhook
dp.startup.register(on_startup)

Initialize Bot instance with default bot properties which will be passed to all␣
→˓API calls

bot = Bot(token=TOKEN, default=DefaultBotProperties(parse_mode=ParseMode.HTML))

Create aiohttp.web.Application instance
app = web.Application()

Create an instance of request handler,
aiogram has few implementations for different cases of usage
In this example we use SimpleRequestHandler which is designed to handle simple␣

→˓cases
webhook_requests_handler = SimpleRequestHandler(

dispatcher=dp,
bot=bot,
secret_token=WEBHOOK_SECRET,

)
Register webhook handler on application
webhook_requests_handler.register(app, path=WEBHOOK_PATH)

Mount dispatcher startup and shutdown hooks to aiohttp application
setup_application(app, dp, bot=bot)

Generate SSL context
context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
context.load_cert_chain(WEBHOOK_SSL_CERT, WEBHOOK_SSL_PRIV)

And finally start webserver
web.run_app(app, host=WEB_SERVER_HOST, port=WEB_SERVER_PORT, ssl_context=context)

if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
main()

2.4. Handling events 701

aiogram Documentation, Release 3.23.0

With using other web framework

You can pass incoming request to aiogram’s webhook controller from any web framework you want.

Read more about it in aiogram.dispatcher.dispatcher.Dispatcher.feed_webhook_update() or aiogram.
dispatcher.dispatcher.Dispatcher.feed_update() methods.

update = Update.model_validate(await request.json(), context={"bot": bot})
await dispatcher.feed_update(bot, update)

ò Note

If you want to use reply into webhook, you should check that result of the feed_update methods is an instance of
API method and build multipart/form-data or application/json response body manually.

2.4.11 Class based handlers

A handler is a async callable which takes a event with contextual data and returns a response.

In aiogram it can be more than just an async function, these allow you to use classes which can be used as Telegram
event handlers to structure your event handlers and reuse code by harnessing inheritance and mixins.

There are some base class based handlers what you need to use in your own handlers:

BaseHandler

Base handler is generic abstract class and should be used in all other class-based handlers.

Import: from aiogram.handlers import BaseHandler

By default you will need to override only method async def handle(self) -> Any: ...

This class also has a default initializer and you don’t need to change it. The initializer accepts the incoming event and
all contextual data, which can be accessed from the handler through attributes: event: TelegramEvent and data:
Dict[str, Any]

If an instance of the bot is specified in context data or current context it can be accessed through bot class attribute.

Example

class MyHandler(BaseHandler[Message]):
async def handle(self) -> Any:

await self.event.answer("Hello!")

702 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

CallbackQueryHandler

class aiogram.handlers.callback_query.CallbackQueryHandler(event: T , **kwargs: Any)
There is base class for callback query handlers.

Example:

from aiogram.handlers import CallbackQueryHandler

...

@router.callback_query()
class MyHandler(CallbackQueryHandler):

async def handle(self) -> Any: ...

property from_user: User

Is alias for event.from_user

property message: MaybeInaccessibleMessage | None

Is alias for event.message

property callback_data: str | None

Is alias for event.data

ChosenInlineResultHandler

There is base class for chosen inline result handlers.

Simple usage

from aiogram.handlers import ChosenInlineResultHandler

...

@router.chosen_inline_result()
class MyHandler(ChosenInlineResultHandler):

async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.chat is alias for self.event.chat

• self.from_user is alias for self.event.from_user

2.4. Handling events 703

aiogram Documentation, Release 3.23.0

ErrorHandler

There is base class for error handlers.

Simple usage

from aiogram.handlers import ErrorHandler

...

@router.errors()
class MyHandler(ErrorHandler):

async def handle(self) -> Any:
log.exception(

"Cause unexpected exception %s: %s",
self.exception_name,
self.exception_message

)

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.exception_name is alias for self.event.__class__.__name__

• self.exception_message is alias for str(self.event)

InlineQueryHandler

There is base class for inline query handlers.

Simple usage

from aiogram.handlers import InlineQueryHandler

...

@router.inline_query()
class MyHandler(InlineQueryHandler):

async def handle(self) -> Any: ...

704 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.chat is alias for self.event.chat

• self.query is alias for self.event.query

MessageHandler

There is base class for message handlers.

Simple usage

from aiogram.handlers import MessageHandler

...

@router.message()
class MyHandler(MessageHandler):

async def handle(self) -> Any:
return SendMessage(chat_id=self.chat.id, text="PASS")

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.chat is alias for self.event.chat

• self.from_user is alias for self.event.from_user

PollHandler

There is base class for poll handlers.

Simple usage

from aiogram.handlers import PollHandler

...

@router.poll()
class MyHandler(PollHandler):

async def handle(self) -> Any: ...

2.4. Handling events 705

aiogram Documentation, Release 3.23.0

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.question is alias for self.event.question

• self.options is alias for self.event.options

PreCheckoutQueryHandler

There is base class for callback query handlers.

Simple usage

from aiogram.handlers import PreCheckoutQueryHandler

...

@router.pre_checkout_query()
class MyHandler(PreCheckoutQueryHandler):

async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.from_user is alias for self.event.from_user

ShippingQueryHandler

There is base class for callback query handlers.

Simple usage

from aiogram.handlers import ShippingQueryHandler

...

@router.shipping_query()
class MyHandler(ShippingQueryHandler):

async def handle(self) -> Any: ...

706 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.from_user is alias for self.event.from_user

ChatMemberHandler

There is base class for chat member updated events.

Simple usage

from aiogram.handlers import ChatMemberHandler

...

@router.chat_member()
@router.my_chat_member()
class MyHandler(ChatMemberHandler):

async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

• self.chat is alias for self.event.chat

2.5 Utils

2.5.1 Keyboard builder

Keyboard builder helps to dynamically generate markup.

ò Note

Note that if you have static markup, it’s best to define it explicitly rather than using builder, but if you have dynamic
markup configuration, feel free to use builder as you wish.

2.5. Utils 707

aiogram Documentation, Release 3.23.0

Usage example

For example you want to generate inline keyboard with 10 buttons

builder = InlineKeyboardBuilder()

for index in range(1, 11):
builder.button(text=f"Set {index}", callback_data=f"set:{index}")

then adjust this buttons to some grid, for example first line will have 3 buttons, the next lines will have 2 buttons

builder.adjust(3, 2)

also you can attach another builder to this one

another_builder = InlineKeyboardBuilder(...)... # Another builder with some buttons
builder.attach(another_builder)

or you can attach some already generated markup

markup = InlineKeyboardMarkup(inline_keyboard=[...]) # Some markup
builder.attach(InlineKeyboardBuilder.from_markup(markup))

and finally you can export this markup to use it in your message

await message.answer("Some text here", reply_markup=builder.as_markup())

Reply keyboard builder has the same interface

. Warning

Note that you can’t attach reply keyboard builder to inline keyboard builder and vice versa

Inline Keyboard

class aiogram.utils.keyboard.InlineKeyboardBuilder(markup: list[list[InlineKeyboardButton]] | None
= None)

Inline keyboard builder inherits all methods from generic builder

button(text: str, url: str | None = None, login_url: LoginUrl | None = None, callback_data: str |
CallbackData | None = None, switch_inline_query: str | None = None,
switch_inline_query_current_chat: str | None = None, callback_game: CallbackGame | None =
None, pay: bool | None = None, **kwargs: Any)→ aiogram.utils.keyboard.InlineKeyboardBuilder

Add new inline button to markup

as_markup()→ aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
Construct an InlineKeyboardMarkup

__init__(markup: list[list[InlineKeyboardButton]] | None = None)→ None

add(*buttons: ButtonType)→ KeyboardBuilder[ButtonType]
Add one or many buttons to markup.

708 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Parameters
buttons

Returns

adjust(*sizes: int, repeat: bool = False)→ KeyboardBuilder[ButtonType]
Adjust previously added buttons to specific row sizes.

By default, when the sum of passed sizes is lower than buttons count the last one size will be used for tail
of the markup. If repeat=True is passed - all sizes will be cycled when available more buttons count than
all sizes

Parameters

• sizes

• repeat

Returns

property buttons: Generator[ButtonType, None, None]

Get flatten set of all buttons

Returns

copy()→ InlineKeyboardBuilder
Make full copy of current builder with markup

Returns

export()→ list[list[ButtonType]]
Export configured markup as list of lists of buttons

>>> builder = KeyboardBuilder(button_type=InlineKeyboardButton)
>>> ... # Add buttons to builder
>>> markup = InlineKeyboardMarkup(inline_keyboard=builder.export())

Returns

classmethod from_markup(markup: InlineKeyboardMarkup)→ InlineKeyboardBuilder
Create builder from existing markup

Parameters
markup

Returns

row(*buttons: ButtonType, width: int | None = None)→ KeyboardBuilder[ButtonType]
Add row to markup

When too much buttons is passed it will be separated to many rows

Parameters

• buttons

• width

Returns

2.5. Utils 709

aiogram Documentation, Release 3.23.0

Reply Keyboard

class aiogram.utils.keyboard.ReplyKeyboardBuilder(markup: list[list[KeyboardButton]] | None =
None)

Reply keyboard builder inherits all methods from generic builder

button(text: str, request_contact: bool | None = None, request_location: bool | None = None, request_poll:
KeyboardButtonPollType | None = None, **kwargs: Any)→
aiogram.utils.keyboard.ReplyKeyboardBuilder

Add new button to markup

as_markup()→ aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
Construct an ReplyKeyboardMarkup

__init__(markup: list[list[KeyboardButton]] | None = None)→ None

add(*buttons: ButtonType)→ KeyboardBuilder[ButtonType]
Add one or many buttons to markup.

Parameters
buttons

Returns

adjust(*sizes: int, repeat: bool = False)→ KeyboardBuilder[ButtonType]
Adjust previously added buttons to specific row sizes.

By default, when the sum of passed sizes is lower than buttons count the last one size will be used for tail
of the markup. If repeat=True is passed - all sizes will be cycled when available more buttons count than
all sizes

Parameters

• sizes

• repeat

Returns

property buttons: Generator[ButtonType, None, None]

Get flatten set of all buttons

Returns

copy()→ ReplyKeyboardBuilder
Make full copy of current builder with markup

Returns

export()→ list[list[ButtonType]]
Export configured markup as list of lists of buttons

>>> builder = KeyboardBuilder(button_type=InlineKeyboardButton)
>>> ... # Add buttons to builder
>>> markup = InlineKeyboardMarkup(inline_keyboard=builder.export())

Returns

710 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

classmethod from_markup(markup: ReplyKeyboardMarkup)→ ReplyKeyboardBuilder
Create builder from existing markup

Parameters
markup

Returns

row(*buttons: ButtonType, width: int | None = None)→ KeyboardBuilder[ButtonType]
Add row to markup

When too much buttons is passed it will be separated to many rows

Parameters

• buttons

• width

Returns

2.5.2 Translation

In order to make you bot translatable you have to add a minimal number of hooks to your Python code.

These hooks are called translation strings.

The aiogram translation utils is build on top of GNU gettext Python module and Babel library.

Installation

Babel is required to make simple way to extract translation strings from your code

Can be installed from pip directly:

pip install Babel

or as aiogram extra dependency:

pip install aiogram[i18n]

Make messages translatable

In order to gettext need to know what the strings should be translated you will need to write translation strings.

For example:

from aiogram import html
from aiogram.utils.i18n import gettext as _

async def my_handler(message: Message) -> None:
await message.answer(

_("Hello, {name}!").format(
name=html.quote(message.from_user.full_name)

)
)

2.5. Utils 711

https://docs.python.org/3/library/gettext.html
http://babel.pocoo.org/en/latest/

aiogram Documentation, Release 3.23.0

³ Danger

f-strings can’t be used as translations string because any dynamic variables should be added to message after getting
translated message

Also if you want to use translated string in keyword- or magic- filters you will need to use lazy gettext calls:

from aiogram import F
from aiogram.utils.i18n import lazy_gettext as __

@router.message(F.text == __("My menu entry"))
...

³ Danger

Lazy gettext calls should always be used when the current language is not know at the moment

³ Danger

Lazy gettext can’t be used as value for API methods or any Telegram Object (like aiogram.types.
inline_keyboard_button.InlineKeyboardButton or etc.)

Working with plural forms

The gettext from aiogram.utils.i18n is the one alias for two functions _gettext_ and _ngettext_ of GNU gettext Python
module. Therefore, the wrapper for message strings is the same _(). You need to pass three parameters to the function:
a singular string, a plural string, and a value.

Configuring engine

After you messages is already done to use gettext your bot should know how to detect user language

On top of your application the instance of aiogram.utils.i18n.I18n should be created

i18n = I18n(path="locales", default_locale="en", domain="messages")

After that you will need to choose one of builtin I18n middleware or write your own.

Builtin middlewares:

SimpleI18nMiddleware

class aiogram.utils.i18n.middleware.SimpleI18nMiddleware(i18n: I18n, i18n_key: str | None = 'i18n',
middleware_key: str =
'i18n_middleware')

Simple I18n middleware.

Chooses language code from the User object received in event

712 Chapter 2. Contents

https://docs.python.org/3/library/gettext.html
https://docs.python.org/3/library/gettext.html

aiogram Documentation, Release 3.23.0

__init__(i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware')→ None
Create an instance of middleware

Parameters

• i18n – instance of I18n

• i18n_key – context key for I18n instance

• middleware_key – context key for this middleware

ConstI18nMiddleware

class aiogram.utils.i18n.middleware.ConstI18nMiddleware(locale: str, i18n: I18n, i18n_key: str | None
= 'i18n', middleware_key: str =
'i18n_middleware')

Const middleware chooses statically defined locale

__init__(locale: str, i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware')
→ None

Create an instance of middleware

Parameters

• i18n – instance of I18n

• i18n_key – context key for I18n instance

• middleware_key – context key for this middleware

FSMI18nMiddleware

class aiogram.utils.i18n.middleware.FSMI18nMiddleware(i18n: I18n, key: str = 'locale', i18n_key: str |
None = 'i18n', middleware_key: str =
'i18n_middleware')

This middleware stores locale in the FSM storage

__init__(i18n: I18n, key: str = 'locale', i18n_key: str | None = 'i18n', middleware_key: str =
'i18n_middleware')→ None

Create an instance of middleware

Parameters

• i18n – instance of I18n

• i18n_key – context key for I18n instance

• middleware_key – context key for this middleware

async set_locale(state: FSMContext, locale: str)→ None
Write new locale to the storage

Parameters

• state – instance of FSMContext

• locale – new locale

2.5. Utils 713

aiogram Documentation, Release 3.23.0

I18nMiddleware

or define you own based on abstract I18nMiddleware middleware:

class aiogram.utils.i18n.middleware.I18nMiddleware(i18n: I18n, i18n_key: str | None = 'i18n',
middleware_key: str = 'i18n_middleware')

Abstract I18n middleware.

__init__(i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware')→ None
Create an instance of middleware

Parameters

• i18n – instance of I18n

• i18n_key – context key for I18n instance

• middleware_key – context key for this middleware

abstract async get_locale(event: TelegramObject, data: dict[str, Any])→ str
Detect current user locale based on event and context.

This method must be defined in child classes

Parameters

• event

• data

Returns

setup(router: Router, exclude: set[str] | None = None)→ BaseMiddleware
Register middleware for all events in the Router

Parameters

• router

• exclude

Returns

Deal with Babel

Step 1 Extract messages

pybabel extract --input-dirs=. -o locales/messages.pot

Here is --input-dirs=. - path to code and the locales/messages.pot is template where messages will be extracted
and messages is translation domain.

Working with plural forms

Extracting with Pybabel all strings options:

• -k _:1,1t -k _:1,2 - for both singular and plural

• -k __ - for lazy strings

pybabel extract -k _:1,1t -k _:1,2 -k __ --input-dirs=. -o locales/messages.pot

714 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

ò Note

Some useful options:

• Add comments for translators, you can use another tag if you want (TR) --add-comments=NOTE

• Contact email for bugreport --msgid-bugs-address=EMAIL

• Disable comments with string location in code --no-location

• Copyrights --copyright-holder=AUTHOR

• Set project name --project=MySuperBot

• Set version --version=2.2

Step 2: Init language

pybabel init -i locales/messages.pot -d locales -D messages -l en

• -i locales/messages.pot - pre-generated template

• -d locales - translations directory

• -D messages - translations domain

• -l en - language. Can be changed to any other valid language code (For example -l uk for ukrainian language)

Step 3: Translate texts

To open .po file you can use basic text editor or any PO editor, e.g. Poedit

Just open the file named locales/{language}/LC_MESSAGES/messages.po and write translations

Step 4: Compile translations

pybabel compile -d locales -D messages

Step 5: Updating messages

When you change the code of your bot you need to update po & mo files

• Step 5.1: regenerate pot file: command from step 1

• Step 5.2: update po files

pybabel update -d locales -D messages -i locales/messages.pot

• Step 5.3: update your translations: location and tools you know from step 3

• Step 5.4: compile mo files: command from step 4

2.5. Utils 715

https://poedit.net/

aiogram Documentation, Release 3.23.0

2.5.3 Chat action sender

Sender

class aiogram.utils.chat_action.ChatActionSender(*, bot: Bot, chat_id: str | int, message_thread_id: int
| None = None, action: str = 'typing', interval: float
= 5.0, initial_sleep: float = 0.0)

This utility helps to automatically send chat action until long actions is done to take acknowledge bot users the
bot is doing something and not crashed.

Provides simply to use context manager.

Technically sender start background task with infinity loop which works until action will be finished and sends
the chat action every 5 seconds.

__init__(*, bot: Bot, chat_id: str | int, message_thread_id: int | None = None, action: str = 'typing',
interval: float = 5.0, initial_sleep: float = 0.0)→ None

Parameters

• bot – instance of the bot

• chat_id – target chat id

• message_thread_id – unique identifier for the target message thread; supergroups only

• action – chat action type

• interval – interval between iterations

• initial_sleep – sleep before first sending of the action

classmethod choose_sticker(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval:
float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with choose_sticker action

classmethod find_location(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval:
float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with find_location action

classmethod record_video(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval:
float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with record_video action

classmethod record_video_note(chat_id: int | str, bot: Bot, message_thread_id: int | None = None,
interval: float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with record_video_note action

classmethod record_voice(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval:
float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with record_voice action

classmethod typing(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float =
5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with typing action

classmethod upload_document(chat_id: int | str, bot: Bot, message_thread_id: int | None = None,
interval: float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with upload_document action

716 Chapter 2. Contents

https://core.telegram.org/bots/api#sendchataction

aiogram Documentation, Release 3.23.0

classmethod upload_photo(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval:
float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with upload_photo action

classmethod upload_video(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval:
float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with upload_video action

classmethod upload_video_note(chat_id: int | str, bot: Bot, message_thread_id: int | None = None,
interval: float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with upload_video_note action

classmethod upload_voice(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval:
float = 5.0, initial_sleep: float = 0.0)→ ChatActionSender

Create instance of the sender with upload_voice action

Usage

async with ChatActionSender.typing(bot=bot, chat_id=message.chat.id):
Do something...
Perform some long calculations
await message.answer(result)

Middleware

class aiogram.utils.chat_action.ChatActionMiddleware

Helps to automatically use chat action sender for all message handlers

Usage

Before usa should be registered for the message event

<router or dispatcher>.message.middleware(ChatActionMiddleware())

After this action all handlers which works longer than initial_sleep will produce the ‘typing’ chat action.

Also sender can be customized via flags feature for particular handler.

Change only action type:

@router.message(...)
@flags.chat_action("sticker")
async def my_handler(message: Message): ...

Change sender configuration:

@router.message(...)
@flags.chat_action(initial_sleep=2, action="upload_document", interval=3)
async def my_handler(message: Message): ...

2.5. Utils 717

aiogram Documentation, Release 3.23.0

2.5.4 WebApp

Telegram Bot API 6.0 announces a revolution in the development of chatbots using WebApp feature.

You can read more details on it in the official blog and documentation.

aiogram implements simple utils to remove headache with the data validation from Telegram WebApp on the backend
side.

Usage

For example from frontend you will pass application/x-www-form-urlencoded POST request with _auth field
in body and wants to return User info inside response as application/json

from aiogram.utils.web_app import safe_parse_webapp_init_data
from aiohttp.web_request import Request
from aiohttp.web_response import json_response

async def check_data_handler(request: Request):
bot: Bot = request.app["bot"]

data = await request.post() # application/x-www-form-urlencoded
try:

data = safe_parse_webapp_init_data(token=bot.token, init_data=data["_auth"])
except ValueError:

return json_response({"ok": False, "err": "Unauthorized"}, status=401)
return json_response({"ok": True, "data": data.user.dict()})

Functions

aiogram.utils.web_app.check_webapp_signature(token: str, init_data: str)→ bool
Check incoming WebApp init data signature

Source: https://core.telegram.org/bots/webapps#validating-data-received-via-the-web-app

Parameters

• token – bot Token

• init_data – data from frontend to be validated

Returns

aiogram.utils.web_app.parse_webapp_init_data(init_data: str, *, loads: ~collections.abc.Callable[[...],
~typing.Any] = <function loads>)→ WebAppInitData

Parse WebApp init data and return it as WebAppInitData object

This method doesn’t make any security check, so you shall not trust to this data, use
safe_parse_webapp_init_data instead.

Parameters

• init_data – data from frontend to be parsed

• loads

Returns

718 Chapter 2. Contents

https://telegram.org/blog/notifications-bots#bot-revolution
https://core.telegram.org/bots/webapps
https://core.telegram.org/bots/webapps#validating-data-received-via-the-web-app

aiogram Documentation, Release 3.23.0

aiogram.utils.web_app.safe_parse_webapp_init_data(token: str, init_data: str, *, loads:
~collections.abc.Callable[[...], ~typing.Any] =
<function loads>)→ WebAppInitData

Validate raw WebApp init data and return it as WebAppInitData object

Raise ValueError when data is invalid

Parameters

• token – bot token

• init_data – data from frontend to be parsed and validated

• loads

Returns

Types

class aiogram.utils.web_app.WebAppInitData(**extra_data: Any)
This object contains data that is transferred to the Web App when it is opened. It is empty if the Web App was
launched from a keyboard button.

Source: https://core.telegram.org/bots/webapps#webappinitdata

query_id: str | None

A unique identifier for the Web App session, required for sending messages via the answerWebAppQuery
method.

user: WebAppUser | None

An object containing data about the current user.

receiver: WebAppUser | None

An object containing data about the chat partner of the current user in the chat where the bot was launched
via the attachment menu. Returned only for Web Apps launched via the attachment menu.

chat: WebAppChat | None

An object containing data about the chat where the bot was launched via the attachment menu. Returned
for supergroups, channels, and group chats – only for Web Apps launched via the attachment menu.

chat_type: str | None

Type of the chat from which the Web App was opened. Can be either “sender” for a private chat with
the user opening the link, “private”, “group”, “supergroup”, or “channel”. Returned only for Web Apps
launched from direct links.

chat_instance: str | None

Global identifier, uniquely corresponding to the chat from which the Web App was opened. Returned only
for Web Apps launched from a direct link.

start_param: str | None

The value of the startattach parameter, passed via link. Only returned for Web Apps when launched from the
attachment menu via link. The value of the start_param parameter will also be passed in the GET-parameter
tgWebAppStartParam, so the Web App can load the correct interface right away.

can_send_after: int | None

Time in seconds, after which a message can be sent via the answerWebAppQuery method.

2.5. Utils 719

https://core.telegram.org/bots/webapps#webappinitdata

aiogram Documentation, Release 3.23.0

auth_date: datetime

Unix time when the form was opened.

hash: str

A hash of all passed parameters, which the bot server can use to check their validity.

class aiogram.utils.web_app.WebAppUser(**extra_data: Any)
This object contains the data of the Web App user.

Source: https://core.telegram.org/bots/webapps#webappuser

id: int

A unique identifier for the user or bot. This number may have more than 32 significant bits and some
programming languages may have difficulty/silent defects in interpreting it. It has at most 52 significant
bits, so a 64-bit integer or a double-precision float type is safe for storing this identifier.

is_bot: bool | None

True, if this user is a bot. Returns in the receiver field only.

first_name: str

First name of the user or bot.

last_name: str | None

Last name of the user or bot.

username: str | None

Username of the user or bot.

language_code: str | None

IETF language tag of the user’s language. Returns in user field only.

is_premium: bool | None

True, if this user is a Telegram Premium user.

added_to_attachment_menu: bool | None

True, if this user added the bot to the attachment menu.

allows_write_to_pm: bool | None

True, if this user allowed the bot to message them.

photo_url: str | None

URL of the user’s profile photo. The photo can be in .jpeg or .svg formats. Only returned for Web Apps
launched from the attachment menu.

class aiogram.utils.web_app.WebAppChat(**extra_data: Any)
This object represents a chat.

Source: https://core.telegram.org/bots/webapps#webappchat

id: int

Unique identifier for this chat. This number may have more than 32 significant bits and some programming
languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a
signed 64-bit integer or double-precision float type are safe for storing this identifier.

type: str

Type of chat, can be either “group”, “supergroup” or “channel”

title: str

Title of the chat

720 Chapter 2. Contents

https://core.telegram.org/bots/webapps#webappuser
https://core.telegram.org/bots/webapps#webappchat

aiogram Documentation, Release 3.23.0

username: str | None

Username of the chat

photo_url: str | None

URL of the chat’s photo. The photo can be in .jpeg or .svg formats. Only returned for Web Apps launched
from the attachment menu.

2.5.5 Callback answer

Helper for callback query handlers, can be useful in bots with a lot of callback handlers to automatically take answer
to all requests.

Simple usage

For use, it is enough to register the inner middleware aiogram.utils.callback_answer.
CallbackAnswerMiddleware in dispatcher or specific router:

dispatcher.callback_query.middleware(CallbackAnswerMiddleware())

After that all handled callback queries will be answered automatically after processing the handler.

Advanced usage

In some cases you need to have some non-standard response parameters, this can be done in several ways:

Global defaults

Change default parameters while initializing middleware, for example change answer to pre mode and text “OK”:

dispatcher.callback_query.middleware(CallbackAnswerMiddleware(pre=True, text="OK"))

Look at aiogram.utils.callback_answer.CallbackAnswerMiddleware to get all available parameters

Handler specific

By using flags you can change the behavior for specific handler

@router.callback_query(<filters>)
@flags.callback_answer(text="Thanks", cache_time=30)
async def my_handler(query: CallbackQuery):

...

Flag arguments is the same as in aiogram.utils.callback_answer.CallbackAnswerMiddleware with addi-
tional one disabled to disable answer.

2.5. Utils 721

aiogram Documentation, Release 3.23.0

A special case

It is not always correct to answer the same in every case, so there is an option to change the answer inside the handler.
You can get an instance of aiogram.utils.callback_answer.CallbackAnswer object inside handler and change
whatever you want.

³ Danger

Note that is impossible to change callback answer attributes when you use pre=True mode.

@router.callback_query(<filters>)
async def my_handler(query: CallbackQuery, callback_answer: CallbackAnswer):

...
if <everything is ok>:

callback_answer.text = "All is ok"
else:

callback_answer.text = "Something wrong"
callback_answer.cache_time = 10

Combine that all at once

For example you want to answer in most of cases before handler with text “” but at some cases need to answer after the
handler with custom text, so you can do it:

dispatcher.callback_query.middleware(CallbackAnswerMiddleware(pre=True, text=""))

@router.callback_query(<filters>)
@flags.callback_answer(pre=False, cache_time=30)
async def my_handler(query: CallbackQuery):

...
if <everything is ok>:

callback_answer.text = "All is ok"

Description of objects

class aiogram.utils.callback_answer.CallbackAnswerMiddleware(pre: bool = False, text: str | None =
None, show_alert: bool | None =
None, url: str | None = None,
cache_time: int | None = None)

Bases: BaseMiddleware

__init__(pre: bool = False, text: str | None = None, show_alert: bool | None = None, url: str | None = None,
cache_time: int | None = None)→ None

Inner middleware for callback query handlers, can be useful in bots with a lot of callback handlers to
automatically take answer to all requests

Parameters

• pre – send answer before execute handler

• text – answer with text

722 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

• show_alert – show alert

• url – game url

• cache_time – cache answer for some time

class aiogram.utils.callback_answer.CallbackAnswer(answered: bool, disabled: bool = False, text: str |
None = None, show_alert: bool | None = None,
url: str | None = None, cache_time: int | None =
None)

Bases: object

__init__(answered: bool, disabled: bool = False, text: str | None = None, show_alert: bool | None = None,
url: str | None = None, cache_time: int | None = None)→ None

Callback answer configuration

Parameters

• answered – this request is already answered by middleware

• disabled – answer will not be performed

• text – answer with text

• show_alert – show alert

• url – game url

• cache_time – cache answer for some time

disable()→ None
Deactivate answering for this handler

property disabled: bool

Indicates that automatic answer is disabled in this handler

property answered: bool

Indicates that request is already answered by middleware

property text: str | None

Response text :return:

property show_alert: bool | None

Whether to display an alert

property url: str | None

Game url

property cache_time: int | None

Response cache time

2.5. Utils 723

aiogram Documentation, Release 3.23.0

2.5.6 Formatting

Make your message formatting flexible and simple

This instrument works on top of Message entities instead of using HTML or Markdown markups, you can easily
construct your message and sent it to the Telegram without the need to remember tag parity (opening and closing) or
escaping user input.

Usage

Basic scenario

Construct your message and send it to the Telegram.

content = Text("Hello, ", Bold(message.from_user.full_name), "!")
await message.answer(**content.as_kwargs())

Is the same as the next example, but without usage markup

await message.answer(
text=f"Hello, {html.quote(message.from_user.full_name)}!",
parse_mode=ParseMode.HTML

)

Literally when you execute as_kwargs method the Text object is converted into text Hello, Alex! with entities list
[MessageEntity(type='bold', offset=7, length=4)] and passed into dict which can be used as **kwargs
in API call.

The complete list of elements is listed on this page below.

Advanced scenario

On top of base elements can be implemented content rendering structures, so, out of the box aiogram has a few already
implemented functions that helps you to format your messages:

aiogram.utils.formatting.as_line(*items: Any, end: str = '\n', sep: str = '')→ Text
Wrap multiple nodes into line with \n at the end of line.

Parameters

• items – Text or Any

• end – ending of the line, by default is \n

• sep – separator between items, by default is empty string

Returns
Text

aiogram.utils.formatting.as_list(*items: Any, sep: str = '\n')→ Text
Wrap each element to separated lines

Parameters

• items

• sep

724 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Returns

aiogram.utils.formatting.as_marked_list(*items: Any, marker: str = '- ')→ Text
Wrap elements as marked list

Parameters

• items

• marker – line marker, by default is ‘- ‘

Returns
Text

aiogram.utils.formatting.as_numbered_list(*items: Any, start: int = 1, fmt: str = '{}. ') → Text
Wrap elements as numbered list

Parameters

• items

• start – initial number, by default 1

• fmt – number format, by default ‘{}. ‘

Returns
Text

aiogram.utils.formatting.as_section(title: Any, *body: Any)→ Text
Wrap elements as simple section, section has title and body

Parameters

• title

• body

Returns
Text

aiogram.utils.formatting.as_marked_section(title: Any, *body: Any, marker: str = '- ')→ Text
Wrap elements as section with marked list

Parameters

• title

• body

• marker

Returns

aiogram.utils.formatting.as_numbered_section(title: Any, *body: Any, start: int = 1, fmt: str = '{}. ') →
Text

Wrap elements as section with numbered list

Parameters

• title

• body

• start

• fmt

2.5. Utils 725

aiogram Documentation, Release 3.23.0

Returns

aiogram.utils.formatting.as_key_value(key: Any, value: Any)→ Text
Wrap elements pair as key-value line. ({key}: {value})

Parameters

• key

• value

Returns
Text

and lets complete them all:

content = as_list(
as_marked_section(

Bold("Success:"),
"Test 1",
"Test 3",
"Test 4",
marker=" ",

),
as_marked_section(

Bold("Failed:"),
"Test 2",
marker=" ",

),
as_marked_section(

Bold("Summary:"),
as_key_value("Total", 4),
as_key_value("Success", 3),
as_key_value("Failed", 1),
marker=" ",

),
HashTag("#test"),
sep="\n\n",

)

Will be rendered into:

Success:

Test 1

Test 3

Test 4

Failed:

Test 2

Summary:

Total: 4

Success: 3

Failed: 1

726 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

#test

Or as HTML:

Success:
Test 1
Test 3
Test 4

Failed:
Test 2

Summary:
Total: 4
Success: 3
Failed: 1

#test

Available methods

class aiogram.utils.formatting.Text(*body: Any, **params: Any)
Bases: Iterable[Any]

Simple text element

__init__(*body: Any, **params: Any)→ None

render(*, _offset: int = 0, _sort: bool = True, _collect_entities: bool = True)→ tuple[str,
list[MessageEntity]]

Render elements tree as text with entities list

Returns

as_kwargs(*, text_key: str = 'text', entities_key: str = 'entities', replace_parse_mode: bool = True,
parse_mode_key: str = 'parse_mode')→ dict[str, Any]

Render element tree as keyword arguments for usage in an API call, for example:

entities = Text(...)
await message.answer(**entities.as_kwargs())

Parameters

• text_key

• entities_key

• replace_parse_mode

• parse_mode_key

Returns

as_caption_kwargs(*, replace_parse_mode: bool = True)→ dict[str, Any]
Shortcut for as_kwargs() for usage with API calls that take caption as a parameter.

2.5. Utils 727

aiogram Documentation, Release 3.23.0

entities = Text(...)
await message.answer_photo(**entities.as_caption_kwargs(), photo=phot)

Parameters
replace_parse_mode – Will be passed to as_kwargs().

Returns

as_poll_question_kwargs(*, replace_parse_mode: bool = True)→ dict[str, Any]
Shortcut for as_kwargs() for usage with method aiogram.methods.send_poll.SendPoll.

entities = Text(...)
await message.answer_poll(**entities.as_poll_question_kwargs(), options=options)

Parameters
replace_parse_mode – Will be passed to as_kwargs().

Returns

as_poll_explanation_kwargs(*, replace_parse_mode: bool = True)→ dict[str, Any]
Shortcut for as_kwargs() for usage with method aiogram.methods.send_poll.SendPoll.

question_entities = Text(...)
explanation_entities = Text(...)
await message.answer_poll(

**question_entities.as_poll_question_kwargs(),
options=options,
**explanation_entities.as_poll_explanation_kwargs(),

)

Parameters
replace_parse_mode – Will be passed to as_kwargs().

Returns

as_gift_text_kwargs(*, replace_parse_mode: bool = True)→ dict[str, Any]
Shortcut for as_kwargs() for usage with method aiogram.methods.send_gift.SendGift.

entities = Text(...)
await bot.send_gift(gift_id=gift_id, user_id=user_id, **entities.as_gift_text_
→˓kwargs())

Parameters
replace_parse_mode – Will be passed to as_kwargs().

Returns

as_html()→ str
Render elements tree as HTML markup

as_markdown()→ str
Render elements tree as MarkdownV2 markup

728 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Available elements

class aiogram.utils.formatting.Text(*body: Any, **params: Any)
Bases: Iterable[Any]

Simple text element

class aiogram.utils.formatting.HashTag(*body: Any, **params: Any)
Bases: Text

Hashtag element.

. Warning

The value should always start with ‘#’ symbol

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.HASHTAG

class aiogram.utils.formatting.CashTag(*body: Any, **params: Any)
Bases: Text

Cashtag element.

. Warning

The value should always start with ‘$’ symbol

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.CASHTAG

class aiogram.utils.formatting.BotCommand(*body: Any, **params: Any)
Bases: Text

Bot command element.

. Warning

The value should always start with ‘/’ symbol

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.BOT_COMMAND

class aiogram.utils.formatting.Url(*body: Any, **params: Any)
Bases: Text

Url element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.URL

class aiogram.utils.formatting.Email(*body: Any, **params: Any)
Bases: Text

Email element.

2.5. Utils 729

aiogram Documentation, Release 3.23.0

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.EMAIL

class aiogram.utils.formatting.PhoneNumber(*body: Any, **params: Any)
Bases: Text

Phone number element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.PHONE_NUMBER

class aiogram.utils.formatting.Bold(*body: Any, **params: Any)
Bases: Text

Bold element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.BOLD

class aiogram.utils.formatting.Italic(*body: Any, **params: Any)
Bases: Text

Italic element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.ITALIC

class aiogram.utils.formatting.Underline(*body: Any, **params: Any)
Bases: Text

Underline element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.UNDERLINE

class aiogram.utils.formatting.Strikethrough(*body: Any, **params: Any)
Bases: Text

Strikethrough element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.STRIKETHROUGH

class aiogram.utils.formatting.Spoiler(*body: Any, **params: Any)
Bases: Text

Spoiler element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.SPOILER

class aiogram.utils.formatting.Code(*body: Any, **params: Any)
Bases: Text

Code element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.CODE

class aiogram.utils.formatting.Pre(*body: Any, language: str | None = None, **params: Any)
Bases: Text

Pre element.

730 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.PRE

class aiogram.utils.formatting.TextLink(*body: Any, url: str, **params: Any)
Bases: Text

Text link element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.TEXT_LINK

class aiogram.utils.formatting.TextMention(*body: Any, user: User, **params: Any)
Bases: Text

Text mention element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.TEXT_MENTION

class aiogram.utils.formatting.CustomEmoji(*body: Any, custom_emoji_id: str, **params: Any)
Bases: Text

Custom emoji element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.CUSTOM_EMOJI

class aiogram.utils.formatting.BlockQuote(*body: Any, **params: Any)
Bases: Text

Block quote element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.BLOCKQUOTE

class aiogram.utils.formatting.ExpandableBlockQuote(*body: Any, **params: Any)
Bases: Text

Expandable block quote element.

Will be wrapped into aiogram.types.message_entity.MessageEntity with type aiogram.enums.
message_entity_type.MessageEntityType.EXPANDABLE_BLOCKQUOTE

2.5.7 Media group builder

This module provides a builder for media groups, it can be used to build media groups for aiogram.types.
input_media_photo.InputMediaPhoto, aiogram.types.input_media_video.InputMediaVideo,
aiogram.types.input_media_document.InputMediaDocument and aiogram.types.input_media_audio.
InputMediaAudio.

. Warning

aiogram.types.input_media_animation.InputMediaAnimation is not supported yet in the Bot API to send
as media group.

2.5. Utils 731

aiogram Documentation, Release 3.23.0

Usage

media_group = MediaGroupBuilder(caption="Media group caption")

Add photo
media_group.add_photo(media="https://picsum.photos/200/300")
Dynamically add photo with known type without using separate method
media_group.add(type="photo", media="https://picsum.photos/200/300")
... or video
media_group.add(type="video", media=FSInputFile("media/video.mp4"))

To send media group use aiogram.methods.send_media_group.SendMediaGroup() method, but when you
use aiogram.utils.media_group.MediaGroupBuilder you should pass media argument as media_group.
build().

If you specify caption in aiogram.utils.media_group.MediaGroupBuilder it will be used as caption for first
media in group.

await bot.send_media_group(chat_id=chat_id, media=media_group.build())

References

class aiogram.utils.media_group.MediaGroupBuilder(media: list[InputMediaAudio | InputMediaPhoto |
InputMediaVideo | InputMediaDocument] | None =
None, caption: str | None = None, caption_entities:
list[MessageEntity] | None = None)

add(*, type: Literal[InputMediaType.AUDIO], media: str | InputFile, caption: str | None = None,
parse_mode: str | None = UNSET_PARSE_MODE, caption_entities: list[MessageEntity] | None = None,
duration: int | None = None, performer: str | None = None, title: str | None = None, **kwargs: Any)→
None

add(*, type: Literal[InputMediaType.PHOTO], media: str | InputFile, caption: str | None = None,
parse_mode: str | None = UNSET_PARSE_MODE, caption_entities: list[MessageEntity] | None = None,
has_spoiler: bool | None = None, **kwargs: Any)→ None

add(*, type: Literal[InputMediaType.VIDEO], media: str | InputFile, thumbnail: InputFile | str | None =
None, caption: str | None = None, parse_mode: str | None = UNSET_PARSE_MODE, caption_entities:
list[MessageEntity] | None = None, width: int | None = None, height: int | None = None, duration: int |
None = None, supports_streaming: bool | None = None, has_spoiler: bool | None = None, **kwargs:
Any)→ None

add(*, type: Literal[InputMediaType.DOCUMENT], media: str | InputFile, thumbnail: InputFile | str | None
= None, caption: str | None = None, parse_mode: str | None = UNSET_PARSE_MODE, caption_entities:
list[MessageEntity] | None = None, disable_content_type_detection: bool | None = None, **kwargs:
Any)→ None
Add a media object to the media group.

Parameters
kwargs – Keyword arguments for the media object. The available keyword arguments depend
on the media type.

Returns
None

732 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

add_audio(media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile |
None = None, caption: str | None = None, parse_mode: str | None = <Default('parse_mode')>,
caption_entities: list[~aiogram.types.message_entity.MessageEntity] | None = None, duration:
int | None = None, performer: str | None = None, title: str | None = None, **kwargs:
~typing.Any)→ None

Add an audio file to the media group.

Parameters

• media – File to send. Pass a file_id to send a file that exists on the Telegram servers
(recommended), pass an HTTP URL for Telegram to get a file from the Internet, or
pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under
<file_attach_name> name.

More information on Sending Files »

• thumbnail – Optional. Thumbnail of the file sent; can be ignored if thumbnail generation
for the file is supported server-side. The thumbnail should be in JPEG format and less than
200 kB in size. A thumbnail’s width and height should not exceed 320.

• caption – Optional. Caption of the audio to be sent, 0-1024 characters after entities pars-
ing

• parse_mode – Optional. Mode for parsing entities in the audio caption. See formatting
options for more details.

• caption_entities – Optional. List of special entities that appear in the caption, which
can be specified instead of parse_mode

• duration – Optional. Duration of the audio in seconds

• performer – Optional. Performer of the audio

• title – Optional. Title of the audio

Returns
None

add_document(media: str | ~aiogram.types.input_file.InputFile, thumbnail:
~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode:
str | None = <Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] | None = None,
disable_content_type_detection: bool | None = None, **kwargs: ~typing.Any)→ None

Add a document to the media group.

Parameters

• media – File to send. Pass a file_id to send a file that exists on the Telegram servers
(recommended), pass an HTTP URL for Telegram to get a file from the Internet, or
pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under
<file_attach_name> name. More information on Sending Files »

• thumbnail – Optional. Thumbnail of the file sent; can be ignored if thumbnail generation
for the file is supported server-side. The thumbnail should be in JPEG format and less
than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if
the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be
only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail
was uploaded using multipart/form-data under <file_attach_name>. More information on
Sending Files »

2.5. Utils 733

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

• caption – Optional. Caption of the document to be sent, 0-1024 characters after entities
parsing

• parse_mode – Optional. Mode for parsing entities in the document caption. See format-
ting options for more details.

• caption_entities – Optional. List of special entities that appear in the caption, which
can be specified instead of parse_mode

• disable_content_type_detection – Optional. Disables automatic server-side con-
tent type detection for files uploaded using multipart/form-data. Always True, if the doc-
ument is sent as part of an album.

Returns
None

add_photo(media: str | ~aiogram.types.input_file.InputFile, caption: str | None = None, parse_mode: str |
None = <Default('parse_mode')>, caption_entities:
list[~aiogram.types.message_entity.MessageEntity] | None = None, has_spoiler: bool | None =
None, **kwargs: ~typing.Any)→ None

Add a photo to the media group.

Parameters

• media – File to send. Pass a file_id to send a file that exists on the Telegram servers
(recommended), pass an HTTP URL for Telegram to get a file from the Internet, or
pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under
<file_attach_name> name.

More information on Sending Files »

• caption – Optional. Caption of the photo to be sent, 0-1024 characters after entities
parsing

• parse_mode – Optional. Mode for parsing entities in the photo caption. See formatting
options for more details.

• caption_entities – Optional. List of special entities that appear in the caption, which
can be specified instead of parse_mode

• has_spoiler – Optional. Pass True if the photo needs to be covered with a spoiler ani-
mation

Returns
None

add_video(media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile |
None = None, caption: str | None = None, parse_mode: str | None = <Default('parse_mode')>,
caption_entities: list[~aiogram.types.message_entity.MessageEntity] | None = None, width: int |
None = None, height: int | None = None, duration: int | None = None, supports_streaming: bool |
None = None, has_spoiler: bool | None = None, **kwargs: ~typing.Any)→ None

Add a video to the media group.

Parameters

• media – File to send. Pass a file_id to send a file that exists on the Telegram servers
(recommended), pass an HTTP URL for Telegram to get a file from the Internet, or
pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under
<file_attach_name> name. More information on Sending Files »

• thumbnail – Optional. Thumbnail of the file sent; can be ignored if thumbnail generation
for the file is supported server-side. The thumbnail should be in JPEG format and less

734 Chapter 2. Contents

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options

aiogram Documentation, Release 3.23.0

than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if
the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be
only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail
was uploaded using multipart/form-data under <file_attach_name>. More information on
Sending Files »

• caption – Optional. Caption of the video to be sent, 0-1024 characters after entities pars-
ing

• parse_mode – Optional. Mode for parsing entities in the video caption. See formatting
options for more details.

• caption_entities – Optional. List of special entities that appear in the caption, which
can be specified instead of parse_mode

• width – Optional. Video width

• height – Optional. Video height

• duration – Optional. Video duration in seconds

• supports_streaming – Optional. Pass True if the uploaded video is suitable for stream-
ing

• has_spoiler – Optional. Pass True if the video needs to be covered with a spoiler ani-
mation

Returns
None

build()→ list[InputMediaAudio | InputMediaPhoto | InputMediaVideo | InputMediaDocument]
Builds a list of media objects for a media group.

Adds the caption to the first media object if it is present.

Returns
List of media objects.

2.5.8 Deep Linking

Telegram bots have a deep linking mechanism, that allows for passing additional parameters to the bot on startup. It
could be a command that launches the bot — or an auth token to connect the user’s Telegram account to their account
on some external service.

You can read detailed description in the source: https://core.telegram.org/bots/features#deep-linking

We have added some utils to get deep links more handy.

Examples

Basic link example

from aiogram.utils.deep_linking import create_start_link

link = await create_start_link(bot, 'foo')

result: 'https://t.me/MyBot?start=foo'

2.5. Utils 735

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/features#deep-linking

aiogram Documentation, Release 3.23.0

Encoded link

from aiogram.utils.deep_linking import create_start_link

link = await create_start_link(bot, 'foo', encode=True)
result: 'https://t.me/MyBot?start=Zm9v'

Decode it back

from aiogram.utils.deep_linking import decode_payload
from aiogram.filters import CommandStart, CommandObject
from aiogram.types import Message

@router.message(CommandStart(deep_link=True))
async def handler(message: Message, command: CommandObject):

args = command.args
payload = decode_payload(args)
await message.answer(f"Your payload: {payload}")

References

async aiogram.utils.deep_linking.create_start_link(bot: Bot, payload: str, encode: bool = False,
encoder: Callable[[bytes], bytes] | None = None)
→ str

Create ‘start’ deep link with your payload.

If you need to encode payload or pass special characters - set encode as True

Parameters

• bot – bot instance

• payload – args passed with /start

• encode – encode payload with base64url or custom encoder

• encoder – custom encoder callable

Returns
link

async aiogram.utils.deep_linking.create_startgroup_link(bot: Bot, payload: str, encode: bool =
False, encoder: Callable[[bytes], bytes] |
None = None)→ str

Create ‘startgroup’ deep link with your payload.

If you need to encode payload or pass special characters - set encode as True

Parameters

• bot – bot instance

• payload – args passed with /start

• encode – encode payload with base64url or custom encoder

• encoder – custom encoder callable

736 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

Returns
link

async aiogram.utils.deep_linking.create_startapp_link(bot: Bot, payload: str, encode: bool = False,
app_name: str | None = None, encoder:
Callable[[bytes], bytes] | None = None)→ str

Create ‘startapp’ deep link with your payload.

If you need to encode payload or pass special characters - set encode as True

Read more:

• Main Mini App links

• Direct mini app links

Parameters

• bot – bot instance

• payload – args passed with /start

• encode – encode payload with base64url or custom encoder

• app_name – if you want direct mini app link

• encoder – custom encoder callable

Returns
link

aiogram.utils.deep_linking.decode_payload(payload: str, decoder: Callable[[bytes], bytes] | None =
None)→ str

Decode URL-safe base64url payload with decoder.

2.5.9 Telegram object serialization

Serialization

To serialize Python object to Telegram object you can use pydantic serialization methods, for example:

message_data = { ... } # Some message data as dict
message = Message.model_validate(message_data)

If you want to bind serialized object to the Bot instance, you can use context:

message_data = { ... } # Some message data as dict
message = Message.model_validate(message_data, context={"bot": bot})

2.5. Utils 737

https://core.telegram.org/api/links#main-mini-app-links
https://core.telegram.org/api/links#direct-mini-app-links

aiogram Documentation, Release 3.23.0

Deserialization

In cases when you need to deserialize Telegram object to Python object, you can use this module.

To convert Telegram object to Python object excluding files you can use aiogram.utils.serialization.
deserialize_telegram_object_to_python() function.

aiogram.utils.serialization.deserialize_telegram_object_to_python(obj: Any, default:
DefaultBotProperties | None =
None,
include_api_method_name:
bool = True)→ Any

Deserialize telegram object to JSON compatible Python object excluding files.

Parameters

• obj – The telegram object to be deserialized.

• default – Default bot properties should be passed only if you want to use custom defaults.

• include_api_method_name – Whether to include the API method name in the result.

Returns
The deserialized telegram object.

To convert Telegram object to Python object including files you can use aiogram.utils.serialization.
deserialize_telegram_object() function, which returns aiogram.utils.serialization.
DeserializedTelegramObject object.

aiogram.utils.serialization.deserialize_telegram_object(obj: Any, default: DefaultBotProperties |
None = None, include_api_method_name:
bool = True)→
DeserializedTelegramObject

Deserialize Telegram Object to JSON compatible Python object.

Parameters

• obj – The object to be deserialized.

• default – Default bot properties should be passed only if you want to use custom defaults.

• include_api_method_name – Whether to include the API method name in the result.

Returns
The deserialized Telegram object.

class aiogram.utils.serialization.DeserializedTelegramObject(data: Any, files: dict[str, InputFile])
Represents a dumped Telegram object.

Parameters

• data (Any) – The dumped data of the Telegram object.

• files (Dict[str, InputFile]) – The dictionary containing the file names as keys and
the corresponding InputFile objects as values.

738 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

2.6 Changelog

2.6.1 3.23.0 (2025-12-07)

Features

• This PR updates the codebase to support Python 3.14.

– Updated project dep aiohttp

– Updated development deps

– Fixed tests to support Py3.14

– Refactored uvloop using due to deprecation of asyncio.set_event_loop_police

#1730

Deprecations and Removals

• This PR updates the codebase following the end of life for Python 3.9.

Reference: https://devguide.python.org/versions/

– Updated type annotations to Python 3.10+ style, replacing deprecated List, Set, etc., with built-in list,
set, and related types.

– Refactored code by simplifying nested if expressions.

– Updated several dependencies, including security-related upgrades.

#1726

Misc

• Updated pydantic to 2.12, which supports Python 3.14 #1729

• Temporary silents warn when uvloop uses deprecated asyncio.iscoroutinefunction function in py3.14+ in tests
#1739

2.6.2 3.22.0 (2025-08-17)

Features

• Support validating init data using only bot id. #1715

• Added full support for the Bot API 9.2:

Direct Messages in Channels

– Added the field is_direct_messages to the classes aiogram.types.chat.Chat and aiogram.
types.chat_full_info.ChatFullInfo, indicating whether the chat is a direct messages chat.

– Added the field parent_chat to the class aiogram.types.chat_full_info.ChatFullInfo, describ-
ing the parent channel for direct messages chats.

– Added the class aiogram.types.direct_messages_topic.DirectMessagesTopic representing a di-
rect messages topic.

2.6. Changelog 739

https://github.com/aiogram/aiogram/issues/1730
https://devguide.python.org/versions/
https://github.com/aiogram/aiogram/issues/1726
https://github.com/aiogram/aiogram/issues/1729
https://github.com/aiogram/aiogram/issues/1739
https://github.com/aiogram/aiogram/issues/1715
https://core.telegram.org/bots/api-changelog#august-15-2025

aiogram Documentation, Release 3.23.0

– Added the field direct_messages_topic to the class aiogram.types.message.Message, describing
the direct messages topic associated with a message.

– Added the parameter direct_messages_topic_id to multiple sending methods for directing messages
to specific direct message topics.

Suggested Posts

– Added the class aiogram.types.suggested_post_parameters.SuggestedPostParameters repre-
senting parameters for suggested posts.

– Added the parameter suggested_post_parameters to various sending methods, allowing bots to create
suggested posts for channel approval.

– Added the method aiogram.methods.approve_suggested_post.ApproveSuggestedPost, allowing
bots to approve suggested posts in direct messages chats.

– Added the method aiogram.methods.decline_suggested_post.DeclineSuggestedPost, allowing
bots to decline suggested posts in direct messages chats.

– Added the field can_manage_direct_messages to administrator-related classes aiogram.
types.chat_administrator_rights.ChatAdministratorRights and aiogram.types.
chat_member_administrator.ChatMemberAdministrator.

– Added the class aiogram.types.suggested_post_info.SuggestedPostInfo representing informa-
tion about a suggested post.

– Added the class aiogram.types.suggested_post_price.SuggestedPostPrice representing the
price for a suggested post.

– Added service message classes for suggested post events:

∗ aiogram.types.suggested_post_approved.SuggestedPostApproved and the field
suggested_post_approved to aiogram.types.message.Message

∗ aiogram.types.suggested_post_approval_failed.SuggestedPostApprovalFailed and
the field suggested_post_approval_failed to aiogram.types.message.Message

∗ aiogram.types.suggested_post_declined.SuggestedPostDeclined and the field
suggested_post_declined to aiogram.types.message.Message

∗ aiogram.types.suggested_post_paid.SuggestedPostPaid and the field
suggested_post_paid to aiogram.types.message.Message

∗ aiogram.types.suggested_post_refunded.SuggestedPostRefunded and the field
suggested_post_refunded to aiogram.types.message.Message

Enhanced Checklists

– Added the field checklist_task_id to the class aiogram.types.reply_parameters.
ReplyParameters, allowing replies to specific checklist tasks.

– Added the field reply_to_checklist_task_id to the class aiogram.types.message.Message, in-
dicating which checklist task a message is replying to.

Gifts Improvements

– Added the field publisher_chat to the classes aiogram.types.gift.Gift and aiogram.types.
unique_gift.UniqueGift, describing the chat that published the gift.

Additional Features

– Added the field is_paid_post to the class aiogram.types.message.Message, indicating whether a
message is a paid post.

740 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

#1720

Bugfixes

• Use hmac.compare_digest for validating WebApp data to prevent timing attacks. #1709

Misc

• Migrated MongoStorage from relying on deprecated motor package to using new async PyMongo. To use mongo
storage with new async PyMongo, you need to install the PyMongo package instead of motor and just substitute
deprecated MongoStorage with PyMongoStorage class, no other action needed. #1705

2.6.3 3.21.0 (2025-07-05)

Features

• Refactor methods input types to calm down MyPy. #1682

Dict[str, Any] is replaced with Mapping[str, Any] in the following methods:

– FSMContext.set_data

– FSMContext.update_data

– BaseStorage.set_data

– BaseStorage.update_data

– BaseStorage’s child methods

– SceneWizard.set_data

– SceneWizard.update_data

#1683

• Add support for State type in scenes methods like goto, enter, get #1685

• Added full support for the Bot API 9.1:

Checklists

– Added the class aiogram.types.checklist_task.ChecklistTask representing a task in a checklist.

– Added the class aiogram.types.checklist.Checklist representing a checklist.

– Added the class aiogram.types.input_checklist_task.InputChecklistTask representing a task
to add to a checklist.

– Added the class aiogram.types.input_checklist.InputChecklist representing a checklist to cre-
ate.

– Added the field checklist to the classes aiogram.types.message.Message and aiogram.types.
external_reply_info.ExternalReplyInfo, describing a checklist in a message.

– Added the class aiogram.types.checklist_tasks_done.ChecklistTasksDone and the field
checklist_tasks_done to the class aiogram.types.message.Message, describing a service message
about status changes for tasks in a checklist (i.e., marked as done/not done).

2.6. Changelog 741

https://github.com/aiogram/aiogram/issues/1720
https://github.com/aiogram/aiogram/issues/1709
https://github.com/aiogram/aiogram/issues/1705
https://github.com/aiogram/aiogram/issues/1683
https://github.com/aiogram/aiogram/issues/1685
https://core.telegram.org/bots/api-changelog#july-3-2025

aiogram Documentation, Release 3.23.0

– Added the class aiogram.types.checklist_tasks_added.ChecklistTasksAdded and the field
checklist_tasks_added to the class aiogram.types.message.Message, describing a service mes-
sage about the addition of new tasks to a checklist.

– Added the method aiogram.methods.send_checklist.SendChecklist, allowing bots to send a
checklist on behalf of a business account.

– Added the method aiogram.methods.edit_message_checklist.EditMessageChecklist, allowing
bots to edit a checklist on behalf of a business account.

Gifts

– Added the field next_transfer_date to the classes aiogram.types.owned_gift_unique.
OwnedGiftUnique and aiogram.types.unique_gift_info.UniqueGiftInfo.

– Added the field last_resale_star_count to the class aiogram.types.unique_gift_info.
UniqueGiftInfo.

– Added “resale” as the possible value of the field origin in the class aiogram.types.
unique_gift_info.UniqueGiftInfo.

General

– Increased the maximum number of options in a poll to 12.

– Added the method aiogram.methods.get_my_star_balance.GetMyStarBalance, allowing bots to
get their current balance of Telegram Stars.

– Added the class aiogram.types.direct_message_price_changed.DirectMessagePriceChanged
and the field direct_message_price_changed to the class aiogram.types.message.Message, de-
scribing a service message about a price change for direct messages sent to the channel chat.

#1704

Bugfixes

• Fixed an issue where the scene entry handler (enter) was not receiving data passed to the context by middleware,
which could result in a TypeError.

Also updated the documentation to clarify how to enter the scene. #1672

• Correctly pass error message in TelegramMigrateToChat. #1694

Improved Documentation

• Added documentation for changing state of another user in FSM #1633

Misc

• Fixed MyPy [return-value] error in InlineKeyboardBuilder().as_markup(). as_markup method now overloads
parent class method and uses super(), to call parent’s as_markup method. Also added correct type hint to
as_markup’s return in InlineKeyboardBuilder and ReplyKeyboardBuilder classes. #1677

• Changed Babel’s pinned version from minor to major. #1681

• Increased max aiohttp version support from “<3.12” to “<3.13” #1700

742 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1704
https://github.com/aiogram/aiogram/issues/1672
https://github.com/aiogram/aiogram/issues/1694
https://github.com/aiogram/aiogram/issues/1633
https://github.com/aiogram/aiogram/issues/1677
https://github.com/aiogram/aiogram/issues/1681
https://github.com/aiogram/aiogram/issues/1700

aiogram Documentation, Release 3.23.0

2.6.4 3.20.0 (2025-04-14)

Features

• Add different shortcut methods for aiogram.utils.formatting.Text.as_kwargs() #1657

• Added full support for the Bot API 9.0:

Business Accounts

– Added the class aiogram.types.business_bot_rights.BusinessBotRights and replaced the
field can_reply with the field rights of the type aiogram.types.business_bot_rights.
BusinessBotRights in the class aiogram.types.business_connection.BusinessConnection.

– Added the method aiogram.methods.read_business_message.ReadBusinessMessage, allowing
bots to mark incoming messages as read on behalf of a business account.

– Added the method aiogram.methods.delete_business_messages.DeleteBusinessMessages, al-
lowing bots to delete messages on behalf of a business account.

– Added the method aiogram.methods.set_business_account_name.SetBusinessAccountName,
allowing bots to change the first and last name of a managed business account.

– Added the method aiogram.methods.set_business_account_username.
SetBusinessAccountUsername, allowing bots to change the username of a managed business
account.

– Added the method aiogram.methods.set_business_account_bio.SetBusinessAccountBio, al-
lowing bots to change the bio of a managed business account.

– Added the class aiogram.types.input_profile_photo.InputProfilePhoto, describing a profile
photo to be set.

– Added the methods aiogram.methods.set_business_account_profile_photo.
SetBusinessAccountProfilePhoto and aiogram.methods.remove_business_account_profile_photo.
RemoveBusinessAccountProfilePhoto, allowing bots to change the profile photo of a managed
business account.

– Added the method aiogram.methods.set_business_account_gift_settings.
SetBusinessAccountGiftSettings, allowing bots to change the privacy settings pertaining to
incoming gifts in a managed business account.

– Added the class aiogram.types.star_amount.StarAmount and the method aiogram.methods.
get_business_account_star_balance.GetBusinessAccountStarBalance, allowing bots to check
the current Telegram Star balance of a managed business account.

– Added the method aiogram.methods.transfer_business_account_stars.
TransferBusinessAccountStars, allowing bots to transfer Telegram Stars from the balance of a
managed business account to their own balance for withdrawal.

– Added the classes aiogram.types.owned_gift_regular.OwnedGiftRegular, aiogram.types.
owned_gift_unique.OwnedGiftUnique, aiogram.types.owned_gifts.OwnedGifts and the
method aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts, allowing
bots to fetch the list of gifts owned by a managed business account.

– Added the method aiogram.methods.convert_gift_to_stars.ConvertGiftToStars, allowing
bots to convert gifts received by a managed business account to Telegram Stars.

– Added the method aiogram.methods.upgrade_gift.UpgradeGift, allowing bots to upgrade regular
gifts received by a managed business account to unique gifts.

2.6. Changelog 743

https://github.com/aiogram/aiogram/issues/1657
https://core.telegram.org/bots/api-changelog#april-11-2025

aiogram Documentation, Release 3.23.0

– Added the method aiogram.methods.transfer_gift.TransferGift, allowing bots to transfer unique
gifts owned by a managed business account.

– Added the classes aiogram.types.input_story_content_photo.InputStoryContentPhoto and
aiogram.types.input_story_content_video.InputStoryContentVideo representing the content
of a story to post.

– Added the classes aiogram.types.story_area.StoryArea, aiogram.types.
story_area_position.StoryAreaPosition, aiogram.types.location_address.
LocationAddress, aiogram.types.story_area_type_location.StoryAreaTypeLocation,
aiogram.types.story_area_type_suggested_reaction.StoryAreaTypeSuggestedReaction,
aiogram.types.story_area_type_link.StoryAreaTypeLink , aiogram.types.
story_area_type_weather.StoryAreaTypeWeather and aiogram.types.
story_area_type_unique_gift.StoryAreaTypeUniqueGift, describing clickable active areas
on stories.

– Added the methods aiogram.methods.post_story.PostStory, aiogram.methods.edit_story.
EditStory and aiogram.methods.delete_story.DeleteStory, allowing bots to post, edit and delete
stories on behalf of a managed business account.

Mini Apps

– Added the field DeviceStorage, allowing Mini Apps to use persistent local storage on the user’s device.

– Added the field SecureStorage, allowing Mini Apps to use a secure local storage on the user’s device for
sensitive data.

Gifts

– Added the classes aiogram.types.unique_gift_model.UniqueGiftModel, aiogram.types.
unique_gift_symbol.UniqueGiftSymbol, aiogram.types.unique_gift_backdrop_colors.
UniqueGiftBackdropColors, and aiogram.types.unique_gift_backdrop.
UniqueGiftBackdrop to describe the properties of a unique gift.

– Added the class aiogram.types.unique_gift.UniqueGift describing a gift that was upgraded to a
unique one.

– Added the class aiogram.types.accepted_gift_types.AcceptedGiftTypes describing the types of
gifts that are accepted by a user or a chat.

– Replaced the field can_send_gift with the field accepted_gift_types of the type aiogram.types.
accepted_gift_types.AcceptedGiftTypes in the class aiogram.types.chat_full_info.
ChatFullInfo.

– Added the class aiogram.types.gift_info.GiftInfo and the field gift to the class aiogram.
types.message.Message, describing a service message about a regular gift that was sent or received.

– Added the class aiogram.types.unique_gift_info.UniqueGiftInfo and the field unique_gift to
the class aiogram.types.message.Message, describing a service message about a unique gift that was
sent or received.

Telegram Premium

– Added the method aiogram.methods.gift_premium_subscription.GiftPremiumSubscription,
allowing bots to gift a user a Telegram Premium subscription paid in Telegram Stars.

– Added the field premium_subscription_duration to the class aiogram.types.
transaction_partner_user.TransactionPartnerUser

for transactions involving a Telegram Premium subscription purchased by the bot. - Added the field
transaction_type to the class

744 Chapter 2. Contents

aiogram Documentation, Release 3.23.0

aiogram.types.transaction_partner_user.TransactionPartnerUser, simplifying the
differentiation and processing of all transaction types.

General

– Increased the maximum price for paid media to 10000 Telegram Stars.

– Increased the maximum price for a subscription period to 10000 Telegram Stars.

– Added the class aiogram.types.paid_message_price_changed.PaidMessagePriceChanged and
the field paid_message_price_changed to the class aiogram.types.message.Message, describing
a service message about a price change for paid messages sent to the chat.

– Added the field paid_star_count to the class aiogram.types.message.Message, containing the num-
ber of Telegram Stars that were paid to send the message.

#1671

Bugfixes

• Fix memory exhaustion in polling mode with concurrent updates.

Added a semaphore-based solution to limit the number of concurrent tasks when using handle_as_tasks=True
in polling mode. This prevents Out of Memory (OOM) errors in memory-limited containers when there’s a large
queue of updates to process. You can now control the maximum number of concurrent updates with the new
tasks_concurrency_limit parameter in start_polling() and run_polling() methods. #1658

• Fix empty response into webhook.

We need to return something “empty”, and “empty” form doesn’t work since it’s sending only “end” boundary
w/o “start”.

An empty formdata should look smth like this for Telegram to understand:

--webhookBoundaryvsF_aMHhspPjfOq7O0JNRg
--webhookBoundaryvsF_aMHhspPjfOq7O0JNRg--

But aiohttp sends only the ending boundary:

--webhookBoundaryvsF_aMHhspPjfOq7O0JNRg--

Such response doesn’t suit Telegram servers.

The fix replaces empty response with empty JSON response:

{}

#1664

Improved Documentation

• Fixed broken code block formatting in router.rst caused by incorrect indentation of directive options. #1666

2.6. Changelog 745

https://github.com/aiogram/aiogram/issues/1671
https://github.com/aiogram/aiogram/issues/1658
https://github.com/aiogram/aiogram/issues/1664
https://github.com/aiogram/aiogram/issues/1666

aiogram Documentation, Release 3.23.0

Misc

• Bump pydantic upper bound from <2.11 to <2.12. Upgrading pydantic to version 2.11 significantly reduces
resource consumption, more details on the pydantic blog post #1659

• Replaced `loop.run_in_executor` with `asyncio.to_thread` for improved readability and consistency.
#1661

2.6.5 3.19.0 (2025-03-19)

Features

• Added TypedDict definitions for middleware context data to the dispatcher dependency injection docs.

So, now you can use aiogram.dispatcher.middleware.data.MiddlewareData directly or extend it with
your own data in the middlewares. #1637

• Added new method aiogram.utils.deep_linking.create_startapp_link() to deep-linking module for
creating “startapp” deep links. See also https://core.telegram.org/api/links#main-mini-app-links and https://
core.telegram.org/api/links#direct-mini-app-links #1648, #1651

Bugfixes

• Fixed handling of default empty string (“”) in CallbackData filter #1493

• Resolved incorrect ordering of registered handlers in the aiogram.fsm.scene.Scene object caused by
inspect.getmembers returning sorted members. Handlers are now registered in the order of their definition
within the class, ensuring proper execution sequence, especially when handling filters with different levels of
specificity.

For backward compatibility, the old behavior can be restored by setting the
attrs_resolver=inspect_members_resolver parameter in the aiogram.fsm.scene.Scene:

from aiogram.utils.class_attrs_resolver import inspect_members_resolver

class MyScene(Scene, attrs_resolver=inspect_members_resolver):

In this case, the handlers will be registered in the order returned by inspect.getmembers.

By default, the attrs_resolver parameter is set to get_sorted_mro_attrs_resolver now, so you don’t
need to specify it explicitly. #1641

Improved Documentation

• Updated Ukrainian docs translation #1650

746 Chapter 2. Contents

https://pydantic.dev/articles/pydantic-v2-11-release
https://github.com/aiogram/aiogram/issues/1659
https://github.com/aiogram/aiogram/issues/1661
https://github.com/aiogram/aiogram/issues/1637
https://core.telegram.org/api/links#main-mini-app-links
https://core.telegram.org/api/links#direct-mini-app-links
https://core.telegram.org/api/links#direct-mini-app-links
https://github.com/aiogram/aiogram/issues/1648
https://github.com/aiogram/aiogram/issues/1651
https://github.com/aiogram/aiogram/issues/1493
https://github.com/aiogram/aiogram/issues/1641
https://github.com/aiogram/aiogram/issues/1650

aiogram Documentation, Release 3.23.0

Misc

• Introduce Union types for streamlined type handling.

Implemented Union types across various modules to consolidate and simplify type annotations. This change re-
places repetitive union declarations with reusable Union aliases, improving code readability and maintainability.
#1592

2.6.6 3.18.0 (2025-02-16)

Features

• Added full support for the Bot API 8.3:

– Added the parameter chat_id to the method aiogram.methods.send_gift.SendGift, allowing bots
to send gifts to channel chats.

– Added the field can_send_gift to the class aiogram.types.chat_full_info.ChatFullInfo.

– Added the class aiogram.types.transaction_partner_chat.TransactionPartnerChat describ-
ing transactions with chats.

– Added the fields cover and start_timestamp to the class aiogram.types.video.Video, containing
a message-specific cover and a start timestamp for the video.

– Added the parameters cover and start_timestamp to the method aiogram.methods.send_video.
SendVideo, allowing bots to specify a cover and a start timestamp for the videos they send.

– Added the fields cover and start_timestamp to the classes aiogram.types.input_media_video.
InputMediaVideo and aiogram.types.input_paid_media_video.InputPaidMediaVideo, allow-
ing bots to edit video covers and start timestamps, and specify them for videos in albums and paid media.

– Added the parameter video_start_timestamp to the methods aiogram.methods.forward_message.
ForwardMessage and aiogram.methods.copy_message.CopyMessage, allowing bots to change the
start timestamp for forwarded and copied videos.

– Allowed adding reactions to most types of service messages.

#1638

Bugfixes

• Fixed endless loop while adding buttons to the KeyboardBuilder. #1595

• Change the Downloadable protocol to be non-writable to shut up type checking that checks code that uses the
bot.download(...) method #1628

• Fix the regex pattern that finds the “bad characters” for deeplink payload. #1630

2.6. Changelog 747

https://github.com/aiogram/aiogram/issues/1592
https://core.telegram.org/bots/api-changelog#february-12-2025
https://github.com/aiogram/aiogram/issues/1638
https://github.com/aiogram/aiogram/issues/1595
https://github.com/aiogram/aiogram/issues/1628
https://github.com/aiogram/aiogram/issues/1630

aiogram Documentation, Release 3.23.0

Improved Documentation

• Update data: Dict[Any, str] to data: Dict[str, Any] #1634

• Fix small typo in the Scenes documentation #1640

Misc

• Removed redundant Path to str convertion on file download. #1612

• Increased max redis version support from “<5.1.0” to “<5.3.0” #1631

2.6.7 3.17.0 (2025-01-02)

Features

• Added full support of the Bot API 8.2

– Added the methods aiogram.methods.verify_user.VerifyUser, aiogram.
methods.verify_chat.VerifyChat, aiogram.methods.remove_user_verification.
RemoveUserVerification and aiogram.methods.remove_chat_verification.
RemoveChatVerification, allowing bots to manage verifications on behalf of an organization.

– Added the field upgrade_star_count to the class aiogram.types.gift.Gift.

– Added the parameter pay_for_upgrade to the method aiogram.methods.send_gift.SendGift.

– Removed the field hide_url from the class aiogram.types.inline_query_result_article.
InlineQueryResultArticle. Pass an empty string as url instead.

#1623

2.6.8 3.16.0 (2024-12-21)

Features

• Added full support of Bot API 8.1:

– Added the field nanostar_amount to the class aiogram.types.star_transaction.
StarTransaction.

– Added the class aiogram.types.transaction_partner_affiliate_program.
TransactionPartnerAffiliateProgram for transactions pertaining to incoming affiliate commissions.

– Added the class aiogram.types.affiliate_info.AffiliateInfo and the field affiliate to the
class aiogram.types.transaction_partner_user.TransactionPartnerUser, allowing bots to
identify the relevant affiliate in transactions with an affiliate commission.

#1617

748 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1634
https://github.com/aiogram/aiogram/issues/1640
https://github.com/aiogram/aiogram/issues/1612
https://github.com/aiogram/aiogram/issues/1631
https://core.telegram.org/bots/api-changelog#january-1-2025
https://github.com/aiogram/aiogram/issues/1623
https://core.telegram.org/bots/api-changelog#december-4-2024
https://github.com/aiogram/aiogram/issues/1617

aiogram Documentation, Release 3.23.0

Bugfixes

• Corrected the exception text of aiogram.methods.base.TelegramMethod.__await__ method. #1616

Misc

• Increased max pydantic version support from “<2.10” to “<2.11” #1607

• Fixed closing tag for tg-emoji in the aiogram.utils.text_decoration.HtmlDecoration: use the same
constant as for tag opening #1608

• Increased max aiohttp version support from “<3.11” to “<3.12” #1615

2.6.9 3.15.0 (2024-11-17)

Features

• Added full support for Bot API 8.0

– Added the parameter subscription_period to the method aiogram.methods.
create_invoice_link.CreateInvoiceLink to support the creation of links that are billed peri-
odically.

– Added the parameter business_connection_id to the method aiogram.methods.
create_invoice_link.CreateInvoiceLink to support the creation of invoice links on behalf
of business accounts.

– Added the fields subscription_expiration_date, is_recurring and is_first_recurring to the
class aiogram.types.successful_payment.SuccessfulPayment.

– Added the method aiogram.methods.edit_user_star_subscription.
EditUserStarSubscription.

– Added the field subscription_period to the class aiogram.types.transaction_partner_user.
TransactionPartnerUser.

– Added the method aiogram.methods.set_user_emoji_status.SetUserEmojiStatus. The user
must allow the bot to manage their emoji status.

– Added the class aiogram.types.prepared_inline_message.PreparedInlineMessage and the
method aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage, al-
lowing bots to suggest users send a specific message from a Mini App via the method aiogram.methods.
share_message.ShareMessage.

– Added the classes aiogram.types.gift.Gift and aiogram.types.gifts.Gifts and the method
aiogram.methods.get_available_gifts.GetAvailableGifts, allowing bots to get all gifts avail-
able for sending.

– Added the field gift to the class aiogram.types.transaction_partner_user.
TransactionPartnerUser.

#1606

2.6. Changelog 749

https://github.com/aiogram/aiogram/issues/1616
https://github.com/aiogram/aiogram/issues/1607
https://github.com/aiogram/aiogram/issues/1608
https://github.com/aiogram/aiogram/issues/1615
https://core.telegram.org/bots/api-changelog#november-17-2024
https://github.com/aiogram/aiogram/issues/1606

aiogram Documentation, Release 3.23.0

2.6.10 3.14.0 (2024-11-02)

Misc

• Checked compatibility with Python 3.13 (added to the CI/CD processes), so now aiogram is totally compatible
with it.

Dropped compatibility with Python 3.8 due to this version being EOL.

. Warning

In some cases you will need to have the installed compiler (Rust or C++) to install some of the dependencies
to compile packages from source on pip install command.

– If you are using Windows, you will need to have the Visual Studio installed.

– If you are using Linux, you will need to have the build-essential package installed.

– If you are using macOS, you will need to have the Xcode installed.

When developers of this dependencies will release new versions with precompiled wheels for Windows,
Linux and macOS, this action will not be necessary anymore until the next version of the Python interpreter.

#1589

• Added business_connection_id to the aiogram.types.message.Message API methods shortcuts.

Integrated the business_connection_id attribute into various message manipulation methods, ensuring con-
sistent data handling. This update eliminates the need to pass the business_connection_id as a parameter,
instead directly accessing it from the instance attributes. #1586

Features

• Add function get_value to all built-in storage implementations, FSMContext and SceneWizard #1431

• Enhanced the inheritance of handlers and actions in Scenes. Refactored to eliminate the copying of previously
connected handlers and actions from parent scenes. Now, handlers are dynamically rebuilt based on the current
class, properly utilizing class inheritance and enabling handler overrides.

That’s mean that you can now override handlers and actions in the child scene, instead of copying and duplicating
them. #1583

• Added full support of Bot API 7.11

– Added the class aiogram.types.copy_text_button.CopyTextButton and the field copy_text in
the class aiogram.types.inline_keyboard_button.InlineKeyboardButton, allowing bots to send
and receive inline buttons that copy arbitrary text.

– Added the parameter allow_paid_broadcast to the methods aiogram.methods.send_message.
SendMessage, aiogram.methods.send_photo.SendPhoto, aiogram.methods.send_video.
SendVideo, aiogram.methods.send_animation.SendAnimation, aiogram.methods.
send_audio.SendAudio, aiogram.methods.send_document.SendDocument, aiogram.
methods.send_paid_media.SendPaidMedia, aiogram.methods.send_sticker.SendSticker,
aiogram.methods.send_video_note.SendVideoNote, aiogram.methods.send_voice.
SendVoice, aiogram.methods.send_location.SendLocation, aiogram.methods.send_venue.
SendVenue, aiogram.methods.send_contact.SendContact, aiogram.methods.send_poll.
SendPoll, aiogram.methods.send_dice.SendDice, aiogram.methods.send_invoice.

750 Chapter 2. Contents

https://devguide.python.org/versions/
https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://developer.apple.com/xcode/
https://github.com/aiogram/aiogram/issues/1589
https://github.com/aiogram/aiogram/issues/1586
https://github.com/aiogram/aiogram/issues/1431
https://github.com/aiogram/aiogram/issues/1583
https://core.telegram.org/bots/api-changelog#october-31-2024

aiogram Documentation, Release 3.23.0

SendInvoice, aiogram.methods.send_game.SendGame, aiogram.methods.send_media_group.
SendMediaGroup and aiogram.methods.copy_message.CopyMessage.

– Added the class aiogram.types.transaction_partner_telegram_api.
TransactionPartnerTelegramApi for transactions related to paid broadcasted messages.

– Introduced the ability to add media to existing text messages using the method aiogram.methods.
edit_message_media.EditMessageMedia.

– Added support for hashtag and cashtag entities with a specified chat username that opens a search for the
relevant tag within the specified chat.

#1601

Bugfixes

• Fix PytestDeprecationWarning thrown by pytest-asyncio when running the tests #1584

• Fixed customized serialization in the aiogram.filters.callback_data.CallbackData factory.

From now UUID will have 32 bytes length instead of 36 bytes (with no - separators) in the callback data repre-
sentation. #1602

Improved Documentation

• Add missing closing tag for bold. #1599

2.6.11 3.13.1 (2024-09-18)

. Warning

Python 3.8 End of Life: Python 3.8 will reach its end of life (EOL) soon and will no longer be supported by
aiogram in the next releases (1-2 months ETA).

Please upgrade to a newer version of Python to ensure compatibility and receive future updates.

Misc

• Increase max pydantic version support “<2.9” -> “<2.10” (only For Python >=3.9) #1576

• Bump aiofiles version upper bound to <24.2 #1577

Bugfixes

• Fixed Default object annotation resolution using pydantic #1579

2.6. Changelog 751

https://github.com/aiogram/aiogram/issues/1601
https://github.com/aiogram/aiogram/issues/1584
https://github.com/aiogram/aiogram/issues/1602
https://github.com/aiogram/aiogram/issues/1599
https://github.com/aiogram/aiogram/issues/1576
https://github.com/aiogram/aiogram/issues/1577
https://github.com/aiogram/aiogram/issues/1579

aiogram Documentation, Release 3.23.0

2.6.12 3.13.0 (2024-09-08)

Features

• – Added updates about purchased paid media, represented by the class aiogram.types.
paid_media_purchased.PaidMediaPurchased and the field purchased_paid_media in the
class aiogram.types.update.Update.

– Added the ability to specify a payload in aiogram.methods.send_paid_media.SendPaidMedia
that is received back by the bot in aiogram.types.transaction_partner_user.
TransactionPartnerUser and purchased_paid_media updates.

– Added the field prize_star_count to the classes aiogram.types.giveaway_created.
GiveawayCreated , aiogram.types.giveaway.Giveaway, aiogram.types.
giveaway_winners.GiveawayWinners and aiogram.types.chat_boost_source_giveaway.
ChatBoostSourceGiveaway.

– Added the field is_star_giveaway to the class aiogram.types.giveaway_completed.
GiveawayCompleted .

#1510

• Added missing method aliases such as .answer(), .reply(), and others to InaccessibleMessage. This change en-
sures consistency and improves usability by aligning the functionality of InaccessibleMessage with the Message
type. #1574

Bugfixes

• Fixed link preview options to use global defaults in various types and methods to use global defaults for
link_preview_options. This change ensures consistency and enhances flexibility in handling link preview op-
tions across different components. #1543

2.6.13 3.12.0 (2024-08-16)

Features

• Added message_thread_id parameter to message.get_url(). #1451

• Added getting user from chat_boost with source ChatBoostSourcePremium in UserContextMiddleware for
EventContext #1474

• Added full support of Bot API 7.8

– Added the ability to send paid media to any chat.

– Added the parameter business_connection_id to the method aiogram.methods.
send_paid_media.SendPaidMedia, allowing bots to send paid media on behalf of a business
account.

– Added the field paid_media to the class aiogram.types.transaction_partner_user.
TransactionPartnerUser for transactions involving paid media.

– Added the method aiogram.methods.create_chat_subscription_invite_link.
CreateChatSubscriptionInviteLink , allowing bots to create subscription invite links.

– Added the method aiogram.methods.edit_chat_subscription_invite_link.
EditChatSubscriptionInviteLink , allowing bots to edit the name of subscription invite links.

752 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1510
https://github.com/aiogram/aiogram/issues/1574
https://github.com/aiogram/aiogram/issues/1543
https://github.com/aiogram/aiogram/issues/1451
https://github.com/aiogram/aiogram/issues/1474
https://core.telegram.org/bots/api-changelog#august-14-2024

aiogram Documentation, Release 3.23.0

– Added the field until_date to the class aiogram.types.chat_member_member.ChatMemberMember
for members with an active subscription.

– Added support for paid reactions and the class aiogram.types.reaction_type_paid.
ReactionTypePaid .

#1560

Misc

• Improved performance of StatesGroup #1507

2.6.14 3.11.0 (2024-08-09)

Features

• Added full support of Bot API 7.8

– Added the field has_main_web_app to the class aiogram.types.user.User, which is returned in the
response to aiogram.methods.get_me.GetMe.

– Added the parameter business_connection_id to the methods aiogram.methods.
pin_chat_message.PinChatMessage and aiogram.methods.unpin_chat_message.
UnpinChatMessage, allowing bots to manage pinned messages on behalf of a business account.

#1551

Bugfixes

• Fixed URL path in the “Open” button at the “demo/sendMessage” endpoint in the web_app example. #1546

Misc

• Added method aiogram.types.message.Message.as_reply_parameters(). Replaced usage of the argu-
ment reply_to_message_id with reply_parameters in all Message reply methods. #1538

• Added aiohttp v3.10 ` support. #1548

2.6.15 3.10.0 (2024-07-07)

Features

• Added full support of Bot API 7.7

– Added the class aiogram.types.refunded_payment.RefundedPayment, containing information
about a refunded payment.

– Added the field refunded_payment to the class aiogram.types.message.Message, describing a ser-
vice message about a refunded payment.

#1536

2.6. Changelog 753

https://github.com/aiogram/aiogram/issues/1560
https://github.com/aiogram/aiogram/issues/1507
https://core.telegram.org/bots/api-changelog#july-31-2024
https://github.com/aiogram/aiogram/issues/1551
https://github.com/aiogram/aiogram/issues/1546
https://github.com/aiogram/aiogram/issues/1538
https://github.com/aio-libs/aiohttp/releases/tag/v3.10.0
https://github.com/aiogram/aiogram/issues/1548
https://core.telegram.org/bots/api-changelog#july-7-2024
https://github.com/aiogram/aiogram/issues/1536

aiogram Documentation, Release 3.23.0

2.6.16 3.9.0 (2024-07-06)

Features

• Added ChatMember resolution tool and updated 2.x migration guide. #1525

• Added full support of Bot API 7.6

– Added the classes aiogram.types.paid_media.PaidMedia ,
aiogram.types.paid_media_info.PaidMediaInfo, aiogram.types.paid_media_preview.
PaidMediaPreview, aiogram.types.paid_media_photo.PaidMediaPhoto and aiogram.
types.paid_media_video.PaidMediaVideo, containing information about paid media.

– Added the method aiogram.methods.send_paid_media.SendPaidMedia
and the classes aiogram.types.input_paid_media.InputPaidMedia, aiogram.
types.input_paid_media_photo.InputPaidMediaPhoto and aiogram.types.
input_paid_media_video.InputPaidMediaVideo, to support sending paid media.

– Documented that the methods aiogram.methods.copy_message.CopyMessage
and aiogram.methods.copy_messages.CopyMessages cannot be used to copy paid media.

– Added the field can_send_paid_media to the class
aiogram.types.chat_full_info.ChatFullInfo.

– Added the field paid_media to the classes
aiogram.types.message.Message and aiogram.types.external_reply_info.
ExternalReplyInfo.

– Added the class
aiogram.types.transaction_partner_telegram_ads.TransactionPartnerTelegramAds,
containing information about Telegram Star transactions involving the Telegram Ads Platform.

– Added the field invoice_payload to the class
aiogram.types.transaction_partner_user.TransactionPartnerUser, containing the bot-
specified invoice payload.

– Changed the default opening mode for Direct Link Mini Apps.

– Added support for launching Web Apps via t.me link in the class
aiogram.types.menu_button_web_app.MenuButtonWebApp.

– Added the field section_separator_color to the class ThemeParams.

#1533

Bugfixes

• Fixed event context resolving for the callback query that is coming from the business account #1520

754 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1525
https://core.telegram.org/bots/api-changelog#july-1-2024
https://github.com/aiogram/aiogram/issues/1533
https://github.com/aiogram/aiogram/issues/1520

aiogram Documentation, Release 3.23.0

2.6.17 3.8.0 (2024-06-19)

Features

• Added utility to safely deserialize any Telegram object or method to a JSON-compatible object (dict). (>> Read
more) #1450

• Added full support of Bot API 7.5

– Added the classes aiogram.types.star_transactions.StarTransactions,
aiogram.types.star_transaction.StarTransaction, aiogram.types.
transaction_partner.TransactionPartner and aiogram.types.
revenue_withdrawal_state.RevenueWithdrawalState, containing information about
Telegram Star transactions involving the bot.

– Added the method aiogram.methods.get_star_transactions.GetStarTransactions
that can be used to get the list of all Telegram Star transactions for the bot.

– Added support for callback buttons in
aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup for messages sent on be-
half of a business account.

– Added support for callback queries originating from a message sent
on behalf of a business account.

– Added the parameter business_connection_id to the methods
aiogram.methods.edit_message_text.EditMessageText, aiogram.methods.
edit_message_media.EditMessageMedia, aiogram.methods.edit_message_caption.
EditMessageCaption, aiogram.methods.edit_message_live_location.
EditMessageLiveLocation, aiogram.methods.stop_message_live_location.
StopMessageLiveLocation and aiogram.methods.edit_message_reply_markup.
EditMessageReplyMarkup, allowing the bot to edit business messages.

– Added the parameter business_connection_id to the method
aiogram.methods.stop_poll.StopPoll, allowing the bot to stop polls it sent on behalf of a busi-
ness account.

#1518

Bugfixes

• Increased DNS cache ttl setting to aiohttp session as a workaround for DNS resolution issues in aiohttp. #1500

Improved Documentation

• Fixed MongoStorage section in the documentation by adding extra dependency to ReadTheDocs configuration.
#1501

• Added information about dependency changes to the 2.x --> 3.x migration guide. #1504

2.6. Changelog 755

https://github.com/aiogram/aiogram/issues/1450
https://core.telegram.org/bots/api-changelog#june-18-2024
https://github.com/aiogram/aiogram/issues/1518
https://github.com/aiogram/aiogram/issues/1500
https://github.com/aiogram/aiogram/issues/1501
https://github.com/aiogram/aiogram/issues/1504

aiogram Documentation, Release 3.23.0

Misc

• [Only for contributors] Fail redis and mongo tests if incorrect URI provided + some storages tests refactoring

If incorrect URIs provided to “–redis” and/or “–mongo” options tests should fail with errors instead of skipping.
Otherwise the next scenario is possible:

1) developer breaks RedisStorage and/or MongoStorage code

2) tests are run with incorrect redis and/or mongo URIsprovided by “–redis” and “–mongo” options (for ex-
ample, wrong port specified)

3) tests pass because skipping doesn’t fail tests run

4) developer or reviewer doesn’t notice that redis and/or mongo tests were skipped

5) broken code gets in codebase

Also some refactorings done (related with storages and storages tests). #1510

2.6.18 3.7.0 (2024-05-31)

Features

• Added new storage aiogram.fsm.storage.MongoStorage for Finite State Machine based on Mongo DB
(using motor library) #1434

• Added full support of Bot API 7.4 #1498

Bugfixes

• Fixed wrong MarkdownV2 custom emoji parsing in aiogram.utils.text_decorations #1496

Deprecations and Removals

• Removed deprecated arguments from Bot class parse_mode, disable_web_page_preview,
protect_content as previously announced in v3.4.0. #1494

Misc

• Improved code consistency and readability in code examples by refactoring imports, adjusting the base webhook
URL, modifying bot instance initialization to utilize DefaultBotProperties, and updating router message handlers.
#1482

2.6.19 3.6.0 (2024-05-06)

Features

• Added full support of Bot API 7.3 #1480

756 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1510
https://github.com/aiogram/aiogram/issues/1434
https://core.telegram.org/bots/api-changelog#may-28-2024
https://github.com/aiogram/aiogram/issues/1498
https://github.com/aiogram/aiogram/issues/1496
https://github.com/aiogram/aiogram/issues/1494
https://github.com/aiogram/aiogram/issues/1482
https://core.telegram.org/bots/api-changelog#may-6-2024
https://github.com/aiogram/aiogram/issues/1480

aiogram Documentation, Release 3.23.0

Improved Documentation

• Added telegram objects transformation block in 2.x -> 3.x migration guide #1412

2.6.20 3.5.0 (2024-04-23)

Features

• Added message_thread_id parameter to ChatActionSender class methods. #1437

• Added context manager interface to Bot instance, from now you can use:

async with Bot(...) as bot:
...

instead of

async with Bot(...).context() as bot:
...

#1468

Bugfixes

• – WebAppUser Class Fields: Added missing is_premium, added_to_attachment_menu, and al-
lows_write_to_pm fields to WebAppUser class to align with the Telegram API.

– WebAppChat Class Implementation: Introduced the WebAppChat class with all its fields (id, type, title,
username, and photo_url) as specified in the Telegram API, which was previously missing from the library.

– WebAppInitData Class Fields: Included previously omitted fields in the WebAppInitData class: chat,
chat_type, chat_instance, to match the official documentation for a complete Telegram Web Apps support.

#1424

• Fixed poll answer FSM context by handling voter_chat for poll_answer event #1436

• Added missing error handling to _background_feed_update (when in handle_in_background=True web-
hook mode) #1458

Improved Documentation

• Added WebAppChat class to WebApp docs, updated uk_UA localisation of WebApp docs. #1433

Misc

• Added full support of Bot API 7.2 #1444

• Loosened pydantic version upper restriction from <2.7 to <2.8 #1460

2.6. Changelog 757

https://github.com/aiogram/aiogram/issues/1412
https://github.com/aiogram/aiogram/issues/1437
https://github.com/aiogram/aiogram/issues/1468
https://github.com/aiogram/aiogram/issues/1424
https://github.com/aiogram/aiogram/issues/1436
https://github.com/aiogram/aiogram/issues/1458
https://github.com/aiogram/aiogram/issues/1433
https://core.telegram.org/bots/api-changelog#march-31-2024
https://github.com/aiogram/aiogram/issues/1444
https://github.com/aiogram/aiogram/issues/1460

aiogram Documentation, Release 3.23.0

2.6.21 3.4.1 (2024-02-17)

Bugfixes

• Fixed JSON serialization of the LinkPreviewOptions class while it is passed as bot-wide default options.
#1418

2.6.22 3.4.0 (2024-02-16)

Features

• Reworked bot-wide globals like parse_mode, disable_web_page_preview, and others to be more flexible.

. Warning

Note that the old way of setting these global bot properties is now deprecated and will be removed in the next
major release.

#1392

• A new enum KeyboardButtonPollTypeType for KeyboardButtonPollTypeType.type field has bed added.
#1398

• Added full support of Bot API 7.1

– Added support for the administrator rights can_post_stories, can_edit_stories,
can_delete_stories in supergroups.

– Added the class ChatBoostAdded and the field boost_added to the class Message for service messages
about a user boosting a chat.

– Added the field sender_boost_count to the class Message.

– Added the field reply_to_story to the class Message.

– Added the fields chat and id to the class Story.

– Added the field unrestrict_boost_count to the class Chat.

– Added the field custom_emoji_sticker_set_name to the class Chat.

#1417

Bugfixes

• Update KeyboardBuilder utility, fixed type-hints for button method, adjusted limits of the different markup types
to real world values. #1399

• Added new reply_parameters param to message.send_copy because it hasn’t been added there #1403

758 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1418
https://github.com/aiogram/aiogram/issues/1392
https://github.com/aiogram/aiogram/issues/1398
https://core.telegram.org/bots/api-changelog#february-16-2024
https://github.com/aiogram/aiogram/issues/1417
https://github.com/aiogram/aiogram/issues/1399
https://github.com/aiogram/aiogram/issues/1403

aiogram Documentation, Release 3.23.0

Improved Documentation

• Add notion “Working with plural forms” in documentation Utils -> Translation #1395

2.6.23 3.3.0 (2023-12-31)

Features

• Added full support of Bot API 7.0

– Reactions

– Replies 2.0

– Link Preview Customization

– Block Quotation

– Multiple Message Actions

– Requests for multiple users

– Chat Boosts

– Giveaway

– Other changes

#1387

2.6.24 3.2.0 (2023-11-24)

Features

• Introduced Scenes feature that helps you to simplify user interactions using Finite State Machine. Read more
about Scenes. #1280

• Added the new FSM strategy CHAT_TOPIC, which sets the state for the entire topic in the chat, also works in
private messages and regular groups without topics. #1343

Bugfixes

• Fixed parse_mode argument in the in Message.send_copy shortcut. Disable by default. #1332

• Added ability to get handler flags from filters. #1360

• Fixed a situation where a CallbackData could not be parsed without a default value. #1368

2.6. Changelog 759

https://github.com/aiogram/aiogram/issues/1395
https://core.telegram.org/bots/api-changelog#december-29-2023
https://github.com/aiogram/aiogram/issues/1387
https://github.com/aiogram/aiogram/issues/1280
https://github.com/aiogram/aiogram/issues/1343
https://github.com/aiogram/aiogram/issues/1332
https://github.com/aiogram/aiogram/issues/1360
https://github.com/aiogram/aiogram/issues/1368

aiogram Documentation, Release 3.23.0

Improved Documentation

• Corrected grammatical errors, improved sentence structures, translation for migration 2.x-3.x #1302

• Minor typo correction, specifically in module naming + some grammar. #1340

• Added CITATION.cff file for automatic academic citation generation. Now you can copy citation from the GitHub
page and paste it into your paper. #1351

• Minor typo correction in middleware docs. #1353

Misc

• Fixed ResourceWarning in the tests, reworked RedisEventsIsolation fixture to use Redis connection from
RedisStorage #1320

• Updated dependencies, bumped minimum required version:

– magic-filter - fixed .resolve operation

– pydantic - fixed compatibility (broken in 2.4)

– aiodns - added new dependency to the fast extras (pip install aiogram[fast])

– others. . .

#1327

• Prevent update handling task pointers from being garbage collected, backport from 2.x #1331

• Updated typing-extensions package version range in dependencies to fix compatibility with FastAPI #1347

• Introduce Python 3.12 support #1354

• Speeded up CallableMixin processing by caching references to nested objects and simplifying kwargs assembly.
#1357

• Added pydantic v2.5 support. #1361

• Updated thumbnail fields type to InputFile only #1372

2.6.25 3.1.1 (2023-09-25)

Bugfixes

• Fixed pydantic version <2.4, since 2.4 has breaking changes. #1322

2.6.26 3.1.0 (2023-09-22)

Features

• Added support for custom encoders/decoders for payload (and also for deep-linking). #1262

• Added aiogram.utils.input_media.MediaGroupBuilder for media group construction. #1293

• Added full support of Bot API 6.9 #1319

760 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1302
https://github.com/aiogram/aiogram/issues/1340
https://github.com/aiogram/aiogram/issues/1351
https://github.com/aiogram/aiogram/issues/1353
https://github.com/aiogram/aiogram/issues/1320
https://github.com/aiogram/aiogram/issues/1327
https://github.com/aiogram/aiogram/issues/1331
https://github.com/aiogram/aiogram/issues/1347
https://github.com/aiogram/aiogram/issues/1354
https://github.com/aiogram/aiogram/issues/1357
https://github.com/aiogram/aiogram/issues/1361
https://github.com/aiogram/aiogram/issues/1372
https://github.com/aiogram/aiogram/issues/1322
https://github.com/aiogram/aiogram/issues/1262
https://github.com/aiogram/aiogram/issues/1293
https://core.telegram.org/bots/api-changelog#september-22-2023
https://github.com/aiogram/aiogram/issues/1319

aiogram Documentation, Release 3.23.0

Bugfixes

• Added actual param hints for InlineKeyboardBuilder and ReplyKeyboardBuilder. #1303

• Fixed priority of events isolation, now user state will be loaded only after lock is acquired #1317

2.6.27 3.0.0 (2023-09-01)

Bugfixes

• Replaced datetime.datetime with DateTime type wrapper across types to make dumped JSONs object more
compatible with data that is sent by Telegram. #1277

• Fixed magic .as_(...) operation for values that can be interpreted as False (e.g. 0). #1281

• Italic markdown from utils now uses correct decorators #1282

• Fixed method Message.send_copy for stickers. #1284

• Fixed Message.send_copy method, which was not working properly with stories, so not you can copy stories
too (forwards messages). #1286

• Fixed error overlapping when validation error is caused by remove_unset root validator in base types and methods.
#1290

2.6.28 3.0.0rc2 (2023-08-18)

Bugfixes

• Fixed missing message content types (ContentType.USER_SHARED, ContentType.CHAT_SHARED) #1252

• Fixed nested hashtag, cashtag and email message entities not being parsed correctly when these entities are inside
another entity. #1259

• Moved global filters check placement into router to add chance to pass context from global filters into handlers
in the same way as it possible in other places #1266

Improved Documentation

• Added error handling example examples/error_handling.py #1099

• Added a few words about skipping pending updates #1251

• Added a section on Dependency Injection technology #1253

• This update includes the addition of a multi-file bot example to the repository. #1254

• Refactored examples code to use aiogram enumerations and enhanced chat messages with markdown beautifi-
cation’s for a more user-friendly display. #1256

• Supplemented “Finite State Machine” section in Migration FAQ #1264

• Removed extra param in docstring of TelegramEventObserver’s filter method and fixed typo in I18n documen-
tation. #1268

2.6. Changelog 761

https://github.com/aiogram/aiogram/issues/1303
https://github.com/aiogram/aiogram/issues/1317
https://github.com/aiogram/aiogram/issues/1277
https://github.com/aiogram/aiogram/issues/1281
https://github.com/aiogram/aiogram/issues/1282
https://github.com/aiogram/aiogram/issues/1284
https://github.com/aiogram/aiogram/issues/1286
https://github.com/aiogram/aiogram/issues/1290
https://github.com/aiogram/aiogram/issues/1252
https://github.com/aiogram/aiogram/issues/1259
https://github.com/aiogram/aiogram/issues/1266
https://github.com/aiogram/aiogram/issues/1099
https://github.com/aiogram/aiogram/issues/1251
https://github.com/aiogram/aiogram/issues/1253
https://github.com/aiogram/aiogram/issues/1254
https://github.com/aiogram/aiogram/issues/1256
https://github.com/aiogram/aiogram/issues/1264
https://github.com/aiogram/aiogram/issues/1268

aiogram Documentation, Release 3.23.0

Misc

• Enhanced the warning message in dispatcher to include a JSON dump of the update when update type is not
known. #1269

• Added support for Bot API 6.8 #1275

2.6.29 3.0.0rc1 (2023-08-06)

Features

• Added Currency enum. You can use it like this:

from aiogram.enums import Currency

await bot.send_invoice(
...,
currency=Currency.USD,
...

)

#1194

• Updated keyboard builders with new methods for integrating buttons and keyboard creation more seamlessly.
Added functionality to create buttons from existing markup and attach another builder. This improvement aims
to make the keyboard building process more user-friendly and flexible. #1236

• Added support for message_thread_id in ChatActionSender #1249

Bugfixes

• Fixed polling startup when “bot” key is passed manually into dispatcher workflow data #1242

• Added codegen configuration for lost shortcuts:

– ShippingQuery.answer

– PreCheckoutQuery.answer

– Message.delete_reply_markup

#1244

Improved Documentation

• Added documentation for webhook and polling modes. #1241

762 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1269
https://core.telegram.org/bots/api-changelog#august-18-2023
https://github.com/aiogram/aiogram/issues/1275
https://github.com/aiogram/aiogram/issues/1194
https://github.com/aiogram/aiogram/issues/1236
https://github.com/aiogram/aiogram/issues/1249
https://github.com/aiogram/aiogram/issues/1242
https://github.com/aiogram/aiogram/issues/1244
https://github.com/aiogram/aiogram/issues/1241

aiogram Documentation, Release 3.23.0

Misc

• Reworked InputFile reading, removed __aiter__method, added bot: Bot argument to the .read(...)method,
so, from now URLInputFile can be used without specifying bot instance. #1238

• Code-generated __init__ typehints in types and methods to make IDE happy without additional pydantic plugin
#1245

2.6.30 3.0.0b9 (2023-07-30)

Features

• Added new shortcuts for aiogram.types.chat_member_updated.ChatMemberUpdated to send message to
chat that member joined/left. #1234

• Added new shortcuts for aiogram.types.chat_join_request.ChatJoinRequest to make easier access to
sending messages to users who wants to join to chat. #1235

Bugfixes

• Fixed bot assignment in the Message.send_copy shortcut #1232

• Added model validation to remove UNSET before field validation. This change was necessary to correctly handle
parse_mode where ‘UNSET’ is used as a sentinel value. Without the removal of ‘UNSET’, it would create issues
when passed to model initialization from Bot.method_name. ‘UNSET’ was also added to typing. #1233

• Updated pydantic to 2.1 with few bugfixes

Improved Documentation

• Improved docs, added basic migration guide (will be expanded later) #1143

Deprecations and Removals

• Removed the use of the context instance (Bot.get_current) from all placements that were used previously. This
is to avoid the use of the context instance in the wrong place. #1230

2.6.31 3.0.0b8 (2023-07-17)

Features

• Added possibility to use custom events in routers (If router does not support custom event it does not break and
passes it to included routers). #1147

• Added support for FSM in Forum topics.

The strategy can be changed in dispatcher:

from aiogram.fsm.strategy import FSMStrategy
...
dispatcher = Dispatcher(

fsm_strategy=FSMStrategy.USER_IN_TOPIC,
(continues on next page)

2.6. Changelog 763

https://github.com/aiogram/aiogram/issues/1238
https://github.com/aiogram/aiogram/issues/1245
https://github.com/aiogram/aiogram/issues/1234
https://github.com/aiogram/aiogram/issues/1235
https://github.com/aiogram/aiogram/issues/1232
https://github.com/aiogram/aiogram/issues/1233
https://github.com/aiogram/aiogram/issues/1143
https://github.com/aiogram/aiogram/issues/1230
https://github.com/aiogram/aiogram/issues/1147

aiogram Documentation, Release 3.23.0

(continued from previous page)

storage=..., # Any persistent storage
)

ò Note

If you have implemented you own storages you should extend record key generation with new one attribute
- thread_id

#1161

• Improved CallbackData serialization.

– Minimized UUID (hex without dashes)

– Replaced bool values with int (true=1, false=0)

#1163

• Added a tool to make text formatting flexible and easy. More details on the corresponding documentation page
#1172

• Added X-Telegram-Bot-Api-Secret-Token header check #1173

• Made allowed_updates list to revolve automatically in start_polling method if not set explicitly. #1178

• Added possibility to pass custom headers to URLInputFile object #1191

Bugfixes

• Change type of result in InlineQueryResult enum for InlineQueryResultCachedMpeg4Gif and
InlineQueryResultMpeg4Gif to more correct according to documentation.

Change regexp for entities parsing to more correct (InlineQueryResultType.yml). #1146

• Fixed signature of startup/shutdown events to include the **dispatcher.workflow_data as the handler argu-
ments. #1155

• Added missing FORUM_TOPIC_EDITED value to content_type property #1160

• Fixed compatibility with Python 3.8-3.9 (from previous release) #1162

• Fixed the markdown spoiler parser. #1176

• Fixed workflow data propagation #1196

• Fixed the serialization error associated with nested subtypes like InputMedia, ChatMember, etc.

The previously generated code resulted in an invalid schema under pydantic v2, which has stricter type parsing.
Hence, subtypes without the specification of all subtype unions were generating an empty object. This has been
rectified now. #1213

764 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1161
https://github.com/aiogram/aiogram/issues/1163
https://github.com/aiogram/aiogram/issues/1172
https://github.com/aiogram/aiogram/issues/1173
https://github.com/aiogram/aiogram/issues/1178
https://github.com/aiogram/aiogram/issues/1191
https://github.com/aiogram/aiogram/issues/1146
https://github.com/aiogram/aiogram/issues/1155
https://github.com/aiogram/aiogram/issues/1160
https://github.com/aiogram/aiogram/issues/1162
https://github.com/aiogram/aiogram/issues/1176
https://github.com/aiogram/aiogram/issues/1196
https://github.com/aiogram/aiogram/issues/1213

aiogram Documentation, Release 3.23.0

Improved Documentation

• Changed small grammar typos for upload_file #1133

Deprecations and Removals

• Removed text filter in due to is planned to remove this filter few versions ago.

Use F.text instead #1170

Misc

• Added full support of Bot API 6.6

³ Danger

Note that this issue has breaking changes described in the Bot API changelog, this changes is not breaking
in the API but breaking inside aiogram because Beta stage is not finished.

#1139

• Added full support of Bot API 6.7

. Warning

Note that arguments switch_pm_parameter and switch_pm_text was deprecated and should be changed to
button argument as described in API docs.

#1168

• Updated Pydantic to V2

. Warning

Be careful, not all libraries is already updated to using V2

#1202

• Added global defaults disable_web_page_preview and protect_content in addition to parse_mode to the
Bot instance, reworked internal request builder mechanism. #1142

• Removed bot parameters from storages #1144

• Replaced ContextVar’s with a new feature called Validation Context in Pydantic to improve the clarity, usability,
and versatility of handling the Bot instance within method shortcuts.

³ Danger

Breaking: The ‘bot’ argument now is required in URLInputFile

#1210

2.6. Changelog 765

https://github.com/aiogram/aiogram/issues/1133
https://github.com/aiogram/aiogram/issues/1170
https://core.telegram.org/bots/api-changelog#march-9-2023
https://github.com/aiogram/aiogram/issues/1139
https://core.telegram.org/bots/api-changelog#april-21-2023
https://github.com/aiogram/aiogram/issues/1168
https://docs.pydantic.dev/2.0/migration/
https://github.com/aiogram/aiogram/issues/1202
https://github.com/aiogram/aiogram/issues/1142
https://github.com/aiogram/aiogram/issues/1144
https://docs.pydantic.dev/latest/usage/validators/#validation-context
https://github.com/aiogram/aiogram/issues/1210

aiogram Documentation, Release 3.23.0

• Updated magic-filter with new features

– Added hint for len(F) error

– Added not in operation

#1221

2.6.32 3.0.0b7 (2023-02-18)

. Warning

Note that this version has incompatibility with Python 3.8-3.9 in case when you create an instance of Dispatcher
outside of the any coroutine.

Sorry for the inconvenience, it will be fixed in the next version.

This code will not work:
dp = Dispatcher()

def main():
...
dp.run_polling(...)

main()

But if you change it like this it should works as well:

router = Router()

async def main():
dp = Dispatcher()
dp.include_router(router)
...
dp.start_polling(...)

asyncio.run(main())

Features

• Added missing shortcuts, new enums, reworked old stuff

Breaking All previously added enums is re-generated in new place - aiogram.enums instead of aiogram.types

Added enums: aiogram.enums.bot_command_scope_type.BotCommandScopeType,
aiogram.enums.chat_action.ChatAction, aiogram.enums.chat_member_status.
ChatMemberStatus, aiogram.enums.chat_type.ChatType, aiogram.enums.
content_type.ContentType, aiogram.enums.dice_emoji.DiceEmoji, aiogram.enums.
inline_query_result_type.InlineQueryResultType, aiogram.enums.input_media_type.
InputMediaType, aiogram.enums.mask_position_point.MaskPositionPoint, aiogram.
enums.menu_button_type.MenuButtonType, aiogram.enums.message_entity_type.
MessageEntityType, aiogram.enums.parse_mode.ParseMode, aiogram.enums.poll_type.
PollType, aiogram.enums.sticker_type.StickerType, aiogram.enums.topic_icon_color.
TopicIconColor, aiogram.enums.update_type.UpdateType,

766 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1221

aiogram Documentation, Release 3.23.0

Added shortcuts:

– Chat aiogram.types.chat.Chat.get_administrators(),
aiogram.types.chat.Chat.delete_message(), aiogram.types.chat.Chat.
revoke_invite_link(), aiogram.types.chat.Chat.edit_invite_link(),
aiogram.types.chat.Chat.create_invite_link(), aiogram.types.chat.Chat.
export_invite_link(), aiogram.types.chat.Chat.do(), aiogram.types.chat.Chat.
delete_sticker_set(), aiogram.types.chat.Chat.set_sticker_set(), aiogram.types.
chat.Chat.get_member(), aiogram.types.chat.Chat.get_member_count(), aiogram.
types.chat.Chat.leave(), aiogram.types.chat.Chat.unpin_all_messages(), aiogram.
types.chat.Chat.unpin_message(), aiogram.types.chat.Chat.pin_message(),
aiogram.types.chat.Chat.set_administrator_custom_title(), aiogram.types.chat.
Chat.set_permissions(), aiogram.types.chat.Chat.promote(), aiogram.types.chat.
Chat.restrict(), aiogram.types.chat.Chat.unban(), aiogram.types.chat.Chat.
ban(), aiogram.types.chat.Chat.set_description(), aiogram.types.chat.Chat.
set_title(), aiogram.types.chat.Chat.delete_photo(), aiogram.types.chat.Chat.
set_photo(),

– Sticker: aiogram.types.sticker.Sticker.set_position_in_set(),
aiogram.types.sticker.Sticker.delete_from_set(),

– User: aiogram.types.user.User.get_profile_photos()

#952

• Added callback answer feature #1091

• Added a method that allows you to compactly register routers #1117

Bugfixes

• Check status code when downloading file #816

• Fixed ignore_case parameter in aiogram.filters.command.Command filter #1106

Misc

• Added integration with new code-generator named Butcher #1069

• Added full support of Bot API 6.4 #1088

• Updated package metadata, moved build internals from Poetry to Hatch, added contributing guides. #1095

• Added full support of Bot API 6.5

³ Danger

Note that aiogram.types.chat_permissions.ChatPermissions is updated without backward compat-
ibility, so now this object has no can_send_media_messages attribute

#1112

• Replaced error TypeError: TelegramEventObserver.__call__() got an unexpected keyword
argument '<name>' with a more understandable one for developers and with a link to the documentation.
#1114

• Added possibility to reply into webhook with files #1120

2.6. Changelog 767

https://github.com/aiogram/aiogram/issues/952
https://github.com/aiogram/aiogram/issues/1091
https://github.com/aiogram/aiogram/issues/1117
https://github.com/aiogram/aiogram/issues/816
https://github.com/aiogram/aiogram/issues/1106
https://github.com/aiogram/butcher
https://github.com/aiogram/aiogram/issues/1069
https://core.telegram.org/bots/api-changelog#december-30-2022
https://github.com/aiogram/aiogram/issues/1088
https://github.com/aiogram/aiogram/issues/1095
https://core.telegram.org/bots/api-changelog#february-3-2023
https://github.com/aiogram/aiogram/issues/1112
https://github.com/aiogram/aiogram/issues/1114
https://github.com/aiogram/aiogram/issues/1120

aiogram Documentation, Release 3.23.0

• Reworked graceful shutdown. Added method to stop polling. Now polling started from dispatcher can be stopped
by signals gracefully without errors (on Linux and Mac). #1124

2.6.33 3.0.0b6 (2022-11-18)

Features

• (again) Added possibility to combine filters with an and/or operations.

Read more in “Combining filters” documentation section #1018

• Added following methods to Message class:

– Message.forward(...)

– Message.edit_media(...)

– Message.edit_live_location(...)

– Message.stop_live_location(...)

– Message.pin(...)

– Message.unpin()

#1030

• Added following methods to User class:

– User.mention_markdown(...)

– User.mention_html(...)

#1049

• Added full support of Bot API 6.3 #1057

Bugfixes

• Fixed Message.send_invoice and Message.reply_invoice, added missing arguments #1047

• Fixed copy and forward in:

– Message.answer(...)

– Message.copy_to(...)

#1064

Improved Documentation

• Fixed UA translations in index.po #1017

• Fix typehints for Message, reply_media_group and answer_media_group methods #1029

• Removed an old now non-working feature #1060

768 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/1124
https://github.com/aiogram/aiogram/issues/1018
https://github.com/aiogram/aiogram/issues/1030
https://github.com/aiogram/aiogram/issues/1049
https://core.telegram.org/bots/api-changelog#november-5-2022
https://github.com/aiogram/aiogram/issues/1057
https://github.com/aiogram/aiogram/issues/1047
https://github.com/aiogram/aiogram/issues/1064
https://github.com/aiogram/aiogram/issues/1017
https://github.com/aiogram/aiogram/issues/1029
https://github.com/aiogram/aiogram/issues/1060

aiogram Documentation, Release 3.23.0

Misc

• Enabled testing on Python 3.11 #1044

• Added a mandatory dependency certifi in due to in some cases on systems that doesn’t have updated ca-
certificates the requests to Bot API fails with reason [SSL: CERTIFICATE_VERIFY_FAILED] certificate
verify failed: self signed certificate in certificate chain #1066

2.6.34 3.0.0b5 (2022-10-02)

Features

• Add PyPy support and run tests under PyPy #985

• Added message text to aiogram exceptions representation #988

• Added warning about using magic filter from magic_filter instead of aiogram’s ones. Is recommended to use
from aiogram import F instead of from magic_filter import F #990

• Added more detailed error when server response can’t be deserialized. This feature will help to debug unexpected
responses from the Server #1014

Bugfixes

• Reworked error event, introduced aiogram.types.error_event.ErrorEvent object. #898

• Fixed escaping markdown in aiogram.utils.markdown module #903

• Fixed polling crash when Telegram Bot API raises HTTP 429 status-code. #995

• Fixed empty mention in command parsing, now it will be None instead of an empty string #1013

Improved Documentation

• Initialized Docs translation (added Ukrainian language) #925

Deprecations and Removals

• Removed filters factory as described in corresponding issue. #942

Misc

• Now Router/Dispatcher accepts only keyword arguments. #982

2.6. Changelog 769

https://github.com/aiogram/aiogram/issues/1044
https://github.com/aiogram/aiogram/issues/1066
https://github.com/aiogram/aiogram/issues/985
https://github.com/aiogram/aiogram/issues/988
https://github.com/aiogram/aiogram/issues/990
https://github.com/aiogram/aiogram/issues/1014
https://github.com/aiogram/aiogram/issues/898
https://github.com/aiogram/aiogram/issues/903
https://github.com/aiogram/aiogram/issues/995
https://github.com/aiogram/aiogram/issues/1013
https://github.com/aiogram/aiogram/issues/925
https://github.com/aiogram/aiogram/issues/942
https://github.com/aiogram/aiogram/issues/982

aiogram Documentation, Release 3.23.0

2.6.35 3.0.0b4 (2022-08-14)

Features

• Add class helper ChatAction for constants that Telegram BotAPI uses in sendChatAction request. In my opin-
ion, this will help users and will also improve compatibility with 2.x version where similar class was called
“ChatActions”. #803

• Added possibility to combine filters or invert result

Example:

Text(text="demo") | Command(commands=["demo"])
MyFilter() & AnotherFilter()
~StateFilter(state='my-state')

#894

• Fixed type hints for redis TTL params. #922

• Added full_name shortcut for Chat object #929

Bugfixes

• Fixed false-positive coercing of Union types in API methods #901

• Added 3 missing content types:

– proximity_alert_triggered

– supergroup_chat_created

– channel_chat_created

#906

• Fixed the ability to compare the state, now comparison to copy of the state will return True. #927

• Fixed default lock kwargs in RedisEventIsolation. #972

Misc

• Restrict including routers with strings #896

• Changed CommandPatterType to CommandPatternType in aiogram/dispatcher/filters/command.py #907

• Added full support of Bot API 6.1 #936

• Breaking! More flat project structure

These packages was moved, imports in your code should be fixed:

– aiogram.dispatcher.filters -> aiogram.filters

– aiogram.dispatcher.fsm -> aiogram.fsm

– aiogram.dispatcher.handler -> aiogram.handler

– aiogram.dispatcher.webhook -> aiogram.webhook

– aiogram.dispatcher.flags/* -> aiogram.dispatcher.flags (single module instead of package)

#938

770 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/803
https://github.com/aiogram/aiogram/issues/894
https://github.com/aiogram/aiogram/issues/922
https://github.com/aiogram/aiogram/issues/929
https://github.com/aiogram/aiogram/issues/901
https://github.com/aiogram/aiogram/issues/906
https://github.com/aiogram/aiogram/issues/927
https://github.com/aiogram/aiogram/issues/972
https://github.com/aiogram/aiogram/issues/896
https://github.com/aiogram/aiogram/issues/907
https://core.telegram.org/bots/api-changelog#june-20-2022
https://github.com/aiogram/aiogram/issues/936
https://github.com/aiogram/aiogram/issues/938

aiogram Documentation, Release 3.23.0

• Removed deprecated router.<event>_handler and router.register_<event>_handler methods. #941

• Deprecated filters factory. It will be removed in next Beta (3.0b5) #942

• MessageEntity method get_text was removed and extract was renamed to extract_from #944

• Added full support of Bot API 6.2 #975

2.6.36 3.0.0b3 (2022-04-19)

Features

• Added possibility to get command magic result as handler argument #889

• Added full support of Telegram Bot API 6.0 #890

Bugfixes

• Fixed I18n lazy-proxy. Disabled caching. #839

• Added parsing of spoiler message entity #865

• Fixed default parse_mode for Message.copy_to() method. #876

• Fixed CallbackData factory parsing IntEnum’s #885

Misc

• Added automated check that pull-request adds a changes description to CHANGES directory #873

• Changed Message.html_text and Message.md_text attributes behaviour when message has no text. The
empty string will be used instead of raising error. #874

• Used redis-py instead of aioredis package in due to this packages was merged into single one #882

• Solved common naming problem with middlewares that confusing too much developers - now you can’t see
the middleware and middlewares attributes at the same point because this functionality encapsulated to special
interface. #883

2.6.37 3.0.0b2 (2022-02-19)

Features

• Added possibility to pass additional arguments into the aiohttp webhook handler to use this arguments inside
handlers as the same as it possible in polling mode. #785

• Added possibility to add handler flags via decorator (like pytest.mark decorator but aiogram.flags) #836

• Added ChatActionSender utility to automatically sends chat action while long process is running.

It also can be used as message middleware and can be customized via chat_action flag. #837

2.6. Changelog 771

https://github.com/aiogram/aiogram/issues/941
https://github.com/aiogram/aiogram/issues/942
https://github.com/aiogram/aiogram/issues/944
https://core.telegram.org/bots/api-changelog#august-12-2022
https://github.com/aiogram/aiogram/issues/975
https://github.com/aiogram/aiogram/issues/889
https://core.telegram.org/bots/api-changelog#april-16-2022
https://github.com/aiogram/aiogram/issues/890
https://github.com/aiogram/aiogram/issues/839
https://github.com/aiogram/aiogram/issues/865
https://github.com/aiogram/aiogram/issues/876
https://github.com/aiogram/aiogram/issues/885
https://github.com/aiogram/aiogram/issues/873
https://github.com/aiogram/aiogram/issues/874
https://github.com/aiogram/aiogram/issues/882
https://github.com/aiogram/aiogram/issues/883
https://github.com/aiogram/aiogram/issues/785
https://github.com/aiogram/aiogram/issues/836
https://github.com/aiogram/aiogram/issues/837

aiogram Documentation, Release 3.23.0

Bugfixes

• Fixed unexpected behavior of sequences in the StateFilter. #791

• Fixed exceptions filters #827

Misc

• Logger name for processing events is changed to aiogram.events. #830

• Added full support of Telegram Bot API 5.6 and 5.7 #835

• BREAKING Events isolation mechanism is moved from FSM storages to standalone managers #838

2.6.38 3.0.0b1 (2021-12-12)

Features

• Added new custom operation for MagicFilter named as_

Now you can use it to get magic filter result as handler argument

from aiogram import F

...

@router.message(F.text.regexp(r"^(\d+)$").as_("digits"))
async def any_digits_handler(message: Message, digits: Match[str]):

await message.answer(html.quote(str(digits)))

@router.message(F.photo[-1].as_("photo"))
async def download_photos_handler(message: Message, photo: PhotoSize, bot: Bot):

content = await bot.download(photo)

#759

Bugfixes

• Fixed: Missing ChatMemberHandler import in aiogram/dispatcher/handler #751

Misc

• Check destiny in case of no with_destiny enabled in RedisStorage key builder #776

• Added full support of Bot API 5.5 #777

• Stop using feature from #336. From now settings of client-session should be placed as initializer arguments
instead of changing instance attributes. #778

• Make TelegramAPIServer files wrapper in local mode bi-directional (server-client, client-server) Now you can
convert local path to server path and server path to local path. #779

772 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/791
https://github.com/aiogram/aiogram/issues/827
https://github.com/aiogram/aiogram/issues/830
https://github.com/aiogram/aiogram/issues/835
https://github.com/aiogram/aiogram/issues/838
https://github.com/aiogram/aiogram/issues/759
https://github.com/aiogram/aiogram/issues/751
https://github.com/aiogram/aiogram/issues/776
https://core.telegram.org/bots/api-changelog#december-7-2021
https://github.com/aiogram/aiogram/issues/777
https://github.com/aiogram/aiogram/issues/778
https://github.com/aiogram/aiogram/issues/779

aiogram Documentation, Release 3.23.0

2.6.39 3.0.0a18 (2021-11-10)

Features

• Breaking: Changed the signature of the session middlewares Breaking: Renamed AiohttpSession.make_request
method parameter from call to method to match the naming in the base class Added middleware for logging
outgoing requests #716

• Improved description of filters resolving error. For example when you try to pass wrong type of argument to the
filter but don’t know why filter is not resolved now you can get error like this:

aiogram.exceptions.FiltersResolveError: Unknown keyword filters: {'content_types'}
Possible cases:
- 1 validation error for ContentTypesFilter
content_types

Invalid content types {'42'} is not allowed here (type=value_error)

#717

• Breaking internal API change Reworked FSM Storage record keys propagation #723

• Implemented new filter named MagicData(magic_data) that helps to filter event by data from middlewares or
other filters

For example your bot is running with argument named config that contains the application config then you can
filter event by value from this config:

@router.message(magic_data=F.event.from_user.id == F.config.admin_id)
...

#724

Bugfixes

• Fixed I18n context inside error handlers #726

• Fixed bot session closing before emit shutdown #734

• Fixed: bound filter resolving does not require children routers #736

Misc

• Enabled testing on Python 3.10 Removed async_lru dependency (is incompatible with Python 3.10) and replaced
usage with protected property #719

• Converted README.md to README.rst and use it as base file for docs #725

• Rework filters resolving:

– Automatically apply Bound Filters with default values to handlers

– Fix data transfer from parent to included routers filters

#727

• Added full support of Bot API 5.4 https://core.telegram.org/bots/api-changelog#november-5-2021 #744

2.6. Changelog 773

https://github.com/aiogram/aiogram/issues/716
https://github.com/aiogram/aiogram/issues/717
https://github.com/aiogram/aiogram/issues/723
https://github.com/aiogram/aiogram/issues/724
https://github.com/aiogram/aiogram/issues/726
https://github.com/aiogram/aiogram/issues/734
https://github.com/aiogram/aiogram/issues/736
https://github.com/aiogram/aiogram/issues/719
https://github.com/aiogram/aiogram/issues/725
https://github.com/aiogram/aiogram/issues/727
https://core.telegram.org/bots/api-changelog#november-5-2021
https://github.com/aiogram/aiogram/issues/744

aiogram Documentation, Release 3.23.0

2.6.40 3.0.0a17 (2021-09-24)

Misc

• Added html_text and md_text to Message object #708

• Refactored I18n, added context managers for I18n engine and current locale #709

2.6.41 3.0.0a16 (2021-09-22)

Features

• Added support of local Bot API server files downloading

When Local API is enabled files can be downloaded via bot.download/bot.download_file methods. #698

• Implemented I18n & L10n support #701

Misc

• Covered by tests and docs KeyboardBuilder util #699

• Breaking!!!. Refactored and renamed exceptions.

– Exceptions module was moved from aiogram.utils.exceptions to aiogram.exceptions

– Added prefix Telegram for all error classes

#700

• Replaced all pragma: no cover marks via global .coveragerc config #702

• Updated dependencies.

Breaking for framework developers Now all optional dependencies should be installed as extra: poetry install
-E fast -E redis -E proxy -E i18n -E docs #703

2.6.42 3.0.0a15 (2021-09-10)

Features

• Ability to iterate over all states in StatesGroup. Aiogram already had in check for states group so this is relative
feature. #666

Bugfixes

• Fixed incorrect type checking in the aiogram.utils.keyboard.KeyboardBuilder #674

774 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/708
https://github.com/aiogram/aiogram/issues/709
https://github.com/aiogram/aiogram/issues/698
https://github.com/aiogram/aiogram/issues/701
https://github.com/aiogram/aiogram/issues/699
https://github.com/aiogram/aiogram/issues/700
https://github.com/aiogram/aiogram/issues/702
https://github.com/aiogram/aiogram/issues/703
https://github.com/aiogram/aiogram/issues/666
https://github.com/aiogram/aiogram/issues/674

aiogram Documentation, Release 3.23.0

Misc

• Disable ContentType filter by default #668

• Moved update type detection from Dispatcher to Update object #669

• Updated pre-commit config #681

• Reworked handlers_in_use util. Function moved to Router as method .resolve_used_update_types() #682

2.6.43 3.0.0a14 (2021-08-17)

Features

• add aliases for edit/delete reply markup to Message #662

• Reworked outer middleware chain. Prevent to call many times the outer middleware for each nested router #664

Bugfixes

• Prepare parse mode for InputMessageContent in AnswerInlineQuery method #660

Improved Documentation

• Added integration with towncrier #602

Misc

• Added .editorconfig #650

• Redis storage speedup globals #651

• add allow_sending_without_reply param to Message reply aliases #663

2.6.44 2.14.3 (2021-07-21)

• Fixed ChatMember type detection via adding customizable object serialization mechanism (#624, #623)

2.6.45 2.14.2 (2021-07-26)

• Fixed MemoryStorage cleaner (#619)

• Fixed unused default locale in I18nMiddleware (#562, #563)

2.6. Changelog 775

https://github.com/aiogram/aiogram/issues/668
https://github.com/aiogram/aiogram/issues/669
https://github.com/aiogram/aiogram/issues/681
https://github.com/aiogram/aiogram/issues/682
https://github.com/aiogram/aiogram/issues/662
https://github.com/aiogram/aiogram/issues/664
https://github.com/aiogram/aiogram/issues/660
https://github.com/aiogram/aiogram/issues/602
https://github.com/aiogram/aiogram/issues/650
https://github.com/aiogram/aiogram/issues/651
https://github.com/aiogram/aiogram/issues/663
https://github.com/aiogram/aiogram/issues/624
https://github.com/aiogram/aiogram/issues/623
https://github.com/aiogram/aiogram/issues/619
https://github.com/aiogram/aiogram/issues/562
https://github.com/aiogram/aiogram/issues/563

aiogram Documentation, Release 3.23.0

2.6.46 2.14 (2021-07-27)

• Full support of Bot API 5.3 (#610, #614)

• Fixed Message.send_copy method for polls (#603)

• Updated pattern for GroupDeactivated exception (#549

• Added caption_entities field in InputMedia base class (#583)

• Fixed HTML text decorations for tag pre (#597 fixes issues #596 and #481)

• Fixed Message.get_full_command method for messages with caption (#576)

• Improved MongoStorage: remove documents with empty data from aiogram_data collection to save memory.
(#609)

2.6.47 2.13 (2021-04-28)

• Added full support of Bot API 5.2 (#572)

• Fixed usage of provider_data argument in sendInvoice method call

• Fixed builtin command filter args (#556) (#558)

• Allowed to use State instances FSM storage directly (#542)

• Added possibility to get i18n locale without User instance (#546)

• Fixed returning type of Bot.*_chat_invite_link() methods #548 (#549)

• Fixed deep-linking util (#569)

• Small changes in documentation - describe limits in docstrings corresponding to the current limit. (#565)

• Fixed internal call to deprecated ‘is_private’ method (#553)

• Added possibility to use allowed_updates argument in Polling mode (#564)

2.6.48 2.12.1 (2021-03-22)

• Fixed TypeError: Value should be instance of 'User' not 'NoneType' (#527)

• Added missing Chat.message_auto_delete_time field (#535)

• Added MediaGroup filter (#528)

• Added Chat.delete_message shortcut (#526)

• Added mime types parsing for aiogram.types.Document (#431)

• Added warning in TelegramObject.__setitem__ when Telegram adds a new field (#532)

• Fixed examples/chat_type_filter.py (#533)

• Removed redundant definitions in framework code (#531)

776 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/610
https://github.com/aiogram/aiogram/issues/614
https://github.com/aiogram/aiogram/issues/603
https://github.com/aiogram/aiogram/issues/549
https://github.com/aiogram/aiogram/issues/583
https://github.com/aiogram/aiogram/issues/597
https://github.com/aiogram/aiogram/issues/596
https://github.com/aiogram/aiogram/issues/481
https://github.com/aiogram/aiogram/issues/576
https://github.com/aiogram/aiogram/issues/609
https://github.com/aiogram/aiogram/issues/572
https://github.com/aiogram/aiogram/issues/556
https://github.com/aiogram/aiogram/issues/558
https://github.com/aiogram/aiogram/issues/542
https://github.com/aiogram/aiogram/issues/546
https://github.com/aiogram/aiogram/issues/548
https://github.com/aiogram/aiogram/issues/549
https://github.com/aiogram/aiogram/issues/569
https://github.com/aiogram/aiogram/issues/565
https://github.com/aiogram/aiogram/issues/553
https://github.com/aiogram/aiogram/issues/564
https://github.com/aiogram/aiogram/issues/527
https://github.com/aiogram/aiogram/issues/535
https://github.com/aiogram/aiogram/issues/528
https://github.com/aiogram/aiogram/issues/526
https://github.com/aiogram/aiogram/issues/431
https://github.com/aiogram/aiogram/issues/532
https://github.com/aiogram/aiogram/issues/533
https://github.com/aiogram/aiogram/issues/531

aiogram Documentation, Release 3.23.0

2.6.49 2.12 (2021-03-14)

• Full support for Telegram Bot API 5.1 (#519)

• Fixed sending playlist of audio files and documents (#465, #468)

• Fixed FSMContextProxy.setdefault method (#491)

• Fixed Message.answer_location and Message.reply_location unable to send live location (#497)

• Fixed user_id and chat_id getters from the context at Dispatcher check_key, release_key and throttle
methods (#520)

• Fixed Chat.update_chat method and all similar situations (#516)

• Fixed MediaGroup attach methods (#514)

• Fixed state filter for inline keyboard query callback in groups (#508, #510)

• Added missing ContentTypes.DICE (#466)

• Added missing vcard argument to InputContactMessageContent constructor (#473)

• Add missing exceptions: MessageIdInvalid, CantRestrictChatOwner and
UserIsAnAdministratorOfTheChat (#474, #512)

• Added answer_chat_action to the Message object (#501)

• Added dice to message.send_copy method (#511)

• Removed deprecation warning from Message.send_copy

• Added an example of integration between externally created aiohttp Application and aiogram (#433)

• Added split_separator argument to safe_split_text (#515)

• Fixed some typos in docs and examples (#489, #490, #498, #504, #514)

2.6.50 2.11.2 (2021-11-10)

• Fixed default parse mode

• Added missing “supports_streaming” argument to answer_video method #462

2.6.51 2.11.1 (2021-11-10)

• Fixed files URL template

• Fix MessageEntity serialization for API calls #457

• When entities are set, default parse_mode become disabled (#461)

• Added parameter supports_streaming to reply_video, remove redundant docstrings (#459)

• Added missing parameter to promoteChatMember alias (#458)

2.6. Changelog 777

https://github.com/aiogram/aiogram/issues/519
https://github.com/aiogram/aiogram/issues/465
https://github.com/aiogram/aiogram/issues/468
https://github.com/aiogram/aiogram/issues/491
https://github.com/aiogram/aiogram/issues/497
https://github.com/aiogram/aiogram/issues/520
https://github.com/aiogram/aiogram/issues/516
https://github.com/aiogram/aiogram/issues/514
https://github.com/aiogram/aiogram/issues/508
https://github.com/aiogram/aiogram/issues/510
https://github.com/aiogram/aiogram/issues/466
https://github.com/aiogram/aiogram/issues/473
https://github.com/aiogram/aiogram/issues/474
https://github.com/aiogram/aiogram/issues/512
https://github.com/aiogram/aiogram/issues/501
https://github.com/aiogram/aiogram/issues/511
https://github.com/aiogram/aiogram/issues/433
https://github.com/aiogram/aiogram/issues/515
https://github.com/aiogram/aiogram/issues/489
https://github.com/aiogram/aiogram/issues/490
https://github.com/aiogram/aiogram/issues/498
https://github.com/aiogram/aiogram/issues/504
https://github.com/aiogram/aiogram/issues/514
https://github.com/aiogram/aiogram/issues/462
https://github.com/aiogram/aiogram/issues/457
https://github.com/aiogram/aiogram/issues/461
https://github.com/aiogram/aiogram/issues/459
https://github.com/aiogram/aiogram/issues/458

aiogram Documentation, Release 3.23.0

2.6.52 2.11 (2021-11-08)

• Added full support of Telegram Bot API 5.0 (#454)

• Added possibility to more easy specify custom API Server (example)

– WARNING: API method close was named in Bot class as close_bot in due to Bot instance already
has method with the same name. It will be changed in aiogram 3.0

• Added alias to Message object Message.copy_to with deprecation of Message.send_copy

• ChatType.SUPER_GROUP renamed to ChatType.SUPERGROUP (#438)

2.6.53 2.10.1 (2021-09-14)

• Fixed critical bug with getting asyncio event loop in executor. (#424) AttributeError: 'NoneType'
object has no attribute 'run_until_complete'

2.6.54 2.10 (2021-09-13)

• Breaking change: Stop using _MainThread event loop in bot/dispatcher instances (#397)

• Breaking change: Replaced aiomongo with motor (#368, #380)

• Fixed: TelegramObject’s aren’t destroyed after update handling #307 (#371)

• Add setting current context of Telegram types (#369)

• Fixed markdown escaping issues (#363)

• Fixed HTML characters escaping (#409)

• Fixed italic and underline decorations when parse entities to Markdown

• Fixed #413: parse entities positioning (#414)

• Added missing thumb parameter (#362)

• Added public methods to register filters and middlewares (#370)

• Added ChatType builtin filter (#356)

• Fixed IDFilter checking message from channel (#376)

• Added missed answer_poll and reply_poll (#384)

• Added possibility to ignore message caption in commands filter (#383)

• Fixed addStickerToSet method

• Added preparing thumb in send_document method (#391)

• Added exception MessageToPinNotFound (#404)

• Fixed handlers parameter-spec solving (#408)

• Fixed CallbackQuery.answer() returns nothing (#420)

• CHOSEN_INLINE_RESULT is a correct API-term (#415)

• Fixed missing attributes for Animation class (#422)

• Added missed emoji argument to reply_dice (#395)

• Added is_chat_creator method to ChatMemberStatus (#394)

778 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/454
https://github.com/aiogram/aiogram/issues/438
https://github.com/aiogram/aiogram/issues/424
https://github.com/aiogram/aiogram/issues/397
https://github.com/aiogram/aiogram/issues/368
https://github.com/aiogram/aiogram/issues/380
https://github.com/aiogram/aiogram/issues/307
https://github.com/aiogram/aiogram/issues/371
https://github.com/aiogram/aiogram/issues/369
https://github.com/aiogram/aiogram/issues/363
https://github.com/aiogram/aiogram/issues/409
https://github.com/aiogram/aiogram/issues/413
https://github.com/aiogram/aiogram/issues/414
https://github.com/aiogram/aiogram/issues/362
https://github.com/aiogram/aiogram/issues/370
https://github.com/aiogram/aiogram/issues/356
https://github.com/aiogram/aiogram/issues/376
https://github.com/aiogram/aiogram/issues/384
https://github.com/aiogram/aiogram/issues/383
https://github.com/aiogram/aiogram/issues/391
https://github.com/aiogram/aiogram/issues/404
https://github.com/aiogram/aiogram/issues/408
https://github.com/aiogram/aiogram/issues/420
https://github.com/aiogram/aiogram/issues/415
https://github.com/aiogram/aiogram/issues/422
https://github.com/aiogram/aiogram/issues/395
https://github.com/aiogram/aiogram/issues/394

aiogram Documentation, Release 3.23.0

• Added missed ChatPermissions to __all__ (#393)

• Added is_forward method to Message (#390)

• Fixed usage of deprecated is_private function (#421)

and many others documentation and examples changes:

• Updated docstring of RedisStorage2 (#423)

• Updated I18n example (added docs and fixed typos) (#419)

• A little documentation revision (#381)

• Added comments about correct errors_handlers usage (#398)

• Fixed typo rexex -> regex (#386)

• Fixed docs Quick start page code blocks (#417)

• fixed type hints of callback_data (#400)

• Prettify readme, update downloads stats badge (#406)

2.6.55 2.9.2 (2021-06-13)

• Fixed Message.get_full_command() #352

• Fixed markdown util #353

2.6.56 2.9 (2021-06-08)

• Added full support of Telegram Bot API 4.9

• Fixed user context at poll_answer update (#322)

• Fix Chat.set_description (#325)

• Add lazy session generator (#326)

• Fix text decorations (#315, #316, #328)

• Fix missing InlineQueryResultPhoto parse_mode field (#331)

• Fix fields from parent object in KeyboardButton (#344 fixes #343)

• Add possibility to get bot id without calling get_me (#296)

2.6.57 2.8 (2021-04-26)

• Added full support of Bot API 4.8

• Added Message.answer_dice and Message.reply_dice methods (#306)

2.6. Changelog 779

https://github.com/aiogram/aiogram/issues/393
https://github.com/aiogram/aiogram/issues/390
https://github.com/aiogram/aiogram/issues/421
https://github.com/aiogram/aiogram/issues/423
https://github.com/aiogram/aiogram/issues/419
https://github.com/aiogram/aiogram/issues/381
https://github.com/aiogram/aiogram/issues/398
https://github.com/aiogram/aiogram/issues/386
https://github.com/aiogram/aiogram/issues/417
https://github.com/aiogram/aiogram/issues/400
https://github.com/aiogram/aiogram/issues/406
https://github.com/aiogram/aiogram/issues/352
https://github.com/aiogram/aiogram/issues/353
https://github.com/aiogram/aiogram/issues/322
https://github.com/aiogram/aiogram/issues/325
https://github.com/aiogram/aiogram/issues/326
https://github.com/aiogram/aiogram/issues/315
https://github.com/aiogram/aiogram/issues/316
https://github.com/aiogram/aiogram/issues/328
https://github.com/aiogram/aiogram/issues/331
https://github.com/aiogram/aiogram/issues/344
https://github.com/aiogram/aiogram/issues/343
https://github.com/aiogram/aiogram/issues/296
https://github.com/aiogram/aiogram/issues/306

aiogram Documentation, Release 3.23.0

2.6.58 2.7 (2021-04-07)

• Added full support of Bot API 4.7 (#294 #289)

• Added default parse mode for send_animation method (#293 #292)

• Added new API exception when poll requested in public chats (#270)

• Make correct User and Chat get_mention methods (#277)

• Small changes and other minor improvements

2.6.59 2.6.1 (2021-01-25)

• Fixed reply KeyboardButton initializer with request_poll argument (#266)

• Added helper for poll types (aiogram.types.PollType)

• Changed behavior of Telegram_object .as_* and .to_* methods. It will no more mutate the object. (#247)

2.6.60 2.6 (2021-01-23)

• Full support of Telegram Bot API v4.6 (Polls 2.0) #265

• Aded new filter - IsContactSender (commit)

• Fixed proxy extra dependencies version #262

2.6.61 2.5.3 (2021-01-05)

• #255 Updated CallbackData factory validity check. More correct for non-latin symbols

• #256 Fixed renamed_argument decorator error

• #257 One more fix of CommandStart filter

2.6.62 2.5.2 (2021-01-01)

• Get back quote_html and escape_md functions

2.6.63 2.5.1 (2021-01-01)

• Hot-fix of CommandStart filter

2.6.64 2.5 (2021-01-01)

• Added full support of Telegram Bot API 4.5 (#250, #251)

• #239 Fixed check_token method

• #238, #241: Added deep-linking utils

• #248 Fixed support of aiohttp-socks

• Updated setup.py. No more use of internal pip API

780 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/294
https://github.com/aiogram/aiogram/issues/289
https://github.com/aiogram/aiogram/issues/293
https://github.com/aiogram/aiogram/issues/292
https://github.com/aiogram/aiogram/issues/270
https://github.com/aiogram/aiogram/issues/277
https://github.com/aiogram/aiogram/issues/266
https://github.com/aiogram/aiogram/issues/247
https://github.com/aiogram/aiogram/issues/265
https://github.com/aiogram/aiogram/issues/262
https://github.com/aiogram/aiogram/issues/255
https://github.com/aiogram/aiogram/issues/256
https://github.com/aiogram/aiogram/issues/257
https://github.com/aiogram/aiogram/issues/250
https://github.com/aiogram/aiogram/issues/251
https://github.com/aiogram/aiogram/issues/239
https://github.com/aiogram/aiogram/issues/238
https://github.com/aiogram/aiogram/issues/241
https://github.com/aiogram/aiogram/issues/248

aiogram Documentation, Release 3.23.0

• Updated links to documentations (https://docs.aiogram.dev)

• Other small changes and minor improvements (#223 and others. . .)

2.6.65 2.4 (2021-10-29)

• Added Message.send_copy method (forward message without forwarding)

• Safe close of aiohttp client session (no more exception when application is shutdown)

• No more “adWanced” words in project #209

• Arguments user and chat is renamed to user_id and chat_id in Dispatcher.throttle method #196

• Fixed set_chat_permissions #198

• Fixed Dispatcher polling task does not process cancellation #199, #201

• Fixed compatibility with latest asyncio version #200

• Disabled caching by default for lazy_gettext method of I18nMiddleware #203

• Fixed HTML user mention parser #205

• Added IsReplyFilter #210

• Fixed send_poll method arguments #211

• Added OrderedHelper #215

• Fix incorrect completion order. #217

2.6.66 2.3 (2021-08-16)

• Full support of Telegram Bot API 4.4

• Fixed #143

• Added new filters from issue #151: #172, #176, #182

• Added expire argument to RedisStorage2 and other storage fixes #145

• Fixed JSON and Pickle storages #138

• Implemented MongoStorage #153 based on aiomongo (soon motor will be also added)

• Improved tests

• Updated examples

• Warning: Updated auth widget util. #190

• Implemented throttle decorator #181

2.6. Changelog 781

https://docs.aiogram.dev
https://github.com/aiogram/aiogram/issues/223
https://github.com/aiogram/aiogram/issues/209
https://github.com/aiogram/aiogram/issues/196
https://github.com/aiogram/aiogram/issues/198
https://github.com/aiogram/aiogram/issues/199
https://github.com/aiogram/aiogram/issues/201
https://github.com/aiogram/aiogram/issues/200
https://github.com/aiogram/aiogram/issues/203
https://github.com/aiogram/aiogram/issues/205
https://github.com/aiogram/aiogram/issues/210
https://github.com/aiogram/aiogram/issues/211
https://github.com/aiogram/aiogram/issues/215
https://github.com/aiogram/aiogram/issues/217
https://github.com/aiogram/aiogram/issues/143
https://github.com/aiogram/aiogram/issues/151
https://github.com/aiogram/aiogram/issues/172
https://github.com/aiogram/aiogram/issues/176
https://github.com/aiogram/aiogram/issues/182
https://github.com/aiogram/aiogram/issues/145
https://github.com/aiogram/aiogram/issues/138
https://github.com/aiogram/aiogram/issues/153
https://github.com/aiogram/aiogram/issues/190
https://github.com/aiogram/aiogram/issues/181

aiogram Documentation, Release 3.23.0

2.6.67 2.2 (2021-06-09)

• Provides latest Telegram Bot API (4.3)

• Updated docs for filters

• Added opportunity to use different bot tokens from single bot instance (via context manager, #100)

• IMPORTANT: Fixed Typo: data -> bucket in update_bucket for RedisStorage2 (#132)

2.6.68 2.1 (2021-04-18)

• Implemented all new features from Telegram Bot API 4.2

• is_member and is_admin methods of ChatMember and ChatMemberStatus was renamed to
is_chat_member and is_chat_admin

• Remover func filter

• Added some useful Message edit functions (Message.edit_caption, Message.edit_media, Message.
edit_reply_markup) (#121, #103, #104, #112)

• Added requests timeout for all methods (#110)

• Added answer* methods to Message object (#112)

• Maked some improvements of CallbackData factory

• Added deep-linking parameter filter to CommandStart filter

• Implemented opportunity to use DNS over socks (#97 -> #98)

• Implemented logging filter for extending LogRecord attributes (Will be usefull with external logs collector utils
like GrayLog, Kibana and etc.)

• Updated requirements.txt and dev_requirements.txt files

• Other small changes and minor improvements

2.6.69 2.0.1 (2021-12-31)

• Implemented CallbackData factory (example)

• Implemented methods for answering to inline query from context and reply with animation to the messages. #85

• Fixed installation from tar.gz #84

• More exceptions (ChatIdIsEmpty and NotEnoughRightsToRestrict)

2.6.70 2.0 (2021-10-28)

This update will break backward compability with Python 3.6 and works only with Python 3.7+: - contextvars (PEP-
567); - New syntax for annotations (PEP-563).

Changes: - Used contextvars instead of aiogram.utils.context; - Implemented filters factory; - Implemented
new filters mechanism; - Allowed to customize command prefix in CommandsFilter; - Implemented mechanism of
passing results from filters (as dicts) as kwargs in handlers (like fixtures in pytest); - Implemented states group feature;
- Implemented FSM storage’s proxy; - Changed files uploading mechanism; - Implemented pipe for uploading files
from URL; - Implemented I18n Middleware; - Errors handlers now should accept only two arguments (current update
and exception); - Used aiohttp_socks instead of aiosocksy for Socks4/5 proxy; - types.ContentType was divided

782 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/100
https://github.com/aiogram/aiogram/issues/132
https://github.com/aiogram/aiogram/issues/121
https://github.com/aiogram/aiogram/issues/103
https://github.com/aiogram/aiogram/issues/104
https://github.com/aiogram/aiogram/issues/112
https://github.com/aiogram/aiogram/issues/110
https://github.com/aiogram/aiogram/issues/112
https://github.com/aiogram/aiogram/issues/97
https://github.com/aiogram/aiogram/issues/98
https://github.com/aiogram/aiogram/blob/master/examples/callback_data_factory.py
https://github.com/aiogram/aiogram/issues/85
https://github.com/aiogram/aiogram/issues/84

aiogram Documentation, Release 3.23.0

to types.ContentType and types.ContentTypes; - Allowed to use rapidjson instead of ujson/json; - .current()
method in bot and dispatcher objects was renamed to get_current();

Full changelog - You can read more details about this release in migration FAQ: https://aiogram.readthedocs.io/en/
latest/migration_1_to_2.html

2.6.71 1.4 (2021-08-03)

• Bot API 4.0 (#57)

2.6.72 1.3.3 (2021-07-16)

• Fixed markup-entities parsing;

• Added more API exceptions;

• Now InlineQueryResultLocation has live_period;

• Added more message content types;

• Other small changes and minor improvements.

2.6.73 1.3.2 (2021-05-27)

• Fixed crashing of polling process. (i think)

• Added parse_mode field into input query results according to Bot API Docs.

• Added new methods for Chat object. (#42, #43)

• Warning: disabled connections limit for bot aiohttp session.

• Warning: Destroyed “temp sessions” mechanism.

• Added new error types.

• Refactored detection of error type.

• Small fixes of executor util.

• Fixed RethinkDBStorage

2.6.74 1.3.1 (2018-05-27)

2.6.75 1.3 (2021-04-22)

• Allow to use Socks5 proxy (need manually install aiosocksy).

• Refactored aiogram.utils.executor module.

• [Warning] Updated requirements list.

2.6. Changelog 783

https://aiogram.readthedocs.io/en/latest/migration_1_to_2.html
https://aiogram.readthedocs.io/en/latest/migration_1_to_2.html
https://github.com/aiogram/aiogram/issues/57
https://github.com/aiogram/aiogram/issues/42
https://github.com/aiogram/aiogram/issues/43

aiogram Documentation, Release 3.23.0

2.6.76 1.2.3 (2018-04-14)

• Fixed API errors detection

• Fixed compability of setup.py with pip 10.0.0

2.6.77 1.2.2 (2018-04-08)

• Added more error types.

• Implemented method InputFile.from_url(url: str) for downloading files.

• Implemented big part of API method tests.

• Other small changes and mminor improvements.

2.6.78 1.2.1 (2018-03-25)

• Fixed handling Venue’s [#27, #26]

• Added parse_mode to all medias (Bot API 3.6 support) [#23]

• Now regexp filter can be used with callback query data [#19]

• Improvements in InlineKeyboardMarkup & ReplyKeyboardMarkup objects [#21]

• Other bug & typo fixes and minor improvements.

2.6.79 1.2 (2018-02-23)

• Full provide Telegram Bot API 3.6

• Fixed critical error: Fatal Python error: PyImport_GetModuleDict: no module dictionary!

• Implemented connection pool in RethinkDB driver

• Typo fixes of documentstion

• Other bug fixes and minor improvements.

2.6.80 1.1 (2018-01-27)

• Added more methods for data types (like message.reply_sticker(...) or file.download(...)

• Typo fixes of documentstion

• Allow to set default parse mode for messages (Bot(... , parse_mode='HTML'))

• Allowed to cancel event from the Middleware.on_pre_process_<event type>

• Fixed sending files with correct names.

• Fixed MediaGroup

• Added RethinkDB storage for FSM (aiogram.contrib.fsm_storage.rethinkdb)

784 Chapter 2. Contents

https://github.com/aiogram/aiogram/issues/27
https://github.com/aiogram/aiogram/issues/26
https://github.com/aiogram/aiogram/issues/23
https://github.com/aiogram/aiogram/issues/19
https://github.com/aiogram/aiogram/issues/21

aiogram Documentation, Release 3.23.0

2.6.81 1.0.4 (2018-01-10)

2.6.82 1.0.3 (2018-01-07)

• Added middlewares mechanism.

• Added example for middlewares and throttling manager.

• Added logging middleware (aiogram.contrib.middlewares.logging.LoggingMiddleware)

• Fixed handling errors in async tasks (marked as ‘async_task’)

• Small fixes and other minor improvements.

2.6.83 1.0.2 (2017-11-29)

2.6.84 1.0.1 (2017-11-21)

• Implemented types.InputFile for more easy sending local files

• Danger! Fixed typo in word pooling. Now whatever all methods with that word marked as deprecated and
original methods is renamed to polling. Check it in you’r code before updating!

• Fixed helper for chat actions (types.ChatActions)

• Added example for media group.

2.6.85 1.0 (2017-11-19)

• Remaked data types serialozation/deserialization mechanism (Speed up).

• Fully rewrited all Telegram data types.

• Bot object was fully rewritted (regenerated).

• Full provide Telegram Bot API 3.4+ (with sendMediaGroup)

• Warning: Now BaseStorage.close() is awaitable! (FSM)

• Fixed compability with uvloop.

• More employments for aiogram.utils.context.

• Allowed to disable ujson.

• Other bug fixes and minor improvements.

• Migrated from Bitbucket to Github.

2.6. Changelog 785

https://github.com/aiogram/aiogram/blob/master/examples/media_group.py

aiogram Documentation, Release 3.23.0

2.6.86 0.4.1 (2017-08-03)

2.6.87 0.4 (2017-08-05)

2.6.88 0.3.4 (2017-08-04)

2.6.89 0.3.3 (2017-07-05)

2.6.90 0.3.2 (2017-07-04)

2.6.91 0.3.1 (2017-07-04)

2.6.92 0.2b1 (2017-06-00)

2.6.93 0.1 (2017-06-03)

2.7 Contributing

You’re welcome to contribute to aiogram!

aiogram is an open-source project, and anyone can contribute to it in any possible way

2.7.1 Developing

Before making any changes in the framework code, it is necessary to fork the project and clone the project to your PC
and know how to do a pull-request.

How to work with pull-request you can read in the GitHub docs

Also in due to this project is written in Python, you will need Python to be installed (is recommended to use latest
Python versions, but any version starting from 3.8 can be used)

Use virtualenv

You can create a virtual environment in a directory using venv module (it should be pre-installed by default):

This action will create a .venv directory with the Python binaries and then you will be able to install packages into
that isolated environment.

Activate the environment

Linux / macOS:

source .venv/bin/activate

Windows cmd

.\.venv\Scripts\activate

Windows PowerShell

786 Chapter 2. Contents

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request

aiogram Documentation, Release 3.23.0

.\.venv\Scripts\activate.ps1

To check it worked, use described command, it should show the pip version and location inside the isolated environment

pip -V

Also make sure you have the latest pip version in your virtual environment to avoid errors on next steps:

python -m pip install --upgrade pip

Setup project

After activating the environment install aiogram from sources and their dependencies.

Linux / macOS:

pip install -e ."[dev,test,docs,fast,redis,mongo,proxy,i18n]"

Windows:

pip install -e .[dev,test,docs,fast,redis,mongo,proxy,i18n]

It will install aiogram in editable mode into your virtual environment and all dependencies.

Making changes in code

At this point you can make any changes in the code that you want, it can be any fixes, implementing new features or
experimenting.

Format the code (code-style)

Note that this project is Black-formatted, so you should follow that code-style, too be sure You’re correctly doing this
let’s reformat the code automatically:

black aiogram tests examples
isort aiogram tests examples

Run tests

All changes should be tested:

pytest tests

Also if you are doing something with Redis-storage or/and MongoDB-storage, you will need to test everything works
with Redis or/and MongoDB:

pytest --redis redis://<host>:<port>/<db> --mongo mongodb://<user>:<password>@<host>:
→˓<port> tests

2.7. Contributing 787

aiogram Documentation, Release 3.23.0

Docs

We are using Sphinx to render docs in different languages, all sources located in docs directory, you can change the
sources and to test it you can start live-preview server and look what you are doing:

sphinx-autobuild --watch aiogram/ docs/ docs/_build/

Docs translations

Translation of the documentation is very necessary and cannot be done without the help of the community from all
over the world, so you are welcome to translate the documentation into different languages.

Before start, let’s up to date all texts:

cd docs
make gettext
sphinx-intl update -p _build/gettext -l <language_code>

Change the <language_code> in example below to the target language code, after that you can modify texts inside
docs/locale/<language_code>/LC_MESSAGES as *.po files by using any text-editor or specialized utilites for
GNU Gettext, for example via poedit.

To view results:

sphinx-autobuild --watch aiogram/ docs/ docs/_build/ -D language=<language_code>

Describe changes

Describe your changes in one or more sentences so that bot developers know what’s changed in their favorite framework
- create <code>.<category>.rst file and write the description.

<code> is Issue or Pull-request number, after release link to this issue will be published to the Changelog page.

<category> is a changes category marker, it can be one of:

• feature - when you are implementing new feature

• bugfix - when you fix a bug

• doc - when you improve the docs

• removal - when you remove something from the framework

• misc - when changed something inside the Core or project configuration

If you have troubles with changing category feel free to ask Core-contributors to help with choosing it.

788 Chapter 2. Contents

https://poedit.net/

aiogram Documentation, Release 3.23.0

Complete

After you have made all your changes, publish them to the repository and create a pull request as mentioned at the
beginning of the article and wait for a review of these changes.

2.7.2 Star on GitHub

You can “star” repository on GitHub - https://github.com/aiogram/aiogram (click the star button at the top right)

Adding stars makes it easier for other people to find this project and understand how useful it is.

2.7.3 Guides

You can write guides how to develop Bots on top of aiogram and publish it into YouTube, Medium, GitHub Books,
any Courses platform or any other platform that you know.

This will help more people learn about the framework and learn how to use it

2.7.4 Take answers

The developers is always asks for any question in our chats or any other platforms like GitHub Discussions, StackOver-
flow and others, feel free to answer to this questions.

2.7.5 Funding

The development of the project is free and not financed by commercial organizations, it is my personal initiative
(@JRootJunior) and I am engaged in the development of the project in my free time.

So, if you want to financially support the project, or, for example, give me a pizza or a beer, you can do it on OpenCol-
lective.

2.7. Contributing 789

https://github.com/aiogram/aiogram
https://t.me/JRootJunior
https://opencollective.com/aiogram
https://opencollective.com/aiogram

aiogram Documentation, Release 3.23.0

790 Chapter 2. Contents

PYTHON MODULE INDEX

a
aiogram.dispatcher.flags, 692
aiogram.enums.bot_command_scope_type, 603
aiogram.enums.chat_action, 604
aiogram.enums.chat_boost_source_type, 604
aiogram.enums.chat_member_status, 605
aiogram.enums.chat_type, 605
aiogram.enums.content_type, 605
aiogram.enums.currency, 608
aiogram.enums.dice_emoji, 611
aiogram.enums.encrypted_passport_element, 611
aiogram.enums.inline_query_result_type, 612
aiogram.enums.input_media_type, 612
aiogram.enums.input_paid_media_type, 613
aiogram.enums.input_profile_photo_type, 613
aiogram.enums.input_story_content_type, 613
aiogram.enums.keyboard_button_poll_type_type,

613
aiogram.enums.mask_position_point, 614
aiogram.enums.menu_button_type, 614
aiogram.enums.message_entity_type, 615
aiogram.enums.message_origin_type, 615
aiogram.enums.owned_gift_type, 616
aiogram.enums.paid_media_type, 616
aiogram.enums.parse_mode, 616
aiogram.enums.passport_element_error_type,

617
aiogram.enums.poll_type, 617
aiogram.enums.reaction_type_type, 617
aiogram.enums.revenue_withdrawal_state_type,

618
aiogram.enums.sticker_format, 618
aiogram.enums.sticker_type, 618
aiogram.enums.story_area_type_type, 619
aiogram.enums.topic_icon_color, 619
aiogram.enums.transaction_partner_type, 619
aiogram.enums.transaction_partner_user_transaction_type_enum,

620
aiogram.enums.update_type, 620
aiogram.exceptions, 690
aiogram.handlers.callback_query, 703
aiogram.methods.add_sticker_to_set, 396

aiogram.methods.answer_callback_query, 413
aiogram.methods.answer_inline_query, 574
aiogram.methods.answer_pre_checkout_query,

585
aiogram.methods.answer_shipping_query, 586
aiogram.methods.answer_web_app_query, 576
aiogram.methods.approve_chat_join_request,

414
aiogram.methods.approve_suggested_post, 558
aiogram.methods.ban_chat_member, 415
aiogram.methods.ban_chat_sender_chat, 416
aiogram.methods.close, 417
aiogram.methods.close_forum_topic, 418
aiogram.methods.close_general_forum_topic,

419
aiogram.methods.convert_gift_to_stars, 420
aiogram.methods.copy_message, 421
aiogram.methods.copy_messages, 424
aiogram.methods.create_chat_invite_link, 425
aiogram.methods.create_chat_subscription_invite_link,

426
aiogram.methods.create_forum_topic, 428
aiogram.methods.create_invoice_link, 588
aiogram.methods.create_new_sticker_set, 397
aiogram.methods.decline_chat_join_request,

429
aiogram.methods.decline_suggested_post, 559
aiogram.methods.delete_business_messages, 430
aiogram.methods.delete_chat_photo, 431
aiogram.methods.delete_chat_sticker_set, 432
aiogram.methods.delete_forum_topic, 433
aiogram.methods.delete_message, 560
aiogram.methods.delete_messages, 561
aiogram.methods.delete_my_commands, 434
aiogram.methods.delete_sticker_from_set, 398
aiogram.methods.delete_sticker_set, 399
aiogram.methods.delete_story, 435
aiogram.methods.delete_webhook, 597
aiogram.methods.edit_chat_invite_link, 436
aiogram.methods.edit_chat_subscription_invite_link,

437
aiogram.methods.edit_forum_topic, 438

791

aiogram Documentation, Release 3.23.0

aiogram.methods.edit_general_forum_topic, 440
aiogram.methods.edit_message_caption, 562
aiogram.methods.edit_message_checklist, 564
aiogram.methods.edit_message_live_location,

565
aiogram.methods.edit_message_media, 567
aiogram.methods.edit_message_reply_markup,

569
aiogram.methods.edit_message_text, 570
aiogram.methods.edit_story, 441
aiogram.methods.edit_user_star_subscription,

590
aiogram.methods.export_chat_invite_link, 442
aiogram.methods.forward_message, 443
aiogram.methods.forward_messages, 445
aiogram.methods.get_available_gifts, 446
aiogram.methods.get_business_account_gifts,

447
aiogram.methods.get_business_account_star_balance,

448
aiogram.methods.get_business_connection, 449
aiogram.methods.get_chat, 450
aiogram.methods.get_chat_administrators, 451
aiogram.methods.get_chat_member, 451
aiogram.methods.get_chat_member_count, 452
aiogram.methods.get_chat_menu_button, 453
aiogram.methods.get_custom_emoji_stickers,

400
aiogram.methods.get_file, 454
aiogram.methods.get_forum_topic_icon_stickers,

455
aiogram.methods.get_game_high_scores, 581
aiogram.methods.get_me, 455
aiogram.methods.get_my_commands, 456
aiogram.methods.get_my_default_administrator_rights,

457
aiogram.methods.get_my_description, 458
aiogram.methods.get_my_name, 459
aiogram.methods.get_my_short_description, 460
aiogram.methods.get_my_star_balance, 591
aiogram.methods.get_star_transactions, 592
aiogram.methods.get_sticker_set, 401
aiogram.methods.get_updates, 598
aiogram.methods.get_user_chat_boosts, 460
aiogram.methods.get_user_profile_photos, 461
aiogram.methods.get_webhook_info, 599
aiogram.methods.gift_premium_subscription,

462
aiogram.methods.hide_general_forum_topic, 463
aiogram.methods.leave_chat, 464
aiogram.methods.log_out, 465
aiogram.methods.pin_chat_message, 466
aiogram.methods.post_story, 467
aiogram.methods.promote_chat_member, 469

aiogram.methods.read_business_message, 471
aiogram.methods.refund_star_payment, 593
aiogram.methods.remove_business_account_profile_photo,

472
aiogram.methods.remove_chat_verification, 473
aiogram.methods.remove_user_verification, 474
aiogram.methods.reopen_forum_topic, 475
aiogram.methods.reopen_general_forum_topic,

476
aiogram.methods.replace_sticker_in_set, 402
aiogram.methods.restrict_chat_member, 477
aiogram.methods.revoke_chat_invite_link, 478
aiogram.methods.save_prepared_inline_message,

578
aiogram.methods.send_animation, 480
aiogram.methods.send_audio, 483
aiogram.methods.send_chat_action, 486
aiogram.methods.send_checklist, 487
aiogram.methods.send_contact, 489
aiogram.methods.send_dice, 491
aiogram.methods.send_document, 493
aiogram.methods.send_game, 582
aiogram.methods.send_gift, 496
aiogram.methods.send_invoice, 594
aiogram.methods.send_location, 498
aiogram.methods.send_media_group, 500
aiogram.methods.send_message, 503
aiogram.methods.send_paid_media, 505
aiogram.methods.send_photo, 508
aiogram.methods.send_poll, 511
aiogram.methods.send_sticker, 403
aiogram.methods.send_venue, 514
aiogram.methods.send_video, 516
aiogram.methods.send_video_note, 520
aiogram.methods.send_voice, 523
aiogram.methods.set_business_account_bio, 525
aiogram.methods.set_business_account_gift_settings,

526
aiogram.methods.set_business_account_name,

527
aiogram.methods.set_business_account_profile_photo,

528
aiogram.methods.set_business_account_username,

530
aiogram.methods.set_chat_administrator_custom_title,

531
aiogram.methods.set_chat_description, 532
aiogram.methods.set_chat_menu_button, 533
aiogram.methods.set_chat_permissions, 534
aiogram.methods.set_chat_photo, 535
aiogram.methods.set_chat_sticker_set, 536
aiogram.methods.set_chat_title, 537
aiogram.methods.set_custom_emoji_sticker_set_thumbnail,

405

792 Python Module Index

aiogram Documentation, Release 3.23.0

aiogram.methods.set_game_score, 584
aiogram.methods.set_message_reaction, 538
aiogram.methods.set_my_commands, 540
aiogram.methods.set_my_default_administrator_rights,

541
aiogram.methods.set_my_description, 542
aiogram.methods.set_my_name, 543
aiogram.methods.set_my_short_description, 544
aiogram.methods.set_passport_data_errors, 602
aiogram.methods.set_sticker_emoji_list, 406
aiogram.methods.set_sticker_keywords, 407
aiogram.methods.set_sticker_mask_position,

408
aiogram.methods.set_sticker_position_in_set,

409
aiogram.methods.set_sticker_set_thumbnail,

410
aiogram.methods.set_sticker_set_title, 411
aiogram.methods.set_user_emoji_status, 545
aiogram.methods.set_webhook, 600
aiogram.methods.stop_message_live_location,

572
aiogram.methods.stop_poll, 573
aiogram.methods.transfer_business_account_stars,

546
aiogram.methods.transfer_gift, 547
aiogram.methods.unban_chat_member, 548
aiogram.methods.unban_chat_sender_chat, 549
aiogram.methods.unhide_general_forum_topic,

550
aiogram.methods.unpin_all_chat_messages, 551
aiogram.methods.unpin_all_forum_topic_messages,

552
aiogram.methods.unpin_all_general_forum_topic_messages,

553
aiogram.methods.unpin_chat_message, 554
aiogram.methods.upgrade_gift, 555
aiogram.methods.upload_sticker_file, 412
aiogram.methods.verify_chat, 556
aiogram.methods.verify_user, 557
aiogram.types.accepted_gift_types, 19
aiogram.types.affiliate_info, 364
aiogram.types.animation, 20
aiogram.types.audio, 20
aiogram.types.background_fill, 21
aiogram.types.background_fill_freeform_gradient,

21
aiogram.types.background_fill_gradient, 22
aiogram.types.background_fill_solid, 22
aiogram.types.background_type, 22
aiogram.types.background_type_chat_theme, 23
aiogram.types.background_type_fill, 23
aiogram.types.background_type_pattern, 23
aiogram.types.background_type_wallpaper, 24

aiogram.types.birthdate, 25
aiogram.types.bot_command, 25
aiogram.types.bot_command_scope, 25
aiogram.types.bot_command_scope_all_chat_administrators,

26
aiogram.types.bot_command_scope_all_group_chats,

26
aiogram.types.bot_command_scope_all_private_chats,

26
aiogram.types.bot_command_scope_chat, 27
aiogram.types.bot_command_scope_chat_administrators,

27
aiogram.types.bot_command_scope_chat_member,

28
aiogram.types.bot_command_scope_default, 28
aiogram.types.bot_description, 28
aiogram.types.bot_name, 29
aiogram.types.bot_short_description, 29
aiogram.types.business_bot_rights, 29
aiogram.types.business_connection, 30
aiogram.types.business_intro, 31
aiogram.types.business_location, 31
aiogram.types.business_messages_deleted, 32
aiogram.types.business_opening_hours, 32
aiogram.types.business_opening_hours_interval,

32
aiogram.types.callback_game, 395
aiogram.types.callback_query, 33
aiogram.types.chat, 34
aiogram.types.chat_administrator_rights, 50
aiogram.types.chat_background, 51
aiogram.types.chat_boost, 52
aiogram.types.chat_boost_added, 52
aiogram.types.chat_boost_removed, 52
aiogram.types.chat_boost_source, 53
aiogram.types.chat_boost_source_gift_code, 53
aiogram.types.chat_boost_source_giveaway, 53
aiogram.types.chat_boost_source_premium, 54
aiogram.types.chat_boost_updated, 54
aiogram.types.chat_full_info, 55
aiogram.types.chat_invite_link, 58
aiogram.types.chat_join_request, 59
aiogram.types.chat_location, 106
aiogram.types.chat_member, 106
aiogram.types.chat_member_administrator, 107
aiogram.types.chat_member_banned, 109
aiogram.types.chat_member_left, 109
aiogram.types.chat_member_member, 109
aiogram.types.chat_member_owner, 110
aiogram.types.chat_member_restricted, 110
aiogram.types.chat_member_updated, 112
aiogram.types.chat_permissions, 135
aiogram.types.chat_photo, 137
aiogram.types.chat_shared, 137

Python Module Index 793

aiogram Documentation, Release 3.23.0

aiogram.types.checklist, 138
aiogram.types.checklist_task, 138
aiogram.types.checklist_tasks_added, 139
aiogram.types.checklist_tasks_done, 139
aiogram.types.chosen_inline_result, 317
aiogram.types.contact, 139
aiogram.types.copy_text_button, 140
aiogram.types.dice, 140
aiogram.types.direct_message_price_changed,

141
aiogram.types.direct_messages_topic, 141
aiogram.types.document, 141
aiogram.types.encrypted_credentials, 382
aiogram.types.encrypted_passport_element, 382
aiogram.types.error_event, 689
aiogram.types.external_reply_info, 142
aiogram.types.file, 144
aiogram.types.force_reply, 144
aiogram.types.forum_topic, 145
aiogram.types.forum_topic_closed, 145
aiogram.types.forum_topic_created, 146
aiogram.types.forum_topic_edited, 146
aiogram.types.forum_topic_reopened, 146
aiogram.types.game, 395
aiogram.types.game_high_score, 396
aiogram.types.general_forum_topic_hidden, 146
aiogram.types.general_forum_topic_unhidden,

147
aiogram.types.gift, 147
aiogram.types.gift_info, 147
aiogram.types.gifts, 148
aiogram.types.giveaway, 148
aiogram.types.giveaway_completed, 149
aiogram.types.giveaway_created, 150
aiogram.types.giveaway_winners, 150
aiogram.types.inaccessible_message, 151
aiogram.types.inline_keyboard_button, 198
aiogram.types.inline_keyboard_markup, 199
aiogram.types.inline_query, 318
aiogram.types.inline_query_result, 319
aiogram.types.inline_query_result_article,

320
aiogram.types.inline_query_result_audio, 321
aiogram.types.inline_query_result_cached_audio,

323
aiogram.types.inline_query_result_cached_document,

324
aiogram.types.inline_query_result_cached_gif,

327
aiogram.types.inline_query_result_cached_mpeg4_gif,

328
aiogram.types.inline_query_result_cached_photo,

331

aiogram.types.inline_query_result_cached_sticker,
333

aiogram.types.inline_query_result_cached_video,
335

aiogram.types.inline_query_result_cached_voice,
337

aiogram.types.inline_query_result_contact,
339

aiogram.types.inline_query_result_document,
340

aiogram.types.inline_query_result_game, 342
aiogram.types.inline_query_result_gif, 343
aiogram.types.inline_query_result_location,

344
aiogram.types.inline_query_result_mpeg4_gif,

347
aiogram.types.inline_query_result_photo, 350
aiogram.types.inline_query_result_venue, 352
aiogram.types.inline_query_result_video, 353
aiogram.types.inline_query_result_voice, 355
aiogram.types.inline_query_results_button,

357
aiogram.types.input_checklist, 199
aiogram.types.input_checklist_task, 200
aiogram.types.input_contact_message_content,

357
aiogram.types.input_file, 200
aiogram.types.input_invoice_message_content,

358
aiogram.types.input_location_message_content,

361
aiogram.types.input_media, 201
aiogram.types.input_media_animation, 201
aiogram.types.input_media_audio, 202
aiogram.types.input_media_document, 204
aiogram.types.input_media_photo, 205
aiogram.types.input_media_video, 205
aiogram.types.input_message_content, 362
aiogram.types.input_paid_media, 207
aiogram.types.input_paid_media_photo, 207
aiogram.types.input_paid_media_video, 208
aiogram.types.input_poll_option, 209
aiogram.types.input_profile_photo, 209
aiogram.types.input_profile_photo_animated,

209
aiogram.types.input_profile_photo_static, 210
aiogram.types.input_sticker, 379
aiogram.types.input_story_content, 210
aiogram.types.input_story_content_photo, 210
aiogram.types.input_story_content_video, 211
aiogram.types.input_text_message_content, 362
aiogram.types.input_venue_message_content,

363
aiogram.types.invoice, 365

794 Python Module Index

aiogram Documentation, Release 3.23.0

aiogram.types.keyboard_button, 211
aiogram.types.keyboard_button_poll_type, 212
aiogram.types.keyboard_button_request_chat,

213
aiogram.types.keyboard_button_request_user,

214
aiogram.types.keyboard_button_request_users,

215
aiogram.types.labeled_price, 365
aiogram.types.link_preview_options, 216
aiogram.types.location, 216
aiogram.types.location_address, 217
aiogram.types.login_url, 217
aiogram.types.mask_position, 379
aiogram.types.maybe_inaccessible_message, 218
aiogram.types.menu_button, 218
aiogram.types.menu_button_commands, 219
aiogram.types.menu_button_default, 219
aiogram.types.menu_button_web_app, 219
aiogram.types.message, 220
aiogram.types.message_auto_delete_timer_changed,

281
aiogram.types.message_entity, 282
aiogram.types.message_id, 282
aiogram.types.message_origin, 283
aiogram.types.message_origin_channel, 283
aiogram.types.message_origin_chat, 283
aiogram.types.message_origin_hidden_user, 284
aiogram.types.message_origin_user, 284
aiogram.types.message_reaction_count_updated,

285
aiogram.types.message_reaction_updated, 285
aiogram.types.order_info, 366
aiogram.types.owned_gift, 286
aiogram.types.owned_gift_regular, 287
aiogram.types.owned_gift_unique, 288
aiogram.types.owned_gifts, 289
aiogram.types.paid_media, 289
aiogram.types.paid_media_info, 289
aiogram.types.paid_media_photo, 290
aiogram.types.paid_media_preview, 290
aiogram.types.paid_media_purchased, 366
aiogram.types.paid_media_video, 290
aiogram.types.paid_message_price_changed, 291
aiogram.types.passport_data, 384
aiogram.types.passport_element_error, 384
aiogram.types.passport_element_error_data_field,

385
aiogram.types.passport_element_error_file,

385
aiogram.types.passport_element_error_files,

386
aiogram.types.passport_element_error_front_side,

387

aiogram.types.passport_element_error_reverse_side,
388

aiogram.types.passport_element_error_selfie,
388

aiogram.types.passport_element_error_translation_file,
389

aiogram.types.passport_element_error_translation_files,
390

aiogram.types.passport_element_error_unspecified,
391

aiogram.types.passport_file, 391
aiogram.types.photo_size, 291
aiogram.types.poll, 291
aiogram.types.poll_answer, 292
aiogram.types.poll_option, 293
aiogram.types.pre_checkout_query, 366
aiogram.types.prepared_inline_message, 364
aiogram.types.proximity_alert_triggered, 293
aiogram.types.reaction_count, 293
aiogram.types.reaction_type, 294
aiogram.types.reaction_type_custom_emoji, 294
aiogram.types.reaction_type_emoji, 294
aiogram.types.reaction_type_paid, 295
aiogram.types.refunded_payment, 367
aiogram.types.reply_keyboard_markup, 295
aiogram.types.reply_keyboard_remove, 296
aiogram.types.reply_parameters, 296
aiogram.types.response_parameters, 297
aiogram.types.revenue_withdrawal_state, 368
aiogram.types.revenue_withdrawal_state_failed,

368
aiogram.types.revenue_withdrawal_state_pending,

369
aiogram.types.revenue_withdrawal_state_succeeded,

369
aiogram.types.sent_web_app_message, 364
aiogram.types.shared_user, 297
aiogram.types.shipping_address, 370
aiogram.types.shipping_option, 370
aiogram.types.shipping_query, 371
aiogram.types.star_amount, 298
aiogram.types.star_transaction, 372
aiogram.types.star_transactions, 373
aiogram.types.sticker, 380
aiogram.types.sticker_set, 381
aiogram.types.story, 298
aiogram.types.story_area, 298
aiogram.types.story_area_position, 299
aiogram.types.story_area_type, 299
aiogram.types.story_area_type_link, 299
aiogram.types.story_area_type_location, 300
aiogram.types.story_area_type_suggested_reaction,

301

Python Module Index 795

aiogram Documentation, Release 3.23.0

aiogram.types.story_area_type_unique_gift,
302

aiogram.types.story_area_type_weather, 302
aiogram.types.successful_payment, 373
aiogram.types.suggested_post_approval_failed,

303
aiogram.types.suggested_post_approved, 303
aiogram.types.suggested_post_declined, 304
aiogram.types.suggested_post_info, 304
aiogram.types.suggested_post_paid, 304
aiogram.types.suggested_post_parameters, 305
aiogram.types.suggested_post_price, 305
aiogram.types.suggested_post_refunded, 306
aiogram.types.switch_inline_query_chosen_chat,

306
aiogram.types.text_quote, 307
aiogram.types.transaction_partner, 374
aiogram.types.transaction_partner_affiliate_program,

374
aiogram.types.transaction_partner_chat, 375
aiogram.types.transaction_partner_fragment,

376
aiogram.types.transaction_partner_other, 376
aiogram.types.transaction_partner_telegram_ads,

377
aiogram.types.transaction_partner_telegram_api,

377
aiogram.types.transaction_partner_user, 378
aiogram.types.unique_gift, 307
aiogram.types.unique_gift_backdrop, 308
aiogram.types.unique_gift_backdrop_colors,

308
aiogram.types.unique_gift_info, 309
aiogram.types.unique_gift_model, 309
aiogram.types.unique_gift_symbol, 310
aiogram.types.update, 392
aiogram.types.user, 310
aiogram.types.user_chat_boosts, 311
aiogram.types.user_profile_photos, 312
aiogram.types.user_shared, 312
aiogram.types.users_shared, 312
aiogram.types.venue, 313
aiogram.types.video, 313
aiogram.types.video_chat_ended, 314
aiogram.types.video_chat_participants_invited,

314
aiogram.types.video_chat_scheduled, 315
aiogram.types.video_chat_started, 315
aiogram.types.video_note, 315
aiogram.types.voice, 316
aiogram.types.web_app_data, 316
aiogram.types.web_app_info, 316
aiogram.types.webhook_info, 394
aiogram.types.write_access_allowed, 317

796 Python Module Index

INDEX

Symbols
__call__() (aiogram.dispatcher.middlewares.base.BaseMiddleware

method), 687
__call__() (aiogram.filters.base.Filter method), 650
__init__() (aiogram.dispatcher.dispatcher.Dispatcher

method), 634
__init__() (aiogram.dispatcher.router.Router method),

628
__init__() (aiogram.filters.command.Command

method), 640
__init__() (aiogram.fsm.storage.memory.MemoryStorage

method), 661
__init__() (aiogram.fsm.storage.mongo.MongoStorage

method), 663
__init__() (aiogram.fsm.storage.pymongo.PyMongoStorage

method), 662
__init__() (aiogram.fsm.storage.redis.RedisStorage

method), 662
__init__() (aiogram.types.input_file.BufferedInputFile

method), 624
__init__() (aiogram.types.input_file.FSInputFile

method), 624
__init__() (aiogram.utils.callback_answer.CallbackAnswer

method), 723
__init__() (aiogram.utils.callback_answer.CallbackAnswerMiddleware

method), 722
__init__() (aiogram.utils.chat_action.ChatActionSender

method), 716
__init__() (aiogram.utils.formatting.Text method), 727
__init__() (aiogram.utils.i18n.middleware.ConstI18nMiddleware

method), 713
__init__() (aiogram.utils.i18n.middleware.FSMI18nMiddleware

method), 713
__init__() (aiogram.utils.i18n.middleware.I18nMiddleware

method), 714
__init__() (aiogram.utils.i18n.middleware.SimpleI18nMiddleware

method), 712
__init__() (aiogram.utils.keyboard.InlineKeyboardBuilder

method), 708
__init__() (aiogram.utils.keyboard.ReplyKeyboardBuilder

method), 710
__init__() (aiogram.webhook.aiohttp_server.BaseRequestHandler

method), 694
__init__() (aiogram.webhook.aiohttp_server.SimpleRequestHandler

method), 694
__init__() (aiogram.webhook.aiohttp_server.TokenBasedRequestHandler

method), 695
__init__() (aiogram.webhook.security.IPFilter

method), 696

A
accent_color_id (aiogram.types.chat.Chat attribute),

35
accent_color_id (aiogram.types.chat_full_info.ChatFullInfo

attribute), 56
accepted_gift_types

(aiogram.methods.set_business_account_gift_settings.SetBusinessAccountGiftSettings
attribute), 527

accepted_gift_types
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

AcceptedGiftTypes (class in
aiogram.types.accepted_gift_types), 19

action (aiogram.methods.send_chat_action.SendChatAction
attribute), 486

actions (aiogram.fsm.scene.SceneConfig attribute), 681
active_period (aiogram.methods.post_story.PostStory

attribute), 468
active_usernames (aiogram.types.chat.Chat attribute),

35
active_usernames (aiogram.types.chat_full_info.ChatFullInfo

attribute), 56
actor_chat (aiogram.types.message_reaction_updated.MessageReactionUpdated

attribute), 286
add() (aiogram.fsm.scene.SceneRegistry method), 680
add() (aiogram.utils.keyboard.InlineKeyboardBuilder

method), 708
add() (aiogram.utils.keyboard.ReplyKeyboardBuilder

method), 710
add() (aiogram.utils.media_group.MediaGroupBuilder

method), 732
add_audio() (aiogram.utils.media_group.MediaGroupBuilder

method), 732
add_date (aiogram.types.chat_boost.ChatBoost at-

797

aiogram Documentation, Release 3.23.0

tribute), 52
add_document() (aiogram.utils.media_group.MediaGroupBuilder

method), 733
add_photo() (aiogram.utils.media_group.MediaGroupBuilder

method), 734
add_to_router() (aiogram.fsm.scene.Scene class

method), 679
add_video() (aiogram.utils.media_group.MediaGroupBuilder

method), 734
added_to_attachment_menu (aiogram.types.user.User

attribute), 310
added_to_attachment_menu

(aiogram.utils.web_app.WebAppUser at-
tribute), 720

additional_chat_count
(aiogram.types.giveaway_winners.GiveawayWinners
attribute), 150

ADDRESS (aiogram.enums.encrypted_passport_element.EncryptedPassportElement
attribute), 611

address (aiogram.methods.send_venue.SendVenue at-
tribute), 514

address (aiogram.types.business_location.BusinessLocation
attribute), 31

address (aiogram.types.chat_location.ChatLocation at-
tribute), 106

address (aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 352

address (aiogram.types.input_venue_message_content.InputVenueMessageContent
attribute), 363

address (aiogram.types.story_area_type_location.StoryAreaTypeLocation
attribute), 300

address (aiogram.types.venue.Venue attribute), 313
AddStickerToSet (class in

aiogram.methods.add_sticker_to_set), 396
adjust() (aiogram.utils.keyboard.InlineKeyboardBuilder

method), 709
adjust() (aiogram.utils.keyboard.ReplyKeyboardBuilder

method), 710
ADMINISTRATOR (aiogram.enums.chat_member_status.ChatMemberStatus

attribute), 605
AED (aiogram.enums.currency.Currency attribute), 608
affiliate (aiogram.types.transaction_partner_user.TransactionPartnerUser

attribute), 378
affiliate_chat (aiogram.types.affiliate_info.AffiliateInfo

attribute), 364
AFFILIATE_PROGRAM (aiogram.enums.transaction_partner_type.TransactionPartnerType

attribute), 620
affiliate_user (aiogram.types.affiliate_info.AffiliateInfo

attribute), 364
AffiliateInfo (class in aiogram.types.affiliate_info),

364
AFN (aiogram.enums.currency.Currency attribute), 608
aiogram.dispatcher.flags

module, 692

aiogram.enums.bot_command_scope_type
module, 603

aiogram.enums.chat_action
module, 604

aiogram.enums.chat_boost_source_type
module, 604

aiogram.enums.chat_member_status
module, 605

aiogram.enums.chat_type
module, 605

aiogram.enums.content_type
module, 605

aiogram.enums.currency
module, 608

aiogram.enums.dice_emoji
module, 611

aiogram.enums.encrypted_passport_element
module, 611

aiogram.enums.inline_query_result_type
module, 612

aiogram.enums.input_media_type
module, 612

aiogram.enums.input_paid_media_type
module, 613

aiogram.enums.input_profile_photo_type
module, 613

aiogram.enums.input_story_content_type
module, 613

aiogram.enums.keyboard_button_poll_type_type
module, 613

aiogram.enums.mask_position_point
module, 614

aiogram.enums.menu_button_type
module, 614

aiogram.enums.message_entity_type
module, 615

aiogram.enums.message_origin_type
module, 615

aiogram.enums.owned_gift_type
module, 616

aiogram.enums.paid_media_type
module, 616

aiogram.enums.parse_mode
module, 616

aiogram.enums.passport_element_error_type
module, 617

aiogram.enums.poll_type
module, 617

aiogram.enums.reaction_type_type
module, 617

aiogram.enums.revenue_withdrawal_state_type
module, 618

aiogram.enums.sticker_format
module, 618

798 Index

aiogram Documentation, Release 3.23.0

aiogram.enums.sticker_type
module, 618

aiogram.enums.story_area_type_type
module, 619

aiogram.enums.topic_icon_color
module, 619

aiogram.enums.transaction_partner_type
module, 619

aiogram.enums.transaction_partner_user_transaction_type_enum
module, 620

aiogram.enums.update_type
module, 620

aiogram.exceptions
module, 690

aiogram.handlers.callback_query
module, 703

aiogram.methods.add_sticker_to_set
module, 396

aiogram.methods.answer_callback_query
module, 413

aiogram.methods.answer_inline_query
module, 574

aiogram.methods.answer_pre_checkout_query
module, 585

aiogram.methods.answer_shipping_query
module, 586

aiogram.methods.answer_web_app_query
module, 576

aiogram.methods.approve_chat_join_request
module, 414

aiogram.methods.approve_suggested_post
module, 558

aiogram.methods.ban_chat_member
module, 415

aiogram.methods.ban_chat_sender_chat
module, 416

aiogram.methods.close
module, 417

aiogram.methods.close_forum_topic
module, 418

aiogram.methods.close_general_forum_topic
module, 419

aiogram.methods.convert_gift_to_stars
module, 420

aiogram.methods.copy_message
module, 421

aiogram.methods.copy_messages
module, 424

aiogram.methods.create_chat_invite_link
module, 425

aiogram.methods.create_chat_subscription_invite_link
module, 426

aiogram.methods.create_forum_topic
module, 428

aiogram.methods.create_invoice_link
module, 588

aiogram.methods.create_new_sticker_set
module, 397

aiogram.methods.decline_chat_join_request
module, 429

aiogram.methods.decline_suggested_post
module, 559

aiogram.methods.delete_business_messages
module, 430

aiogram.methods.delete_chat_photo
module, 431

aiogram.methods.delete_chat_sticker_set
module, 432

aiogram.methods.delete_forum_topic
module, 433

aiogram.methods.delete_message
module, 560

aiogram.methods.delete_messages
module, 561

aiogram.methods.delete_my_commands
module, 434

aiogram.methods.delete_sticker_from_set
module, 398

aiogram.methods.delete_sticker_set
module, 399

aiogram.methods.delete_story
module, 435

aiogram.methods.delete_webhook
module, 597

aiogram.methods.edit_chat_invite_link
module, 436

aiogram.methods.edit_chat_subscription_invite_link
module, 437

aiogram.methods.edit_forum_topic
module, 438

aiogram.methods.edit_general_forum_topic
module, 440

aiogram.methods.edit_message_caption
module, 562

aiogram.methods.edit_message_checklist
module, 564

aiogram.methods.edit_message_live_location
module, 565

aiogram.methods.edit_message_media
module, 567

aiogram.methods.edit_message_reply_markup
module, 569

aiogram.methods.edit_message_text
module, 570

aiogram.methods.edit_story
module, 441

aiogram.methods.edit_user_star_subscription
module, 590

Index 799

aiogram Documentation, Release 3.23.0

aiogram.methods.export_chat_invite_link
module, 442

aiogram.methods.forward_message
module, 443

aiogram.methods.forward_messages
module, 445

aiogram.methods.get_available_gifts
module, 446

aiogram.methods.get_business_account_gifts
module, 447

aiogram.methods.get_business_account_star_balance
module, 448

aiogram.methods.get_business_connection
module, 449

aiogram.methods.get_chat
module, 450

aiogram.methods.get_chat_administrators
module, 451

aiogram.methods.get_chat_member
module, 451

aiogram.methods.get_chat_member_count
module, 452

aiogram.methods.get_chat_menu_button
module, 453

aiogram.methods.get_custom_emoji_stickers
module, 400

aiogram.methods.get_file
module, 454

aiogram.methods.get_forum_topic_icon_stickers
module, 455

aiogram.methods.get_game_high_scores
module, 581

aiogram.methods.get_me
module, 455

aiogram.methods.get_my_commands
module, 456

aiogram.methods.get_my_default_administrator_rights
module, 457

aiogram.methods.get_my_description
module, 458

aiogram.methods.get_my_name
module, 459

aiogram.methods.get_my_short_description
module, 460

aiogram.methods.get_my_star_balance
module, 591

aiogram.methods.get_star_transactions
module, 592

aiogram.methods.get_sticker_set
module, 401

aiogram.methods.get_updates
module, 598

aiogram.methods.get_user_chat_boosts
module, 460

aiogram.methods.get_user_profile_photos
module, 461

aiogram.methods.get_webhook_info
module, 599

aiogram.methods.gift_premium_subscription
module, 462

aiogram.methods.hide_general_forum_topic
module, 463

aiogram.methods.leave_chat
module, 464

aiogram.methods.log_out
module, 465

aiogram.methods.pin_chat_message
module, 466

aiogram.methods.post_story
module, 467

aiogram.methods.promote_chat_member
module, 469

aiogram.methods.read_business_message
module, 471

aiogram.methods.refund_star_payment
module, 593

aiogram.methods.remove_business_account_profile_photo
module, 472

aiogram.methods.remove_chat_verification
module, 473

aiogram.methods.remove_user_verification
module, 474

aiogram.methods.reopen_forum_topic
module, 475

aiogram.methods.reopen_general_forum_topic
module, 476

aiogram.methods.replace_sticker_in_set
module, 402

aiogram.methods.restrict_chat_member
module, 477

aiogram.methods.revoke_chat_invite_link
module, 478

aiogram.methods.save_prepared_inline_message
module, 578

aiogram.methods.send_animation
module, 480

aiogram.methods.send_audio
module, 483

aiogram.methods.send_chat_action
module, 486

aiogram.methods.send_checklist
module, 487

aiogram.methods.send_contact
module, 489

aiogram.methods.send_dice
module, 491

aiogram.methods.send_document
module, 493

800 Index

aiogram Documentation, Release 3.23.0

aiogram.methods.send_game
module, 582

aiogram.methods.send_gift
module, 496

aiogram.methods.send_invoice
module, 594

aiogram.methods.send_location
module, 498

aiogram.methods.send_media_group
module, 500

aiogram.methods.send_message
module, 503

aiogram.methods.send_paid_media
module, 505

aiogram.methods.send_photo
module, 508

aiogram.methods.send_poll
module, 511

aiogram.methods.send_sticker
module, 403

aiogram.methods.send_venue
module, 514

aiogram.methods.send_video
module, 516

aiogram.methods.send_video_note
module, 520

aiogram.methods.send_voice
module, 523

aiogram.methods.set_business_account_bio
module, 525

aiogram.methods.set_business_account_gift_settings
module, 526

aiogram.methods.set_business_account_name
module, 527

aiogram.methods.set_business_account_profile_photo
module, 528

aiogram.methods.set_business_account_username
module, 530

aiogram.methods.set_chat_administrator_custom_title
module, 531

aiogram.methods.set_chat_description
module, 532

aiogram.methods.set_chat_menu_button
module, 533

aiogram.methods.set_chat_permissions
module, 534

aiogram.methods.set_chat_photo
module, 535

aiogram.methods.set_chat_sticker_set
module, 536

aiogram.methods.set_chat_title
module, 537

aiogram.methods.set_custom_emoji_sticker_set_thumbnail
module, 405

aiogram.methods.set_game_score
module, 584

aiogram.methods.set_message_reaction
module, 538

aiogram.methods.set_my_commands
module, 540

aiogram.methods.set_my_default_administrator_rights
module, 541

aiogram.methods.set_my_description
module, 542

aiogram.methods.set_my_name
module, 543

aiogram.methods.set_my_short_description
module, 544

aiogram.methods.set_passport_data_errors
module, 602

aiogram.methods.set_sticker_emoji_list
module, 406

aiogram.methods.set_sticker_keywords
module, 407

aiogram.methods.set_sticker_mask_position
module, 408

aiogram.methods.set_sticker_position_in_set
module, 409

aiogram.methods.set_sticker_set_thumbnail
module, 410

aiogram.methods.set_sticker_set_title
module, 411

aiogram.methods.set_user_emoji_status
module, 545

aiogram.methods.set_webhook
module, 600

aiogram.methods.stop_message_live_location
module, 572

aiogram.methods.stop_poll
module, 573

aiogram.methods.transfer_business_account_stars
module, 546

aiogram.methods.transfer_gift
module, 547

aiogram.methods.unban_chat_member
module, 548

aiogram.methods.unban_chat_sender_chat
module, 549

aiogram.methods.unhide_general_forum_topic
module, 550

aiogram.methods.unpin_all_chat_messages
module, 551

aiogram.methods.unpin_all_forum_topic_messages
module, 552

aiogram.methods.unpin_all_general_forum_topic_messages
module, 553

aiogram.methods.unpin_chat_message
module, 554

Index 801

aiogram Documentation, Release 3.23.0

aiogram.methods.upgrade_gift
module, 555

aiogram.methods.upload_sticker_file
module, 412

aiogram.methods.verify_chat
module, 556

aiogram.methods.verify_user
module, 557

aiogram.types.accepted_gift_types
module, 19

aiogram.types.affiliate_info
module, 364

aiogram.types.animation
module, 20

aiogram.types.audio
module, 20

aiogram.types.background_fill
module, 21

aiogram.types.background_fill_freeform_gradient
module, 21

aiogram.types.background_fill_gradient
module, 22

aiogram.types.background_fill_solid
module, 22

aiogram.types.background_type
module, 22

aiogram.types.background_type_chat_theme
module, 23

aiogram.types.background_type_fill
module, 23

aiogram.types.background_type_pattern
module, 23

aiogram.types.background_type_wallpaper
module, 24

aiogram.types.birthdate
module, 25

aiogram.types.bot_command
module, 25

aiogram.types.bot_command_scope
module, 25

aiogram.types.bot_command_scope_all_chat_administrators
module, 26

aiogram.types.bot_command_scope_all_group_chats
module, 26

aiogram.types.bot_command_scope_all_private_chats
module, 26

aiogram.types.bot_command_scope_chat
module, 27

aiogram.types.bot_command_scope_chat_administrators
module, 27

aiogram.types.bot_command_scope_chat_member
module, 28

aiogram.types.bot_command_scope_default
module, 28

aiogram.types.bot_description
module, 28

aiogram.types.bot_name
module, 29

aiogram.types.bot_short_description
module, 29

aiogram.types.business_bot_rights
module, 29

aiogram.types.business_connection
module, 30

aiogram.types.business_intro
module, 31

aiogram.types.business_location
module, 31

aiogram.types.business_messages_deleted
module, 32

aiogram.types.business_opening_hours
module, 32

aiogram.types.business_opening_hours_interval
module, 32

aiogram.types.callback_game
module, 395

aiogram.types.callback_query
module, 33

aiogram.types.chat
module, 34

aiogram.types.chat_administrator_rights
module, 50

aiogram.types.chat_background
module, 51

aiogram.types.chat_boost
module, 52

aiogram.types.chat_boost_added
module, 52

aiogram.types.chat_boost_removed
module, 52

aiogram.types.chat_boost_source
module, 53

aiogram.types.chat_boost_source_gift_code
module, 53

aiogram.types.chat_boost_source_giveaway
module, 53

aiogram.types.chat_boost_source_premium
module, 54

aiogram.types.chat_boost_updated
module, 54

aiogram.types.chat_full_info
module, 55

aiogram.types.chat_invite_link
module, 58

aiogram.types.chat_join_request
module, 59

aiogram.types.chat_location
module, 106

802 Index

aiogram Documentation, Release 3.23.0

aiogram.types.chat_member
module, 106

aiogram.types.chat_member_administrator
module, 107

aiogram.types.chat_member_banned
module, 109

aiogram.types.chat_member_left
module, 109

aiogram.types.chat_member_member
module, 109

aiogram.types.chat_member_owner
module, 110

aiogram.types.chat_member_restricted
module, 110

aiogram.types.chat_member_updated
module, 112

aiogram.types.chat_permissions
module, 135

aiogram.types.chat_photo
module, 137

aiogram.types.chat_shared
module, 137

aiogram.types.checklist
module, 138

aiogram.types.checklist_task
module, 138

aiogram.types.checklist_tasks_added
module, 139

aiogram.types.checklist_tasks_done
module, 139

aiogram.types.chosen_inline_result
module, 317

aiogram.types.contact
module, 139

aiogram.types.copy_text_button
module, 140

aiogram.types.dice
module, 140

aiogram.types.direct_message_price_changed
module, 141

aiogram.types.direct_messages_topic
module, 141

aiogram.types.document
module, 141

aiogram.types.encrypted_credentials
module, 382

aiogram.types.encrypted_passport_element
module, 382

aiogram.types.error_event
module, 689

aiogram.types.external_reply_info
module, 142

aiogram.types.file
module, 144

aiogram.types.force_reply
module, 144

aiogram.types.forum_topic
module, 145

aiogram.types.forum_topic_closed
module, 145

aiogram.types.forum_topic_created
module, 146

aiogram.types.forum_topic_edited
module, 146

aiogram.types.forum_topic_reopened
module, 146

aiogram.types.game
module, 395

aiogram.types.game_high_score
module, 396

aiogram.types.general_forum_topic_hidden
module, 146

aiogram.types.general_forum_topic_unhidden
module, 147

aiogram.types.gift
module, 147

aiogram.types.gift_info
module, 147

aiogram.types.gifts
module, 148

aiogram.types.giveaway
module, 148

aiogram.types.giveaway_completed
module, 149

aiogram.types.giveaway_created
module, 150

aiogram.types.giveaway_winners
module, 150

aiogram.types.inaccessible_message
module, 151

aiogram.types.inline_keyboard_button
module, 198

aiogram.types.inline_keyboard_markup
module, 199

aiogram.types.inline_query
module, 318

aiogram.types.inline_query_result
module, 319

aiogram.types.inline_query_result_article
module, 320

aiogram.types.inline_query_result_audio
module, 321

aiogram.types.inline_query_result_cached_audio
module, 323

aiogram.types.inline_query_result_cached_document
module, 324

aiogram.types.inline_query_result_cached_gif
module, 327

Index 803

aiogram Documentation, Release 3.23.0

aiogram.types.inline_query_result_cached_mpeg4_gif
module, 328

aiogram.types.inline_query_result_cached_photo
module, 331

aiogram.types.inline_query_result_cached_sticker
module, 333

aiogram.types.inline_query_result_cached_video
module, 335

aiogram.types.inline_query_result_cached_voice
module, 337

aiogram.types.inline_query_result_contact
module, 339

aiogram.types.inline_query_result_document
module, 340

aiogram.types.inline_query_result_game
module, 342

aiogram.types.inline_query_result_gif
module, 343

aiogram.types.inline_query_result_location
module, 344

aiogram.types.inline_query_result_mpeg4_gif
module, 347

aiogram.types.inline_query_result_photo
module, 350

aiogram.types.inline_query_result_venue
module, 352

aiogram.types.inline_query_result_video
module, 353

aiogram.types.inline_query_result_voice
module, 355

aiogram.types.inline_query_results_button
module, 357

aiogram.types.input_checklist
module, 199

aiogram.types.input_checklist_task
module, 200

aiogram.types.input_contact_message_content
module, 357

aiogram.types.input_file
module, 200

aiogram.types.input_invoice_message_content
module, 358

aiogram.types.input_location_message_content
module, 361

aiogram.types.input_media
module, 201

aiogram.types.input_media_animation
module, 201

aiogram.types.input_media_audio
module, 202

aiogram.types.input_media_document
module, 204

aiogram.types.input_media_photo
module, 205

aiogram.types.input_media_video
module, 205

aiogram.types.input_message_content
module, 362

aiogram.types.input_paid_media
module, 207

aiogram.types.input_paid_media_photo
module, 207

aiogram.types.input_paid_media_video
module, 208

aiogram.types.input_poll_option
module, 209

aiogram.types.input_profile_photo
module, 209

aiogram.types.input_profile_photo_animated
module, 209

aiogram.types.input_profile_photo_static
module, 210

aiogram.types.input_sticker
module, 379

aiogram.types.input_story_content
module, 210

aiogram.types.input_story_content_photo
module, 210

aiogram.types.input_story_content_video
module, 211

aiogram.types.input_text_message_content
module, 362

aiogram.types.input_venue_message_content
module, 363

aiogram.types.invoice
module, 365

aiogram.types.keyboard_button
module, 211

aiogram.types.keyboard_button_poll_type
module, 212

aiogram.types.keyboard_button_request_chat
module, 213

aiogram.types.keyboard_button_request_user
module, 214

aiogram.types.keyboard_button_request_users
module, 215

aiogram.types.labeled_price
module, 365

aiogram.types.link_preview_options
module, 216

aiogram.types.location
module, 216

aiogram.types.location_address
module, 217

aiogram.types.login_url
module, 217

aiogram.types.mask_position
module, 379

804 Index

aiogram Documentation, Release 3.23.0

aiogram.types.maybe_inaccessible_message
module, 218

aiogram.types.menu_button
module, 218

aiogram.types.menu_button_commands
module, 219

aiogram.types.menu_button_default
module, 219

aiogram.types.menu_button_web_app
module, 219

aiogram.types.message
module, 220

aiogram.types.message_auto_delete_timer_changed
module, 281

aiogram.types.message_entity
module, 282

aiogram.types.message_id
module, 282

aiogram.types.message_origin
module, 283

aiogram.types.message_origin_channel
module, 283

aiogram.types.message_origin_chat
module, 283

aiogram.types.message_origin_hidden_user
module, 284

aiogram.types.message_origin_user
module, 284

aiogram.types.message_reaction_count_updated
module, 285

aiogram.types.message_reaction_updated
module, 285

aiogram.types.order_info
module, 366

aiogram.types.owned_gift
module, 286

aiogram.types.owned_gift_regular
module, 287

aiogram.types.owned_gift_unique
module, 288

aiogram.types.owned_gifts
module, 289

aiogram.types.paid_media
module, 289

aiogram.types.paid_media_info
module, 289

aiogram.types.paid_media_photo
module, 290

aiogram.types.paid_media_preview
module, 290

aiogram.types.paid_media_purchased
module, 366

aiogram.types.paid_media_video
module, 290

aiogram.types.paid_message_price_changed
module, 291

aiogram.types.passport_data
module, 384

aiogram.types.passport_element_error
module, 384

aiogram.types.passport_element_error_data_field
module, 385

aiogram.types.passport_element_error_file
module, 385

aiogram.types.passport_element_error_files
module, 386

aiogram.types.passport_element_error_front_side
module, 387

aiogram.types.passport_element_error_reverse_side
module, 388

aiogram.types.passport_element_error_selfie
module, 388

aiogram.types.passport_element_error_translation_file
module, 389

aiogram.types.passport_element_error_translation_files
module, 390

aiogram.types.passport_element_error_unspecified
module, 391

aiogram.types.passport_file
module, 391

aiogram.types.photo_size
module, 291

aiogram.types.poll
module, 291

aiogram.types.poll_answer
module, 292

aiogram.types.poll_option
module, 293

aiogram.types.pre_checkout_query
module, 366

aiogram.types.prepared_inline_message
module, 364

aiogram.types.proximity_alert_triggered
module, 293

aiogram.types.reaction_count
module, 293

aiogram.types.reaction_type
module, 294

aiogram.types.reaction_type_custom_emoji
module, 294

aiogram.types.reaction_type_emoji
module, 294

aiogram.types.reaction_type_paid
module, 295

aiogram.types.refunded_payment
module, 367

aiogram.types.reply_keyboard_markup
module, 295

Index 805

aiogram Documentation, Release 3.23.0

aiogram.types.reply_keyboard_remove
module, 296

aiogram.types.reply_parameters
module, 296

aiogram.types.response_parameters
module, 297

aiogram.types.revenue_withdrawal_state
module, 368

aiogram.types.revenue_withdrawal_state_failed
module, 368

aiogram.types.revenue_withdrawal_state_pending
module, 369

aiogram.types.revenue_withdrawal_state_succeeded
module, 369

aiogram.types.sent_web_app_message
module, 364

aiogram.types.shared_user
module, 297

aiogram.types.shipping_address
module, 370

aiogram.types.shipping_option
module, 370

aiogram.types.shipping_query
module, 371

aiogram.types.star_amount
module, 298

aiogram.types.star_transaction
module, 372

aiogram.types.star_transactions
module, 373

aiogram.types.sticker
module, 380

aiogram.types.sticker_set
module, 381

aiogram.types.story
module, 298

aiogram.types.story_area
module, 298

aiogram.types.story_area_position
module, 299

aiogram.types.story_area_type
module, 299

aiogram.types.story_area_type_link
module, 299

aiogram.types.story_area_type_location
module, 300

aiogram.types.story_area_type_suggested_reaction
module, 301

aiogram.types.story_area_type_unique_gift
module, 302

aiogram.types.story_area_type_weather
module, 302

aiogram.types.successful_payment
module, 373

aiogram.types.suggested_post_approval_failed
module, 303

aiogram.types.suggested_post_approved
module, 303

aiogram.types.suggested_post_declined
module, 304

aiogram.types.suggested_post_info
module, 304

aiogram.types.suggested_post_paid
module, 304

aiogram.types.suggested_post_parameters
module, 305

aiogram.types.suggested_post_price
module, 305

aiogram.types.suggested_post_refunded
module, 306

aiogram.types.switch_inline_query_chosen_chat
module, 306

aiogram.types.text_quote
module, 307

aiogram.types.transaction_partner
module, 374

aiogram.types.transaction_partner_affiliate_program
module, 374

aiogram.types.transaction_partner_chat
module, 375

aiogram.types.transaction_partner_fragment
module, 376

aiogram.types.transaction_partner_other
module, 376

aiogram.types.transaction_partner_telegram_ads
module, 377

aiogram.types.transaction_partner_telegram_api
module, 377

aiogram.types.transaction_partner_user
module, 378

aiogram.types.unique_gift
module, 307

aiogram.types.unique_gift_backdrop
module, 308

aiogram.types.unique_gift_backdrop_colors
module, 308

aiogram.types.unique_gift_info
module, 309

aiogram.types.unique_gift_model
module, 309

aiogram.types.unique_gift_symbol
module, 310

aiogram.types.update
module, 392

aiogram.types.user
module, 310

aiogram.types.user_chat_boosts
module, 311

806 Index

aiogram Documentation, Release 3.23.0

aiogram.types.user_profile_photos
module, 312

aiogram.types.user_shared
module, 312

aiogram.types.users_shared
module, 312

aiogram.types.venue
module, 313

aiogram.types.video
module, 313

aiogram.types.video_chat_ended
module, 314

aiogram.types.video_chat_participants_invited
module, 314

aiogram.types.video_chat_scheduled
module, 315

aiogram.types.video_chat_started
module, 315

aiogram.types.video_note
module, 315

aiogram.types.voice
module, 316

aiogram.types.web_app_data
module, 316

aiogram.types.web_app_info
module, 316

aiogram.types.webhook_info
module, 394

aiogram.types.write_access_allowed
module, 317

AiogramError, 690
AiohttpSession (class in

aiogram.client.session.aiohttp), 16
ALL (aiogram.enums.currency.Currency attribute), 608
ALL_CHAT_ADMINISTRATORS

(aiogram.enums.bot_command_scope_type.BotCommandScopeType
attribute), 603

ALL_GROUP_CHATS (aiogram.enums.bot_command_scope_type.BotCommandScopeType
attribute), 603

ALL_PRIVATE_CHATS (aiogram.enums.bot_command_scope_type.BotCommandScopeType
attribute), 603

allow_bot_chats (aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage
attribute), 580

allow_bot_chats (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat
attribute), 306

allow_channel_chats
(aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage
attribute), 580

allow_channel_chats
(aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat
attribute), 307

allow_group_chats (aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage
attribute), 580

allow_group_chats (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat
attribute), 306

allow_paid_broadcast
(aiogram.methods.copy_message.CopyMessage
attribute), 422

allow_paid_broadcast
(aiogram.methods.send_animation.SendAnimation
attribute), 481

allow_paid_broadcast
(aiogram.methods.send_audio.SendAudio
attribute), 484

allow_paid_broadcast
(aiogram.methods.send_contact.SendContact
attribute), 490

allow_paid_broadcast
(aiogram.methods.send_dice.SendDice at-
tribute), 492

allow_paid_broadcast
(aiogram.methods.send_document.SendDocument
attribute), 495

allow_paid_broadcast
(aiogram.methods.send_game.SendGame
attribute), 582

allow_paid_broadcast
(aiogram.methods.send_invoice.SendInvoice
attribute), 596

allow_paid_broadcast
(aiogram.methods.send_location.SendLocation
attribute), 499

allow_paid_broadcast
(aiogram.methods.send_media_group.SendMediaGroup
attribute), 501

allow_paid_broadcast
(aiogram.methods.send_message.SendMessage
attribute), 504

allow_paid_broadcast
(aiogram.methods.send_paid_media.SendPaidMedia
attribute), 507

allow_paid_broadcast
(aiogram.methods.send_photo.SendPhoto
attribute), 509

allow_paid_broadcast
(aiogram.methods.send_poll.SendPoll at-
tribute), 512

allow_paid_broadcast
(aiogram.methods.send_sticker.SendSticker
attribute), 404

allow_paid_broadcast
(aiogram.methods.send_venue.SendVenue
attribute), 515

allow_paid_broadcast
(aiogram.methods.send_video.SendVideo
attribute), 518

allow_paid_broadcast

Index 807

aiogram Documentation, Release 3.23.0

(aiogram.methods.send_video_note.SendVideoNote
attribute), 521

allow_paid_broadcast
(aiogram.methods.send_voice.SendVoice
attribute), 524

allow_sending_without_reply
(aiogram.client.default.DefaultBotProperties
attribute), 625

allow_sending_without_reply
(aiogram.methods.copy_message.CopyMessage
attribute), 423

allow_sending_without_reply
(aiogram.methods.send_animation.SendAnimation
attribute), 482

allow_sending_without_reply
(aiogram.methods.send_audio.SendAudio
attribute), 485

allow_sending_without_reply
(aiogram.methods.send_contact.SendContact
attribute), 490

allow_sending_without_reply
(aiogram.methods.send_dice.SendDice at-
tribute), 492

allow_sending_without_reply
(aiogram.methods.send_document.SendDocument
attribute), 495

allow_sending_without_reply
(aiogram.methods.send_game.SendGame
attribute), 583

allow_sending_without_reply
(aiogram.methods.send_invoice.SendInvoice
attribute), 596

allow_sending_without_reply
(aiogram.methods.send_location.SendLocation
attribute), 499

allow_sending_without_reply
(aiogram.methods.send_media_group.SendMediaGroup
attribute), 502

allow_sending_without_reply
(aiogram.methods.send_message.SendMessage
attribute), 504

allow_sending_without_reply
(aiogram.methods.send_photo.SendPhoto
attribute), 510

allow_sending_without_reply
(aiogram.methods.send_poll.SendPoll at-
tribute), 513

allow_sending_without_reply
(aiogram.methods.send_sticker.SendSticker
attribute), 404

allow_sending_without_reply
(aiogram.methods.send_venue.SendVenue
attribute), 515

allow_sending_without_reply

(aiogram.methods.send_video.SendVideo
attribute), 519

allow_sending_without_reply
(aiogram.methods.send_video_note.SendVideoNote
attribute), 521

allow_sending_without_reply
(aiogram.methods.send_voice.SendVoice
attribute), 524

allow_sending_without_reply
(aiogram.types.reply_parameters.ReplyParameters
attribute), 296

allow_user_chats (aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage
attribute), 580

allow_user_chats (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat
attribute), 306

allowed_updates (aiogram.methods.get_updates.GetUpdates
attribute), 599

allowed_updates (aiogram.methods.set_webhook.SetWebhook
attribute), 601

allowed_updates (aiogram.types.webhook_info.WebhookInfo
attribute), 395

allows_multiple_answers
(aiogram.methods.send_poll.SendPoll at-
tribute), 512

allows_multiple_answers (aiogram.types.poll.Poll
attribute), 292

allows_write_to_pm (aiogram.utils.web_app.WebAppUser
attribute), 720

AMD (aiogram.enums.currency.Currency attribute), 608
amount (aiogram.types.affiliate_info.AffiliateInfo at-

tribute), 364
amount (aiogram.types.labeled_price.LabeledPrice at-

tribute), 365
amount (aiogram.types.star_amount.StarAmount at-

tribute), 298
amount (aiogram.types.star_transaction.StarTransaction

attribute), 372
amount (aiogram.types.suggested_post_paid.SuggestedPostPaid

attribute), 305
amount (aiogram.types.suggested_post_price.SuggestedPostPrice

attribute), 305
ANIMATED (aiogram.enums.input_profile_photo_type.InputProfilePhotoType

attribute), 613
ANIMATED (aiogram.enums.sticker_format.StickerFormat

attribute), 618
ANIMATION (aiogram.enums.content_type.ContentType

attribute), 605
ANIMATION (aiogram.enums.input_media_type.InputMediaType

attribute), 612
animation (aiogram.methods.send_animation.SendAnimation

attribute), 480
animation (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
animation (aiogram.types.game.Game attribute), 395

808 Index

aiogram Documentation, Release 3.23.0

animation (aiogram.types.input_profile_photo_animated.InputProfilePhotoAnimated
attribute), 209

animation (aiogram.types.message.Message attribute),
223

Animation (class in aiogram.types.animation), 20
answer() (aiogram.types.callback_query.CallbackQuery

method), 33
answer() (aiogram.types.chat_join_request.ChatJoinRequest

method), 60
answer() (aiogram.types.chat_member_updated.ChatMemberUpdated

method), 112
answer() (aiogram.types.inaccessible_message.InaccessibleMessage

method), 151
answer() (aiogram.types.inline_query.InlineQuery

method), 318
answer() (aiogram.types.message.Message method),

250
answer() (aiogram.types.pre_checkout_query.PreCheckoutQuery

method), 367
answer() (aiogram.types.shipping_query.ShippingQuery

method), 371
answer_animation() (aiogram.types.chat_join_request.ChatJoinRequest

method), 63
answer_animation() (aiogram.types.chat_member_updated.ChatMemberUpdated

method), 114
answer_animation() (aiogram.types.inaccessible_message.InaccessibleMessage

method), 153
answer_animation() (aiogram.types.message.Message

method), 230
answer_animation_pm()

(aiogram.types.chat_join_request.ChatJoinRequest
method), 64

answer_audio() (aiogram.types.chat_join_request.ChatJoinRequest
method), 66

answer_audio() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 115

answer_audio() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 157

answer_audio() (aiogram.types.message.Message
method), 233

answer_audio_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 68

answer_contact() (aiogram.types.chat_join_request.ChatJoinRequest
method), 69

answer_contact() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 117

answer_contact() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 160

answer_contact() (aiogram.types.message.Message
method), 235

answer_contact_pm()
(aiogram.types.chat_join_request.ChatJoinRequest
method), 70

answer_dice() (aiogram.types.chat_join_request.ChatJoinRequest

method), 90
answer_dice() (aiogram.types.chat_member_updated.ChatMemberUpdated

method), 128
answer_dice() (aiogram.types.inaccessible_message.InaccessibleMessage

method), 180
answer_dice() (aiogram.types.message.Message

method), 257
answer_dice_pm() (aiogram.types.chat_join_request.ChatJoinRequest

method), 91
answer_document() (aiogram.types.chat_join_request.ChatJoinRequest

method), 71
answer_document() (aiogram.types.chat_member_updated.ChatMemberUpdated

method), 118
answer_document() (aiogram.types.inaccessible_message.InaccessibleMessage

method), 162
answer_document() (aiogram.types.message.Message

method), 238
answer_document_pm()

(aiogram.types.chat_join_request.ChatJoinRequest
method), 73

answer_game() (aiogram.types.chat_join_request.ChatJoinRequest
method), 74

answer_game() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 119

answer_game() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 164

answer_game() (aiogram.types.message.Message
method), 240

answer_game_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 75

answer_invoice() (aiogram.types.chat_join_request.ChatJoinRequest
method), 76

answer_invoice() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 120

answer_invoice() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 166

answer_invoice() (aiogram.types.message.Message
method), 242

answer_invoice_pm()
(aiogram.types.chat_join_request.ChatJoinRequest
method), 78

answer_location() (aiogram.types.chat_join_request.ChatJoinRequest
method), 80

answer_location() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 123

answer_location() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 170

answer_location() (aiogram.types.message.Message
method), 246

answer_location_pm()
(aiogram.types.chat_join_request.ChatJoinRequest
method), 81

answer_media_group()
(aiogram.types.chat_join_request.ChatJoinRequest

Index 809

aiogram Documentation, Release 3.23.0

method), 82
answer_media_group()

(aiogram.types.chat_member_updated.ChatMemberUpdated
method), 124

answer_media_group()
(aiogram.types.inaccessible_message.InaccessibleMessage
method), 173

answer_media_group()
(aiogram.types.message.Message method),
248

answer_media_group_pm()
(aiogram.types.chat_join_request.ChatJoinRequest
method), 83

answer_paid_media()
(aiogram.types.inaccessible_message.InaccessibleMessage
method), 195

answer_paid_media()
(aiogram.types.message.Message method),
279

answer_photo() (aiogram.types.chat_join_request.ChatJoinRequest
method), 84

answer_photo() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 125

answer_photo() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 174

answer_photo() (aiogram.types.message.Message
method), 252

answer_photo_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 85

answer_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 62

answer_poll() (aiogram.types.chat_join_request.ChatJoinRequest
method), 87

answer_poll() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 126

answer_poll() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 177

answer_poll() (aiogram.types.message.Message
method), 255

answer_poll_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 88

answer_sticker() (aiogram.types.chat_join_request.ChatJoinRequest
method), 92

answer_sticker() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 129

answer_sticker() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 182

answer_sticker() (aiogram.types.message.Message
method), 259

answer_sticker_pm()
(aiogram.types.chat_join_request.ChatJoinRequest
method), 93

answer_venue() (aiogram.types.chat_join_request.ChatJoinRequest
method), 94

answer_venue() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 130

answer_venue() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 184

answer_venue() (aiogram.types.message.Message
method), 261

answer_venue_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 95

answer_video() (aiogram.types.chat_join_request.ChatJoinRequest
method), 97

answer_video() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 131

answer_video() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 187

answer_video() (aiogram.types.message.Message
method), 264

answer_video_note()
(aiogram.types.chat_join_request.ChatJoinRequest
method), 100

answer_video_note()
(aiogram.types.chat_member_updated.ChatMemberUpdated
method), 133

answer_video_note()
(aiogram.types.inaccessible_message.InaccessibleMessage
method), 190

answer_video_note()
(aiogram.types.message.Message method),
267

answer_video_note_pm()
(aiogram.types.chat_join_request.ChatJoinRequest
method), 102

answer_video_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 98

answer_voice() (aiogram.types.chat_join_request.ChatJoinRequest
method), 103

answer_voice() (aiogram.types.chat_member_updated.ChatMemberUpdated
method), 134

answer_voice() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 193

answer_voice() (aiogram.types.message.Message
method), 269

answer_voice_pm() (aiogram.types.chat_join_request.ChatJoinRequest
method), 104

AnswerCallbackQuery (class in
aiogram.methods.answer_callback_query),
413

answered (aiogram.utils.callback_answer.CallbackAnswer
property), 723

AnswerInlineQuery (class in
aiogram.methods.answer_inline_query),
574

AnswerPreCheckoutQuery (class in
aiogram.methods.answer_pre_checkout_query),
585

810 Index

aiogram Documentation, Release 3.23.0

AnswerShippingQuery (class in
aiogram.methods.answer_shipping_query),
586

AnswerWebAppQuery (class in
aiogram.methods.answer_web_app_query),
576

ANY (aiogram.enums.content_type.ContentType at-
tribute), 605

api_url() (aiogram.client.telegram.TelegramAPIServer
method), 14

approve() (aiogram.types.chat_join_request.ChatJoinRequest
method), 60

ApproveChatJoinRequest (class in
aiogram.methods.approve_chat_join_request),
414

ApproveSuggestedPost (class in
aiogram.methods.approve_suggested_post),
558

are_direct_messages_enabled
(aiogram.types.direct_message_price_changed.DirectMessagePriceChanged
attribute), 141

areas (aiogram.methods.edit_story.EditStory attribute),
441

areas (aiogram.methods.post_story.PostStory attribute),
468

args (aiogram.filters.command.CommandObject at-
tribute), 641

ARS (aiogram.enums.currency.Currency attribute), 608
ARTICLE (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
as_caption_kwargs() (aiogram.utils.formatting.Text

method), 727
as_gift_text_kwargs()

(aiogram.utils.formatting.Text method), 728
as_handler() (aiogram.fsm.scene.Scene class method),

680
as_html() (aiogram.utils.formatting.Text method), 728
as_key_value() (in module aiogram.utils.formatting),

726
as_kwargs() (aiogram.utils.formatting.Text method),

727
as_line() (in module aiogram.utils.formatting), 724
as_list() (in module aiogram.utils.formatting), 724
as_markdown() (aiogram.utils.formatting.Text method),

728
as_marked_list() (in module

aiogram.utils.formatting), 725
as_marked_section() (in module

aiogram.utils.formatting), 725
as_numbered_list() (in module

aiogram.utils.formatting), 725
as_numbered_section() (in module

aiogram.utils.formatting), 725
as_poll_explanation_kwargs()

(aiogram.utils.formatting.Text method), 728
as_poll_question_kwargs()

(aiogram.utils.formatting.Text method), 728
as_reply_parameters()

(aiogram.types.inaccessible_message.InaccessibleMessage
method), 197

as_reply_parameters()
(aiogram.types.message.Message method),
228

as_router() (aiogram.fsm.scene.Scene class method),
680

as_section() (in module aiogram.utils.formatting), 725
attrs_resolver() (aiogram.fsm.scene.SceneConfig

method), 681
AUD (aiogram.enums.currency.Currency attribute), 608
AUDIO (aiogram.enums.content_type.ContentType at-

tribute), 605
AUDIO (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
AUDIO (aiogram.enums.input_media_type.InputMediaType

attribute), 612
audio (aiogram.methods.send_audio.SendAudio at-

tribute), 484
audio (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
audio (aiogram.types.message.Message attribute), 224
Audio (class in aiogram.types.audio), 20
audio_duration (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 322
audio_file_id (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio

attribute), 324
audio_url (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 322
auth_date (aiogram.utils.web_app.WebAppInitData at-

tribute), 719
author_signature (aiogram.types.message.Message

attribute), 223
author_signature (aiogram.types.message_origin_channel.MessageOriginChannel

attribute), 283
author_signature (aiogram.types.message_origin_chat.MessageOriginChat

attribute), 284
available_reactions (aiogram.types.chat.Chat

attribute), 35
available_reactions

(aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

AZN (aiogram.enums.currency.Currency attribute), 608

B
back() (aiogram.fsm.scene.SceneWizard method), 682
backdrop (aiogram.types.unique_gift.UniqueGift at-

tribute), 307
background_color (aiogram.types.story_area_type_weather.StoryAreaTypeWeather

attribute), 302

Index 811

aiogram Documentation, Release 3.23.0

background_custom_emoji_id
(aiogram.types.chat.Chat attribute), 35

background_custom_emoji_id
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

BackgroundFill (class in
aiogram.types.background_fill), 21

BackgroundFillFreeformGradient (class in
aiogram.types.background_fill_freeform_gradient),
21

BackgroundFillGradient (class in
aiogram.types.background_fill_gradient),
22

BackgroundFillSolid (class in
aiogram.types.background_fill_solid), 22

BackgroundType (class in
aiogram.types.background_type), 22

BackgroundTypeChatTheme (class in
aiogram.types.background_type_chat_theme),
23

BackgroundTypeFill (class in
aiogram.types.background_type_fill), 23

BackgroundTypePattern (class in
aiogram.types.background_type_pattern),
23

BackgroundTypeWallpaper (class in
aiogram.types.background_type_wallpaper),
24

BAM (aiogram.enums.currency.Currency attribute), 608
ban() (aiogram.types.chat.Chat method), 48
ban_sender_chat() (aiogram.types.chat.Chat method),

39
BanChatMember (class in

aiogram.methods.ban_chat_member), 415
BanChatSenderChat (class in

aiogram.methods.ban_chat_sender_chat),
416

BANK_STATEMENT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement
attribute), 611

base (aiogram.client.telegram.TelegramAPIServer
attribute), 14

base_name (aiogram.types.unique_gift.UniqueGift
attribute), 307

BaseMiddleware (class in
aiogram.dispatcher.middlewares.base), 687

BaseRequestHandler (class in
aiogram.webhook.aiohttp_server), 693

BaseSession (class in aiogram.client.session.base), 15
BaseStorage (class in aiogram.fsm.storage.base), 664
BASKETBALL (aiogram.enums.dice_emoji.DiceEmoji at-

tribute), 611
BASKETBALL (aiogram.types.dice.DiceEmoji attribute),

140
BDT (aiogram.enums.currency.Currency attribute), 608

BGN (aiogram.enums.currency.Currency attribute), 608
big_file_id (aiogram.types.chat_photo.ChatPhoto at-

tribute), 137
big_file_unique_id (aiogram.types.chat_photo.ChatPhoto

attribute), 137
bio (aiogram.methods.set_business_account_bio.SetBusinessAccountBio

attribute), 526
bio (aiogram.types.chat.Chat attribute), 35
bio (aiogram.types.chat_full_info.ChatFullInfo at-

tribute), 57
bio (aiogram.types.chat_join_request.ChatJoinRequest

attribute), 60
birthdate (aiogram.types.chat.Chat attribute), 36
birthdate (aiogram.types.chat_full_info.ChatFullInfo

attribute), 56
Birthdate (class in aiogram.types.birthdate), 25
BLOCKQUOTE (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
BlockQuote (class in aiogram.utils.formatting), 731
BLUE (aiogram.enums.topic_icon_color.TopicIconColor

attribute), 619
BND (aiogram.enums.currency.Currency attribute), 608
BOB (aiogram.enums.currency.Currency attribute), 608
BOLD (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
Bold (class in aiogram.utils.formatting), 730
boost (aiogram.types.chat_boost_updated.ChatBoostUpdated

attribute), 54
BOOST_ADDED (aiogram.enums.content_type.ContentType

attribute), 607
boost_added (aiogram.types.message.Message at-

tribute), 226
boost_count (aiogram.types.chat_boost_added.ChatBoostAdded

attribute), 52
boost_id (aiogram.types.chat_boost.ChatBoost at-

tribute), 52
boost_id (aiogram.types.chat_boost_removed.ChatBoostRemoved

attribute), 52
boosts (aiogram.types.user_chat_boosts.UserChatBoosts

attribute), 311
bot (aiogram.dispatcher.middlewares.data.MiddlewareData

attribute), 639
bot_administrator_rights

(aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 214

BOT_COMMAND (aiogram.enums.message_entity_type.MessageEntityType
attribute), 615

bot_is_member (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 214

bot_username (aiogram.types.login_url.LoginUrl
attribute), 218

BotCommand (class in aiogram.types.bot_command), 25
BotCommand (class in aiogram.utils.formatting), 729
BotCommandScope (class in

812 Index

aiogram Documentation, Release 3.23.0

aiogram.types.bot_command_scope), 25
BotCommandScopeAllChatAdministrators (class in

aiogram.types.bot_command_scope_all_chat_administrators),
26

BotCommandScopeAllGroupChats (class in
aiogram.types.bot_command_scope_all_group_chats),
26

BotCommandScopeAllPrivateChats (class in
aiogram.types.bot_command_scope_all_private_chats),
26

BotCommandScopeChat (class in
aiogram.types.bot_command_scope_chat),
27

BotCommandScopeChatAdministrators (class in
aiogram.types.bot_command_scope_chat_administrators),
27

BotCommandScopeChatMember (class in
aiogram.types.bot_command_scope_chat_member),
28

BotCommandScopeDefault (class in
aiogram.types.bot_command_scope_default),
28

BotCommandScopeType (class in
aiogram.enums.bot_command_scope_type),
603

BotDescription (class in
aiogram.types.bot_description), 28

BotName (class in aiogram.types.bot_name), 29
bots (aiogram.dispatcher.middlewares.data.MiddlewareData

attribute), 639
BotShortDescription (class in

aiogram.types.bot_short_description), 29
bottom_color (aiogram.types.background_fill_gradient.BackgroundFillGradient

attribute), 22
BOWLING (aiogram.enums.dice_emoji.DiceEmoji at-

tribute), 611
BOWLING (aiogram.types.dice.DiceEmoji attribute), 140
BRL (aiogram.enums.currency.Currency attribute), 608
BufferedInputFile (class in aiogram.types.input_file),

200, 624
build() (aiogram.fsm.storage.base.DefaultKeyBuilder

method), 664
build() (aiogram.fsm.storage.base.KeyBuilder method),

664
build() (aiogram.utils.media_group.MediaGroupBuilder

method), 735
BUSINESS_ACCOUNT_TRANSFER

(aiogram.enums.transaction_partner_user_transaction_type_enum.TransactionPartnerUserTransactionTypeEnum
attribute), 620

BUSINESS_CONNECTION
(aiogram.enums.update_type.UpdateType
attribute), 620

business_connection (aiogram.types.update.Update
attribute), 392

business_connection_id
(aiogram.methods.convert_gift_to_stars.ConvertGiftToStars
attribute), 420

business_connection_id
(aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

business_connection_id
(aiogram.methods.delete_business_messages.DeleteBusinessMessages
attribute), 430

business_connection_id
(aiogram.methods.delete_story.DeleteStory
attribute), 435

business_connection_id
(aiogram.methods.edit_message_caption.EditMessageCaption
attribute), 563

business_connection_id
(aiogram.methods.edit_message_checklist.EditMessageChecklist
attribute), 564

business_connection_id
(aiogram.methods.edit_message_live_location.EditMessageLiveLocation
attribute), 566

business_connection_id
(aiogram.methods.edit_message_media.EditMessageMedia
attribute), 567

business_connection_id
(aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup
attribute), 569

business_connection_id
(aiogram.methods.edit_message_text.EditMessageText
attribute), 571

business_connection_id
(aiogram.methods.edit_story.EditStory at-
tribute), 441

business_connection_id
(aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts
attribute), 447

business_connection_id
(aiogram.methods.get_business_account_star_balance.GetBusinessAccountStarBalance
attribute), 448

business_connection_id
(aiogram.methods.get_business_connection.GetBusinessConnection
attribute), 449

business_connection_id
(aiogram.methods.pin_chat_message.PinChatMessage
attribute), 466

business_connection_id
(aiogram.methods.post_story.PostStory at-
tribute), 467

business_connection_id
(aiogram.methods.read_business_message.ReadBusinessMessage
attribute), 471

business_connection_id
(aiogram.methods.remove_business_account_profile_photo.RemoveBusinessAccountProfilePhoto
attribute), 472

Index 813

aiogram Documentation, Release 3.23.0

business_connection_id
(aiogram.methods.send_animation.SendAnimation
attribute), 480

business_connection_id
(aiogram.methods.send_audio.SendAudio
attribute), 484

business_connection_id
(aiogram.methods.send_chat_action.SendChatAction
attribute), 486

business_connection_id
(aiogram.methods.send_checklist.SendChecklist
attribute), 487

business_connection_id
(aiogram.methods.send_contact.SendContact
attribute), 489

business_connection_id
(aiogram.methods.send_dice.SendDice at-
tribute), 492

business_connection_id
(aiogram.methods.send_document.SendDocument
attribute), 494

business_connection_id
(aiogram.methods.send_game.SendGame
attribute), 582

business_connection_id
(aiogram.methods.send_location.SendLocation
attribute), 498

business_connection_id
(aiogram.methods.send_media_group.SendMediaGroup
attribute), 501

business_connection_id
(aiogram.methods.send_message.SendMessage
attribute), 503

business_connection_id
(aiogram.methods.send_paid_media.SendPaidMedia
attribute), 506

business_connection_id
(aiogram.methods.send_photo.SendPhoto
attribute), 509

business_connection_id
(aiogram.methods.send_poll.SendPoll at-
tribute), 511

business_connection_id
(aiogram.methods.send_sticker.SendSticker
attribute), 403

business_connection_id
(aiogram.methods.send_venue.SendVenue
attribute), 514

business_connection_id
(aiogram.methods.send_video.SendVideo
attribute), 517

business_connection_id
(aiogram.methods.send_video_note.SendVideoNote
attribute), 521

business_connection_id
(aiogram.methods.send_voice.SendVoice
attribute), 523

business_connection_id
(aiogram.methods.set_business_account_bio.SetBusinessAccountBio
attribute), 525

business_connection_id
(aiogram.methods.set_business_account_gift_settings.SetBusinessAccountGiftSettings
attribute), 527

business_connection_id
(aiogram.methods.set_business_account_name.SetBusinessAccountName
attribute), 528

business_connection_id
(aiogram.methods.set_business_account_profile_photo.SetBusinessAccountProfilePhoto
attribute), 529

business_connection_id
(aiogram.methods.set_business_account_username.SetBusinessAccountUsername
attribute), 530

business_connection_id
(aiogram.methods.stop_message_live_location.StopMessageLiveLocation
attribute), 572

business_connection_id
(aiogram.methods.stop_poll.StopPoll attribute),
573

business_connection_id
(aiogram.methods.transfer_business_account_stars.TransferBusinessAccountStars
attribute), 546

business_connection_id
(aiogram.methods.transfer_gift.TransferGift
attribute), 547

business_connection_id
(aiogram.methods.unpin_chat_message.UnpinChatMessage
attribute), 554

business_connection_id
(aiogram.methods.upgrade_gift.UpgradeGift
attribute), 555

business_connection_id
(aiogram.types.business_messages_deleted.BusinessMessagesDeleted
attribute), 32

business_connection_id
(aiogram.types.message.Message attribute),
222

business_intro (aiogram.types.chat.Chat attribute),
36

business_intro (aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

business_location (aiogram.types.chat.Chat at-
tribute), 36

business_location (aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

BUSINESS_MESSAGE (aiogram.enums.update_type.UpdateType
attribute), 620

business_message (aiogram.types.update.Update at-
tribute), 393

814 Index

aiogram Documentation, Release 3.23.0

business_opening_hours (aiogram.types.chat.Chat
attribute), 36

business_opening_hours
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

BusinessBotRights (class in
aiogram.types.business_bot_rights), 29

BusinessConnection (class in
aiogram.types.business_connection), 30

BusinessIntro (class in aiogram.types.business_intro),
31

BusinessLocation (class in
aiogram.types.business_location), 31

BusinessMessagesDeleted (class in
aiogram.types.business_messages_deleted), 32

BusinessOpeningHours (class in
aiogram.types.business_opening_hours),
32

BusinessOpeningHoursInterval (class in
aiogram.types.business_opening_hours_interval),
32

button (aiogram.methods.answer_inline_query.AnswerInlineQuery
attribute), 575

button_text (aiogram.types.web_app_data.WebAppData
attribute), 316

buttons (aiogram.utils.keyboard.InlineKeyboardBuilder
property), 709

buttons (aiogram.utils.keyboard.ReplyKeyboardBuilder
property), 710

BYN (aiogram.enums.currency.Currency attribute), 608

C
cache_time (aiogram.methods.answer_callback_query.AnswerCallbackQuery

attribute), 413
cache_time (aiogram.methods.answer_inline_query.AnswerInlineQuery

attribute), 575
cache_time (aiogram.utils.callback_answer.CallbackAnswer

property), 723
CAD (aiogram.enums.currency.Currency attribute), 608
callback_data (aiogram.handlers.callback_query.CallbackQueryHandler

property), 703
callback_data (aiogram.types.inline_keyboard_button.InlineKeyboardButton

attribute), 198
callback_game (aiogram.types.inline_keyboard_button.InlineKeyboardButton

attribute), 199
CALLBACK_QUERY (aiogram.enums.update_type.UpdateType

attribute), 621
callback_query (aiogram.types.update.Update at-

tribute), 393
callback_query_id (aiogram.methods.answer_callback_query.AnswerCallbackQuery

attribute), 413
callback_query_without_state

(aiogram.fsm.scene.SceneConfig attribute),
681

CallbackAnswer (class in
aiogram.utils.callback_answer), 723

CallbackAnswerException, 690
CallbackAnswerMiddleware (class in

aiogram.utils.callback_answer), 722
CallbackData (class in aiogram.filters.callback_data),

647
CallbackGame (class in aiogram.types.callback_game),

395
CallbackQuery (class in

aiogram.types.callback_query), 33
CallbackQueryHandler (class in

aiogram.handlers.callback_query), 703
can_add_web_page_previews

(aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_add_web_page_previews
(aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_be_edited (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 107

can_be_transferred (aiogram.types.owned_gift_unique.OwnedGiftUnique
attribute), 288

can_be_upgraded (aiogram.types.gift_info.GiftInfo at-
tribute), 148

can_be_upgraded (aiogram.types.owned_gift_regular.OwnedGiftRegular
attribute), 287

can_change_gift_settings
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_change_info (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_change_info (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_change_info (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_change_info (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_change_info (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_connect_to_business (aiogram.types.user.User
attribute), 311

can_convert_gifts_to_stars
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_delete_all_messages
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_delete_messages
(aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 469

can_delete_messages
(aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 50

Index 815

aiogram Documentation, Release 3.23.0

can_delete_messages
(aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_delete_outgoing_messages
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_delete_sent_messages
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 29

can_delete_stories (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_delete_stories (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_delete_stories (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_edit_bio (aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_edit_messages (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_edit_messages (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_edit_messages (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_edit_name (aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_edit_profile_photo
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_edit_stories (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_edit_stories (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_edit_stories (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_edit_username (aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_invite_users (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_invite_users (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_invite_users (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_invite_users (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_invite_users (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_join_groups (aiogram.types.user.User attribute),
310

can_manage_chat (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 469

can_manage_chat (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 50

can_manage_chat (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 107

can_manage_direct_messages
(aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_manage_direct_messages
(aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_manage_direct_messages
(aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_manage_stories (aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_manage_topics (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_manage_topics (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_manage_topics (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_manage_topics (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_manage_topics (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_manage_video_chats
(aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 469

can_manage_video_chats
(aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 50

can_manage_video_chats
(aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_pin_messages (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_pin_messages (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_pin_messages (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_pin_messages (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_pin_messages (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_post_messages (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_post_messages (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_post_messages (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_post_stories (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_post_stories (aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 51

can_post_stories (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_promote_members
(aiogram.methods.promote_chat_member.PromoteChatMember

816 Index

aiogram Documentation, Release 3.23.0

attribute), 470
can_promote_members

(aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 50

can_promote_members
(aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_read_all_group_messages
(aiogram.types.user.User attribute), 311

can_read_messages (aiogram.types.business_bot_rights.BusinessBotRights
attribute), 29

can_reply (aiogram.types.business_bot_rights.BusinessBotRights
attribute), 29

can_reply (aiogram.types.business_connection.BusinessConnection
attribute), 31

can_restrict_members
(aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 470

can_restrict_members
(aiogram.types.chat_administrator_rights.ChatAdministratorRights
attribute), 50

can_restrict_members
(aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

can_send_after (aiogram.utils.web_app.WebAppInitData
attribute), 719

can_send_audios (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_audios (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_send_documents (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_documents (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_send_gift (aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

can_send_messages (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_messages (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_send_other_messages
(aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_other_messages
(aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_send_paid_media
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

can_send_photos (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_photos (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_send_polls (aiogram.types.chat_member_restricted.ChatMemberRestricted

attribute), 111
can_send_polls (aiogram.types.chat_permissions.ChatPermissions

attribute), 136
can_send_video_notes

(aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_video_notes
(aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_send_videos (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_videos (aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_send_voice_notes
(aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

can_send_voice_notes
(aiogram.types.chat_permissions.ChatPermissions
attribute), 136

can_set_sticker_set (aiogram.types.chat.Chat
attribute), 36

can_set_sticker_set
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

can_transfer_and_upgrade_gifts
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_transfer_stars (aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

can_view_gifts_and_stars
(aiogram.types.business_bot_rights.BusinessBotRights
attribute), 30

caption (aiogram.methods.copy_message.CopyMessage
attribute), 422

caption (aiogram.methods.edit_message_caption.EditMessageCaption
attribute), 563

caption (aiogram.methods.edit_story.EditStory at-
tribute), 441

caption (aiogram.methods.post_story.PostStory at-
tribute), 468

caption (aiogram.methods.send_animation.SendAnimation
attribute), 481

caption (aiogram.methods.send_audio.SendAudio at-
tribute), 484

caption (aiogram.methods.send_document.SendDocument
attribute), 495

caption (aiogram.methods.send_paid_media.SendPaidMedia
attribute), 506

caption (aiogram.methods.send_photo.SendPhoto at-
tribute), 509

caption (aiogram.methods.send_video.SendVideo
attribute), 518

caption (aiogram.methods.send_voice.SendVoice
attribute), 524

Index 817

aiogram Documentation, Release 3.23.0

caption (aiogram.types.inline_query_result_audio.InlineQueryResultAudio
attribute), 322

caption (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio
attribute), 324

caption (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument
attribute), 326

caption (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif
attribute), 328

caption (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif
attribute), 330

caption (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto
attribute), 333

caption (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo
attribute), 337

caption (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice
attribute), 339

caption (aiogram.types.inline_query_result_document.InlineQueryResultDocument
attribute), 342

caption (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

caption (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif
attribute), 349

caption (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 351

caption (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

caption (aiogram.types.inline_query_result_voice.InlineQueryResultVoice
attribute), 356

caption (aiogram.types.input_media_animation.InputMediaAnimation
attribute), 202

caption (aiogram.types.input_media_audio.InputMediaAudio
attribute), 203

caption (aiogram.types.input_media_document.InputMediaDocument
attribute), 204

caption (aiogram.types.input_media_photo.InputMediaPhoto
attribute), 205

caption (aiogram.types.input_media_video.InputMediaVideo
attribute), 206

caption (aiogram.types.message.Message attribute), 224
caption_entities (aiogram.methods.copy_message.CopyMessage

attribute), 422
caption_entities (aiogram.methods.edit_message_caption.EditMessageCaption

attribute), 563
caption_entities (aiogram.methods.edit_story.EditStory

attribute), 441
caption_entities (aiogram.methods.post_story.PostStory

attribute), 468
caption_entities (aiogram.methods.send_animation.SendAnimation

attribute), 481
caption_entities (aiogram.methods.send_audio.SendAudio

attribute), 484
caption_entities (aiogram.methods.send_document.SendDocument

attribute), 495
caption_entities (aiogram.methods.send_paid_media.SendPaidMedia

attribute), 506
caption_entities (aiogram.methods.send_photo.SendPhoto

attribute), 509
caption_entities (aiogram.methods.send_video.SendVideo

attribute), 518
caption_entities (aiogram.methods.send_voice.SendVoice

attribute), 524
caption_entities (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 322
caption_entities (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio

attribute), 324
caption_entities (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

attribute), 326
caption_entities (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif

attribute), 328
caption_entities (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif

attribute), 330
caption_entities (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

attribute), 333
caption_entities (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo

attribute), 337
caption_entities (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice

attribute), 339
caption_entities (aiogram.types.inline_query_result_document.InlineQueryResultDocument

attribute), 342
caption_entities (aiogram.types.inline_query_result_gif.InlineQueryResultGif

attribute), 344
caption_entities (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
caption_entities (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

attribute), 351
caption_entities (aiogram.types.inline_query_result_video.InlineQueryResultVideo

attribute), 355
caption_entities (aiogram.types.inline_query_result_voice.InlineQueryResultVoice

attribute), 356
caption_entities (aiogram.types.input_media_animation.InputMediaAnimation

attribute), 202
caption_entities (aiogram.types.input_media_audio.InputMediaAudio

attribute), 203
caption_entities (aiogram.types.input_media_document.InputMediaDocument

attribute), 204
caption_entities (aiogram.types.input_media_photo.InputMediaPhoto

attribute), 205
caption_entities (aiogram.types.input_media_video.InputMediaVideo

attribute), 206
caption_entities (aiogram.types.message.Message

attribute), 224
CASHTAG (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
CashTag (class in aiogram.utils.formatting), 729
center_color (aiogram.types.unique_gift_backdrop_colors.UniqueGiftBackdropColors

attribute), 308
certificate (aiogram.methods.set_webhook.SetWebhook

attribute), 600

818 Index

aiogram Documentation, Release 3.23.0

CHANNEL (aiogram.enums.chat_type.ChatType attribute),
605

CHANNEL (aiogram.enums.message_origin_type.MessageOriginType
attribute), 616

CHANNEL_CHAT_CREATED
(aiogram.enums.content_type.ContentType
attribute), 606

channel_chat_created
(aiogram.types.message.Message attribute),
225

CHANNEL_POST (aiogram.enums.update_type.UpdateType
attribute), 620

channel_post (aiogram.types.update.Update attribute),
392

CHAT (aiogram.enums.bot_command_scope_type.BotCommandScopeType
attribute), 603

CHAT (aiogram.enums.message_origin_type.MessageOriginType
attribute), 616

CHAT (aiogram.enums.transaction_partner_type.TransactionPartnerType
attribute), 620

CHAT (aiogram.fsm.strategy.FSMStrategy attribute), 665
chat (aiogram.types.business_messages_deleted.BusinessMessagesDeleted

attribute), 32
chat (aiogram.types.chat_boost_removed.ChatBoostRemoved

attribute), 52
chat (aiogram.types.chat_boost_updated.ChatBoostUpdated

attribute), 54
chat (aiogram.types.chat_join_request.ChatJoinRequest

attribute), 59
chat (aiogram.types.chat_member_updated.ChatMemberUpdated

attribute), 112
chat (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 142
chat (aiogram.types.giveaway_winners.GiveawayWinners

attribute), 150
chat (aiogram.types.inaccessible_message.InaccessibleMessage

attribute), 151
chat (aiogram.types.message.Message attribute), 222
chat (aiogram.types.message_origin_channel.MessageOriginChannel

attribute), 283
chat (aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated

attribute), 285
chat (aiogram.types.message_reaction_updated.MessageReactionUpdated

attribute), 286
chat (aiogram.types.story.Story attribute), 298
chat (aiogram.types.transaction_partner_chat.TransactionPartnerChat

attribute), 375
chat (aiogram.utils.web_app.WebAppInitData attribute),

719
Chat (class in aiogram.types.chat), 34
CHAT_ADMINISTRATORS

(aiogram.enums.bot_command_scope_type.BotCommandScopeType
attribute), 603

CHAT_BACKGROUND_SET

(aiogram.enums.content_type.ContentType
attribute), 607

chat_background_set
(aiogram.types.message.Message attribute),
226

CHAT_BOOST (aiogram.enums.update_type.UpdateType
attribute), 621

chat_boost (aiogram.types.update.Update attribute),
394

chat_has_username (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 213

chat_id (aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest
attribute), 414

chat_id (aiogram.methods.approve_suggested_post.ApproveSuggestedPost
attribute), 558

chat_id (aiogram.methods.ban_chat_member.BanChatMember
attribute), 415

chat_id (aiogram.methods.ban_chat_sender_chat.BanChatSenderChat
attribute), 416

chat_id (aiogram.methods.close_forum_topic.CloseForumTopic
attribute), 418

chat_id (aiogram.methods.close_general_forum_topic.CloseGeneralForumTopic
attribute), 419

chat_id (aiogram.methods.copy_message.CopyMessage
attribute), 422

chat_id (aiogram.methods.copy_messages.CopyMessages
attribute), 424

chat_id (aiogram.methods.create_chat_invite_link.CreateChatInviteLink
attribute), 425

chat_id (aiogram.methods.create_chat_subscription_invite_link.CreateChatSubscriptionInviteLink
attribute), 427

chat_id (aiogram.methods.create_forum_topic.CreateForumTopic
attribute), 428

chat_id (aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest
attribute), 429

chat_id (aiogram.methods.decline_suggested_post.DeclineSuggestedPost
attribute), 559

chat_id (aiogram.methods.delete_chat_photo.DeleteChatPhoto
attribute), 431

chat_id (aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet
attribute), 432

chat_id (aiogram.methods.delete_forum_topic.DeleteForumTopic
attribute), 433

chat_id (aiogram.methods.delete_message.DeleteMessage
attribute), 560

chat_id (aiogram.methods.delete_messages.DeleteMessages
attribute), 561

chat_id (aiogram.methods.edit_chat_invite_link.EditChatInviteLink
attribute), 436

chat_id (aiogram.methods.edit_chat_subscription_invite_link.EditChatSubscriptionInviteLink
attribute), 438

chat_id (aiogram.methods.edit_forum_topic.EditForumTopic
attribute), 439

chat_id (aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic

Index 819

aiogram Documentation, Release 3.23.0

attribute), 440
chat_id (aiogram.methods.edit_message_caption.EditMessageCaption

attribute), 563
chat_id (aiogram.methods.edit_message_checklist.EditMessageChecklist

attribute), 564
chat_id (aiogram.methods.edit_message_live_location.EditMessageLiveLocation

attribute), 566
chat_id (aiogram.methods.edit_message_media.EditMessageMedia

attribute), 567
chat_id (aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup

attribute), 569
chat_id (aiogram.methods.edit_message_text.EditMessageText

attribute), 571
chat_id (aiogram.methods.export_chat_invite_link.ExportChatInviteLink

attribute), 442
chat_id (aiogram.methods.forward_message.ForwardMessage

attribute), 443
chat_id (aiogram.methods.forward_messages.ForwardMessages

attribute), 445
chat_id (aiogram.methods.get_chat.GetChat attribute),

450
chat_id (aiogram.methods.get_chat_administrators.GetChatAdministrators

attribute), 451
chat_id (aiogram.methods.get_chat_member.GetChatMember

attribute), 451
chat_id (aiogram.methods.get_chat_member_count.GetChatMemberCount

attribute), 452
chat_id (aiogram.methods.get_chat_menu_button.GetChatMenuButton

attribute), 453
chat_id (aiogram.methods.get_game_high_scores.GetGameHighScores

attribute), 581
chat_id (aiogram.methods.get_user_chat_boosts.GetUserChatBoosts

attribute), 460
chat_id (aiogram.methods.hide_general_forum_topic.HideGeneralForumTopic

attribute), 463
chat_id (aiogram.methods.leave_chat.LeaveChat

attribute), 464
chat_id (aiogram.methods.pin_chat_message.PinChatMessage

attribute), 466
chat_id (aiogram.methods.promote_chat_member.PromoteChatMember

attribute), 469
chat_id (aiogram.methods.read_business_message.ReadBusinessMessage

attribute), 471
chat_id (aiogram.methods.remove_chat_verification.RemoveChatVerification

attribute), 473
chat_id (aiogram.methods.reopen_forum_topic.ReopenForumTopic

attribute), 475
chat_id (aiogram.methods.reopen_general_forum_topic.ReopenGeneralForumTopic

attribute), 476
chat_id (aiogram.methods.restrict_chat_member.RestrictChatMember

attribute), 477
chat_id (aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink

attribute), 478
chat_id (aiogram.methods.send_animation.SendAnimation

attribute), 480
chat_id (aiogram.methods.send_audio.SendAudio at-

tribute), 483
chat_id (aiogram.methods.send_chat_action.SendChatAction

attribute), 486
chat_id (aiogram.methods.send_checklist.SendChecklist

attribute), 487
chat_id (aiogram.methods.send_contact.SendContact

attribute), 489
chat_id (aiogram.methods.send_dice.SendDice at-

tribute), 491
chat_id (aiogram.methods.send_document.SendDocument

attribute), 494
chat_id (aiogram.methods.send_game.SendGame

attribute), 582
chat_id (aiogram.methods.send_gift.SendGift attribute),

497
chat_id (aiogram.methods.send_invoice.SendInvoice at-

tribute), 594
chat_id (aiogram.methods.send_location.SendLocation

attribute), 498
chat_id (aiogram.methods.send_media_group.SendMediaGroup

attribute), 501
chat_id (aiogram.methods.send_message.SendMessage

attribute), 503
chat_id (aiogram.methods.send_paid_media.SendPaidMedia

attribute), 506
chat_id (aiogram.methods.send_photo.SendPhoto at-

tribute), 508
chat_id (aiogram.methods.send_poll.SendPoll at-

tribute), 511
chat_id (aiogram.methods.send_sticker.SendSticker at-

tribute), 403
chat_id (aiogram.methods.send_venue.SendVenue at-

tribute), 514
chat_id (aiogram.methods.send_video.SendVideo

attribute), 517
chat_id (aiogram.methods.send_video_note.SendVideoNote

attribute), 521
chat_id (aiogram.methods.send_voice.SendVoice

attribute), 523
chat_id (aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle

attribute), 531
chat_id (aiogram.methods.set_chat_description.SetChatDescription

attribute), 532
chat_id (aiogram.methods.set_chat_menu_button.SetChatMenuButton

attribute), 533
chat_id (aiogram.methods.set_chat_permissions.SetChatPermissions

attribute), 534
chat_id (aiogram.methods.set_chat_photo.SetChatPhoto

attribute), 535
chat_id (aiogram.methods.set_chat_sticker_set.SetChatStickerSet

attribute), 536
chat_id (aiogram.methods.set_chat_title.SetChatTitle

820 Index

aiogram Documentation, Release 3.23.0

attribute), 537
chat_id (aiogram.methods.set_game_score.SetGameScore

attribute), 584
chat_id (aiogram.methods.set_message_reaction.SetMessageReaction

attribute), 538
chat_id (aiogram.methods.stop_message_live_location.StopMessageLiveLocation

attribute), 572
chat_id (aiogram.methods.stop_poll.StopPoll attribute),

573
chat_id (aiogram.methods.unban_chat_member.UnbanChatMember

attribute), 548
chat_id (aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat

attribute), 549
chat_id (aiogram.methods.unhide_general_forum_topic.UnhideGeneralForumTopic

attribute), 550
chat_id (aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages

attribute), 551
chat_id (aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages

attribute), 552
chat_id (aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages

attribute), 553
chat_id (aiogram.methods.unpin_chat_message.UnpinChatMessage

attribute), 554
chat_id (aiogram.methods.verify_chat.VerifyChat

attribute), 556
chat_id (aiogram.types.bot_command_scope_chat.BotCommandScopeChat

attribute), 27
chat_id (aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators

attribute), 27
chat_id (aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember

attribute), 28
chat_id (aiogram.types.chat_shared.ChatShared at-

tribute), 137
chat_id (aiogram.types.reply_parameters.ReplyParameters

attribute), 296
chat_instance (aiogram.types.callback_query.CallbackQuery

attribute), 33
chat_instance (aiogram.utils.web_app.WebAppInitData

attribute), 719
chat_is_channel (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat

attribute), 213
chat_is_created (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat

attribute), 213
chat_is_forum (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat

attribute), 213
CHAT_JOIN_REQUEST (aiogram.enums.update_type.UpdateType

attribute), 621
chat_join_request (aiogram.types.update.Update at-

tribute), 393
CHAT_MEMBER (aiogram.enums.bot_command_scope_type.BotCommandScopeType

attribute), 603
CHAT_MEMBER (aiogram.enums.update_type.UpdateType

attribute), 621
chat_member (aiogram.types.update.Update attribute),

393
CHAT_SHARED (aiogram.enums.content_type.ContentType

attribute), 606
chat_shared (aiogram.types.message.Message at-

tribute), 226
CHAT_TOPIC (aiogram.fsm.strategy.FSMStrategy at-

tribute), 665
chat_type (aiogram.types.inline_query.InlineQuery at-

tribute), 318
chat_type (aiogram.utils.web_app.WebAppInitData at-

tribute), 719
ChatAction (class in aiogram.enums.chat_action), 604
ChatActionMiddleware (class in

aiogram.utils.chat_action), 717
ChatActionSender (class in aiogram.utils.chat_action),

716
ChatAdministratorRights (class in

aiogram.types.chat_administrator_rights),
50

ChatBackground (class in
aiogram.types.chat_background), 51

ChatBoost (class in aiogram.types.chat_boost), 52
ChatBoostAdded (class in

aiogram.types.chat_boost_added), 52
ChatBoostRemoved (class in

aiogram.types.chat_boost_removed), 52
ChatBoostSource (class in

aiogram.types.chat_boost_source), 53
ChatBoostSourceGiftCode (class in

aiogram.types.chat_boost_source_gift_code),
53

ChatBoostSourceGiveaway (class in
aiogram.types.chat_boost_source_giveaway),
53

ChatBoostSourcePremium (class in
aiogram.types.chat_boost_source_premium),
54

ChatBoostSourceType (class in
aiogram.enums.chat_boost_source_type),
604

ChatBoostUpdated (class in
aiogram.types.chat_boost_updated), 54

ChatFullInfo (class in aiogram.types.chat_full_info),
55

ChatInviteLink (class in
aiogram.types.chat_invite_link), 58

ChatJoinRequest (class in
aiogram.types.chat_join_request), 59

ChatLocation (class in aiogram.types.chat_location),
106

ChatMember (class in aiogram.types.chat_member), 106
ChatMemberAdministrator (class in

aiogram.types.chat_member_administrator),
107

Index 821

aiogram Documentation, Release 3.23.0

ChatMemberBanned (class in
aiogram.types.chat_member_banned), 109

ChatMemberLeft (class in
aiogram.types.chat_member_left), 109

ChatMemberMember (class in
aiogram.types.chat_member_member), 109

ChatMemberOwner (class in
aiogram.types.chat_member_owner), 110

ChatMemberRestricted (class in
aiogram.types.chat_member_restricted),
110

ChatMemberStatus (class in
aiogram.enums.chat_member_status), 605

ChatMemberUpdated (class in
aiogram.types.chat_member_updated), 112

ChatMemberUpdatedFilter (class in
aiogram.filters.chat_member_updated), 642

ChatPermissions (class in
aiogram.types.chat_permissions), 135

ChatPhoto (class in aiogram.types.chat_photo), 137
chats (aiogram.types.giveaway.Giveaway attribute), 148
ChatShared (class in aiogram.types.chat_shared), 137
ChatType (class in aiogram.enums.chat_type), 605
check_flags() (in module aiogram.dispatcher.flags),

692
check_response() (aiogram.client.session.base.BaseSession

method), 15
check_webapp_signature() (in module

aiogram.utils.web_app), 718
CHECKLIST (aiogram.enums.content_type.ContentType

attribute), 606
checklist (aiogram.methods.edit_message_checklist.EditMessageChecklist

attribute), 564
checklist (aiogram.methods.send_checklist.SendChecklist

attribute), 487
checklist (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
checklist (aiogram.types.message.Message attribute),

224
Checklist (class in aiogram.types.checklist), 138
checklist_message (aiogram.types.checklist_tasks_added.ChecklistTasksAdded

attribute), 139
checklist_message (aiogram.types.checklist_tasks_done.ChecklistTasksDone

attribute), 139
checklist_task_id (aiogram.types.reply_parameters.ReplyParameters

attribute), 297
CHECKLIST_TASKS_ADDED

(aiogram.enums.content_type.ContentType
attribute), 607

checklist_tasks_added
(aiogram.types.message.Message attribute),
226

CHECKLIST_TASKS_DONE
(aiogram.enums.content_type.ContentType

attribute), 607
checklist_tasks_done

(aiogram.types.message.Message attribute),
226

ChecklistTask (class in aiogram.types.checklist_task),
138

ChecklistTasksAdded (class in
aiogram.types.checklist_tasks_added), 139

ChecklistTasksDone (class in
aiogram.types.checklist_tasks_done), 139

CHF (aiogram.enums.currency.Currency attribute), 608
CHIN (aiogram.enums.mask_position_point.MaskPositionPoint

attribute), 614
CHOOSE_STICKER (aiogram.enums.chat_action.ChatAction

attribute), 604
choose_sticker() (aiogram.utils.chat_action.ChatActionSender

class method), 716
CHOSEN_INLINE_RESULT

(aiogram.enums.update_type.UpdateType
attribute), 621

chosen_inline_result (aiogram.types.update.Update
attribute), 393

ChosenInlineResult (class in
aiogram.types.chosen_inline_result), 317

city (aiogram.types.location_address.LocationAddress
attribute), 217

city (aiogram.types.shipping_address.ShippingAddress
attribute), 370

clear_data() (aiogram.fsm.scene.SceneWizard
method), 682

ClientDecodeError, 691
Close (class in aiogram.methods.close), 417
close() (aiogram.client.session.base.BaseSession

method), 15
close() (aiogram.fsm.scene.ScenesManager method),

681
close() (aiogram.fsm.storage.base.BaseStorage

method), 665
close() (aiogram.webhook.aiohttp_server.SimpleRequestHandler

method), 694
close_date (aiogram.methods.send_poll.SendPoll at-

tribute), 512
close_date (aiogram.types.poll.Poll attribute), 292
CloseForumTopic (class in

aiogram.methods.close_forum_topic), 418
CloseGeneralForumTopic (class in

aiogram.methods.close_general_forum_topic),
419

closing_minute (aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval
attribute), 32

CLP (aiogram.enums.currency.Currency attribute), 608
CNY (aiogram.enums.currency.Currency attribute), 608
CODE (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615

822 Index

aiogram Documentation, Release 3.23.0

Code (class in aiogram.utils.formatting), 730
color (aiogram.types.background_fill_solid.BackgroundFillSolid

attribute), 22
colors (aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient

attribute), 22
colors (aiogram.types.unique_gift_backdrop.UniqueGiftBackdrop

attribute), 308
command (aiogram.filters.command.CommandObject at-

tribute), 641
command (aiogram.types.bot_command.BotCommand at-

tribute), 25
Command (class in aiogram.filters.command), 640
CommandObject (class in aiogram.filters.command), 640
COMMANDS (aiogram.enums.menu_button_type.MenuButtonType

attribute), 614
commands (aiogram.methods.set_my_commands.SetMyCommands

attribute), 540
comment (aiogram.methods.decline_suggested_post.DeclineSuggestedPost

attribute), 559
comment (aiogram.types.suggested_post_declined.SuggestedPostDeclined

attribute), 304
commission_per_mille

(aiogram.types.affiliate_info.AffiliateInfo
attribute), 364

commission_per_mille
(aiogram.types.transaction_partner_affiliate_program.TransactionPartnerAffiliateProgram
attribute), 375

completed_by_user (aiogram.types.checklist_task.ChecklistTask
attribute), 138

completion_date (aiogram.types.checklist_task.ChecklistTask
attribute), 138

CONNECTED_WEBSITE (aiogram.enums.content_type.ContentType
attribute), 607

connected_website (aiogram.types.message.Message
attribute), 226

ConstI18nMiddleware (class in
aiogram.utils.i18n.middleware), 713

CONTACT (aiogram.enums.content_type.ContentType at-
tribute), 606

CONTACT (aiogram.enums.inline_query_result_type.InlineQueryResultType
attribute), 612

contact (aiogram.types.external_reply_info.ExternalReplyInfo
attribute), 143

contact (aiogram.types.message.Message attribute), 224
Contact (class in aiogram.types.contact), 139
content (aiogram.methods.edit_story.EditStory at-

tribute), 441
content (aiogram.methods.post_story.PostStory at-

tribute), 467
content_type (aiogram.types.message.Message prop-

erty), 228
ContentType (class in aiogram.enums.content_type),

605
convert_star_count (aiogram.types.gift_info.GiftInfo

attribute), 148
convert_star_count (aiogram.types.owned_gift_regular.OwnedGiftRegular

attribute), 287
ConvertGiftToStars (class in

aiogram.methods.convert_gift_to_stars),
420

COP (aiogram.enums.currency.Currency attribute), 608
copy() (aiogram.utils.keyboard.InlineKeyboardBuilder

method), 709
copy() (aiogram.utils.keyboard.ReplyKeyboardBuilder

method), 710
copy_text (aiogram.types.inline_keyboard_button.InlineKeyboardButton

attribute), 199
copy_to() (aiogram.types.message.Message method),

271
CopyMessage (class in aiogram.methods.copy_message),

421
CopyMessages (class in

aiogram.methods.copy_messages), 424
CopyTextButton (class in

aiogram.types.copy_text_button), 140
corner_radius_percentage

(aiogram.types.story_area_position.StoryAreaPosition
attribute), 299

correct_option_id (aiogram.methods.send_poll.SendPoll
attribute), 512

correct_option_id (aiogram.types.poll.Poll attribute),
292

country_code (aiogram.types.location_address.LocationAddress
attribute), 217

country_code (aiogram.types.shipping_address.ShippingAddress
attribute), 370

country_codes (aiogram.types.giveaway.Giveaway at-
tribute), 149

cover (aiogram.methods.send_video.SendVideo at-
tribute), 518

cover (aiogram.types.input_media_video.InputMediaVideo
attribute), 206

cover (aiogram.types.input_paid_media_video.InputPaidMediaVideo
attribute), 208

cover (aiogram.types.video.Video attribute), 314
cover_frame_timestamp

(aiogram.types.input_story_content_video.InputStoryContentVideo
attribute), 211

CRC (aiogram.enums.currency.Currency attribute), 608
create_invite_link() (aiogram.types.chat.Chat

method), 41
create_start_link() (in module

aiogram.utils.deep_linking), 736
create_startapp_link() (in module

aiogram.utils.deep_linking), 737
create_startgroup_link() (in module

aiogram.utils.deep_linking), 736
CreateChatInviteLink (class in

Index 823

aiogram Documentation, Release 3.23.0

aiogram.methods.create_chat_invite_link),
425

CreateChatSubscriptionInviteLink (class in
aiogram.methods.create_chat_subscription_invite_link),
426

CreateForumTopic (class in
aiogram.methods.create_forum_topic), 428

CreateInvoiceLink (class in
aiogram.methods.create_invoice_link), 588

CreateNewStickerSet (class in
aiogram.methods.create_new_sticker_set),
397

creates_join_request
(aiogram.methods.create_chat_invite_link.CreateChatInviteLink
attribute), 426

creates_join_request
(aiogram.methods.edit_chat_invite_link.EditChatInviteLink
attribute), 436

creates_join_request
(aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

CREATOR (aiogram.enums.chat_member_status.ChatMemberStatus
attribute), 605

creator (aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

credentials (aiogram.types.passport_data.PassportData
attribute), 384

currency (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

currency (aiogram.methods.send_invoice.SendInvoice
attribute), 594

currency (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

currency (aiogram.types.invoice.Invoice attribute), 365
currency (aiogram.types.pre_checkout_query.PreCheckoutQuery

attribute), 366
currency (aiogram.types.refunded_payment.RefundedPayment

attribute), 367
currency (aiogram.types.successful_payment.SuccessfulPayment

attribute), 373
currency (aiogram.types.suggested_post_paid.SuggestedPostPaid

attribute), 304
currency (aiogram.types.suggested_post_price.SuggestedPostPrice

attribute), 305
Currency (class in aiogram.enums.currency), 608
custom_description (aiogram.methods.verify_chat.VerifyChat

attribute), 556
custom_description (aiogram.methods.verify_user.VerifyUser

attribute), 557
CUSTOM_EMOJI (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
CUSTOM_EMOJI (aiogram.enums.reaction_type_type.ReactionTypeType

attribute), 617
CUSTOM_EMOJI (aiogram.enums.sticker_type.StickerType

attribute), 618
custom_emoji_id (aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail

attribute), 406
custom_emoji_id (aiogram.types.message_entity.MessageEntity

attribute), 282
custom_emoji_id (aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji

attribute), 294
custom_emoji_id (aiogram.types.sticker.Sticker at-

tribute), 381
custom_emoji_ids (aiogram.methods.get_custom_emoji_stickers.GetCustomEmojiStickers

attribute), 400
custom_emoji_sticker_set_name

(aiogram.types.chat.Chat attribute), 36
custom_emoji_sticker_set_name

(aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

custom_title (aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle
attribute), 532

custom_title (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 108

custom_title (aiogram.types.chat_member_owner.ChatMemberOwner
attribute), 110

CustomEmoji (class in aiogram.utils.formatting), 731
CZK (aiogram.enums.currency.Currency attribute), 608

D
dark_theme_dimming (aiogram.types.background_type_fill.BackgroundTypeFill

attribute), 23
dark_theme_dimming (aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper

attribute), 24
DART (aiogram.enums.dice_emoji.DiceEmoji attribute),

611
DART (aiogram.types.dice.DiceEmoji attribute), 140
DATA (aiogram.enums.passport_element_error_type.PassportElementErrorType

attribute), 617
data (aiogram.types.callback_query.CallbackQuery at-

tribute), 33
data (aiogram.types.encrypted_credentials.EncryptedCredentials

attribute), 382
data (aiogram.types.encrypted_passport_element.EncryptedPassportElement

attribute), 383
data (aiogram.types.passport_data.PassportData at-

tribute), 384
data (aiogram.types.web_app_data.WebAppData at-

tribute), 316
data_hash (aiogram.types.passport_element_error_data_field.PassportElementErrorDataField

attribute), 385
DataNotDictLikeError, 691
date (aiogram.types.business_connection.BusinessConnection

attribute), 31
date (aiogram.types.chat_join_request.ChatJoinRequest

attribute), 60
date (aiogram.types.chat_member_updated.ChatMemberUpdated

attribute), 112

824 Index

aiogram Documentation, Release 3.23.0

date (aiogram.types.inaccessible_message.InaccessibleMessage
attribute), 151

date (aiogram.types.message.Message attribute), 222
date (aiogram.types.message_origin_channel.MessageOriginChannel

attribute), 283
date (aiogram.types.message_origin_chat.MessageOriginChat

attribute), 284
date (aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser

attribute), 284
date (aiogram.types.message_origin_user.MessageOriginUser

attribute), 285
date (aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated

attribute), 285
date (aiogram.types.message_reaction_updated.MessageReactionUpdated

attribute), 286
date (aiogram.types.revenue_withdrawal_state_succeeded.RevenueWithdrawalStateSucceeded

attribute), 369
date (aiogram.types.star_transaction.StarTransaction at-

tribute), 372
day (aiogram.types.birthdate.Birthdate attribute), 25
decline() (aiogram.types.chat_join_request.ChatJoinRequest

method), 60
DeclineChatJoinRequest (class in

aiogram.methods.decline_chat_join_request),
429

DeclineSuggestedPost (class in
aiogram.methods.decline_suggested_post),
559

decode_payload() (in module
aiogram.utils.deep_linking), 737

DEFAULT (aiogram.enums.bot_command_scope_type.BotCommandScopeType
attribute), 603

DEFAULT (aiogram.enums.menu_button_type.MenuButtonType
attribute), 614

DefaultBotProperties (class in
aiogram.client.default), 625

DefaultKeyBuilder (class in
aiogram.fsm.storage.base), 664

delete() (aiogram.types.message.Message method),
277

DELETE_CHAT_PHOTO (aiogram.enums.content_type.ContentType
attribute), 606

delete_chat_photo (aiogram.types.message.Message
attribute), 225

delete_from_set() (aiogram.types.sticker.Sticker
method), 381

delete_message() (aiogram.types.chat.Chat method),
40

delete_photo() (aiogram.types.chat.Chat method), 49
delete_reply_markup()

(aiogram.types.message.Message method),
275

delete_sticker_set() (aiogram.types.chat.Chat
method), 42

DeleteBusinessMessages (class in
aiogram.methods.delete_business_messages),
430

DeleteChatPhoto (class in
aiogram.methods.delete_chat_photo), 431

DeleteChatStickerSet (class in
aiogram.methods.delete_chat_sticker_set),
432

DELETED_BUSINESS_MESSAGES
(aiogram.enums.update_type.UpdateType
attribute), 621

deleted_business_messages
(aiogram.types.update.Update attribute),
393

DeleteForumTopic (class in
aiogram.methods.delete_forum_topic), 433

DeleteMessage (class in
aiogram.methods.delete_message), 560

DeleteMessages (class in
aiogram.methods.delete_messages), 561

DeleteMyCommands (class in
aiogram.methods.delete_my_commands),
434

DeleteStickerFromSet (class in
aiogram.methods.delete_sticker_from_set),
398

DeleteStickerSet (class in
aiogram.methods.delete_sticker_set), 399

DeleteStory (class in aiogram.methods.delete_story),
435

DeleteWebhook (class in
aiogram.methods.delete_webhook), 597

description (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

description (aiogram.methods.send_invoice.SendInvoice
attribute), 594

description (aiogram.methods.set_chat_description.SetChatDescription
attribute), 532

description (aiogram.methods.set_my_description.SetMyDescription
attribute), 542

description (aiogram.types.bot_command.BotCommand
attribute), 25

description (aiogram.types.bot_description.BotDescription
attribute), 28

description (aiogram.types.chat.Chat attribute), 36
description (aiogram.types.chat_full_info.ChatFullInfo

attribute), 57
description (aiogram.types.game.Game attribute), 395
description (aiogram.types.inline_query_result_article.InlineQueryResultArticle

attribute), 320
description (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

attribute), 326
description (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

attribute), 333

Index 825

aiogram Documentation, Release 3.23.0

description (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo
attribute), 337

description (aiogram.types.inline_query_result_document.InlineQueryResultDocument
attribute), 342

description (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 351

description (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

description (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

description (aiogram.types.invoice.Invoice attribute),
365

deserialize_telegram_object() (in module
aiogram.utils.serialization), 738

deserialize_telegram_object_to_python() (in
module aiogram.utils.serialization), 738

DeserializedTelegramObject (class in
aiogram.utils.serialization), 738

DetailedAiogramError, 690
DICE (aiogram.enums.content_type.ContentType at-

tribute), 606
DICE (aiogram.enums.dice_emoji.DiceEmoji attribute),

611
DICE (aiogram.types.dice.DiceEmoji attribute), 140
dice (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
dice (aiogram.types.message.Message attribute), 224
Dice (class in aiogram.types.dice), 140
DiceEmoji (class in aiogram.enums.dice_emoji), 611
DiceEmoji (class in aiogram.types.dice), 140
DIRECT_MESSAGE_PRICE_CHANGED

(aiogram.enums.content_type.ContentType
attribute), 607

direct_message_price_changed
(aiogram.types.message.Message attribute),
226

direct_message_star_count
(aiogram.types.direct_message_price_changed.DirectMessagePriceChanged
attribute), 141

direct_messages_topic
(aiogram.types.message.Message attribute),
222

direct_messages_topic_id
(aiogram.methods.copy_message.CopyMessage
attribute), 422

direct_messages_topic_id
(aiogram.methods.copy_messages.CopyMessages
attribute), 424

direct_messages_topic_id
(aiogram.methods.forward_message.ForwardMessage
attribute), 443

direct_messages_topic_id
(aiogram.methods.forward_messages.ForwardMessages
attribute), 445

direct_messages_topic_id
(aiogram.methods.send_animation.SendAnimation
attribute), 481

direct_messages_topic_id
(aiogram.methods.send_audio.SendAudio
attribute), 484

direct_messages_topic_id
(aiogram.methods.send_contact.SendContact
attribute), 489

direct_messages_topic_id
(aiogram.methods.send_dice.SendDice at-
tribute), 492

direct_messages_topic_id
(aiogram.methods.send_document.SendDocument
attribute), 494

direct_messages_topic_id
(aiogram.methods.send_invoice.SendInvoice
attribute), 595

direct_messages_topic_id
(aiogram.methods.send_location.SendLocation
attribute), 498

direct_messages_topic_id
(aiogram.methods.send_media_group.SendMediaGroup
attribute), 501

direct_messages_topic_id
(aiogram.methods.send_message.SendMessage
attribute), 503

direct_messages_topic_id
(aiogram.methods.send_paid_media.SendPaidMedia
attribute), 506

direct_messages_topic_id
(aiogram.methods.send_photo.SendPhoto
attribute), 509

direct_messages_topic_id
(aiogram.methods.send_sticker.SendSticker
attribute), 403

direct_messages_topic_id
(aiogram.methods.send_venue.SendVenue
attribute), 514

direct_messages_topic_id
(aiogram.methods.send_video.SendVideo
attribute), 517

direct_messages_topic_id
(aiogram.methods.send_video_note.SendVideoNote
attribute), 521

direct_messages_topic_id
(aiogram.methods.send_voice.SendVoice
attribute), 523

DirectMessagePriceChanged (class in
aiogram.types.direct_message_price_changed),
141

DirectMessagesTopic (class in
aiogram.types.direct_messages_topic), 141

disable() (aiogram.utils.callback_answer.CallbackAnswer

826 Index

aiogram Documentation, Release 3.23.0

method), 723
disable_content_type_detection

(aiogram.methods.send_document.SendDocument
attribute), 495

disable_content_type_detection
(aiogram.types.input_media_document.InputMediaDocument
attribute), 204

disable_edit_message
(aiogram.methods.set_game_score.SetGameScore
attribute), 584

disable_notification
(aiogram.client.default.DefaultBotProperties
attribute), 625

disable_notification
(aiogram.methods.copy_message.CopyMessage
attribute), 422

disable_notification
(aiogram.methods.copy_messages.CopyMessages
attribute), 424

disable_notification
(aiogram.methods.forward_message.ForwardMessage
attribute), 444

disable_notification
(aiogram.methods.forward_messages.ForwardMessages
attribute), 445

disable_notification
(aiogram.methods.pin_chat_message.PinChatMessage
attribute), 466

disable_notification
(aiogram.methods.send_animation.SendAnimation
attribute), 481

disable_notification
(aiogram.methods.send_audio.SendAudio
attribute), 484

disable_notification
(aiogram.methods.send_checklist.SendChecklist
attribute), 488

disable_notification
(aiogram.methods.send_contact.SendContact
attribute), 489

disable_notification
(aiogram.methods.send_dice.SendDice at-
tribute), 492

disable_notification
(aiogram.methods.send_document.SendDocument
attribute), 495

disable_notification
(aiogram.methods.send_game.SendGame
attribute), 582

disable_notification
(aiogram.methods.send_invoice.SendInvoice
attribute), 596

disable_notification
(aiogram.methods.send_location.SendLocation

attribute), 499
disable_notification

(aiogram.methods.send_media_group.SendMediaGroup
attribute), 501

disable_notification
(aiogram.methods.send_message.SendMessage
attribute), 504

disable_notification
(aiogram.methods.send_paid_media.SendPaidMedia
attribute), 507

disable_notification
(aiogram.methods.send_photo.SendPhoto
attribute), 509

disable_notification
(aiogram.methods.send_poll.SendPoll at-
tribute), 512

disable_notification
(aiogram.methods.send_sticker.SendSticker
attribute), 404

disable_notification
(aiogram.methods.send_venue.SendVenue
attribute), 515

disable_notification
(aiogram.methods.send_video.SendVideo
attribute), 518

disable_notification
(aiogram.methods.send_video_note.SendVideoNote
attribute), 521

disable_notification
(aiogram.methods.send_voice.SendVoice
attribute), 524

disable_web_page_preview
(aiogram.methods.edit_message_text.EditMessageText
attribute), 571

disable_web_page_preview
(aiogram.methods.send_message.SendMessage
attribute), 504

disable_web_page_preview
(aiogram.types.input_text_message_content.InputTextMessageContent
attribute), 363

disabled (aiogram.utils.callback_answer.CallbackAnswer
property), 723

dispatcher (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

Dispatcher (class in aiogram.dispatcher.dispatcher),
633

distance (aiogram.types.proximity_alert_triggered.ProximityAlertTriggered
attribute), 293

DKK (aiogram.enums.currency.Currency attribute), 608
do() (aiogram.types.chat.Chat method), 42
DOCUMENT (aiogram.enums.content_type.ContentType at-

tribute), 605
DOCUMENT (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612

Index 827

aiogram Documentation, Release 3.23.0

DOCUMENT (aiogram.enums.input_media_type.InputMediaType
attribute), 612

document (aiogram.methods.send_document.SendDocument
attribute), 494

document (aiogram.types.background_type_pattern.BackgroundTypePattern
attribute), 24

document (aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper
attribute), 24

document (aiogram.types.external_reply_info.ExternalReplyInfo
attribute), 143

document (aiogram.types.message.Message attribute),
224

Document (class in aiogram.types.document), 141
document_file_id (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

attribute), 326
document_url (aiogram.types.inline_query_result_document.InlineQueryResultDocument

attribute), 341
DOP (aiogram.enums.currency.Currency attribute), 608
download() (aiogram.client.bot.Bot method), 623
download_file() (aiogram.client.bot.Bot method), 622
DRIVER_LICENSE (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
drop_pending_updates

(aiogram.methods.delete_webhook.DeleteWebhook
attribute), 597

drop_pending_updates
(aiogram.methods.set_webhook.SetWebhook
attribute), 601

duration (aiogram.methods.send_animation.SendAnimation
attribute), 481

duration (aiogram.methods.send_audio.SendAudio at-
tribute), 484

duration (aiogram.methods.send_video.SendVideo at-
tribute), 518

duration (aiogram.methods.send_video_note.SendVideoNote
attribute), 521

duration (aiogram.methods.send_voice.SendVoice at-
tribute), 524

duration (aiogram.types.animation.Animation at-
tribute), 20

duration (aiogram.types.audio.Audio attribute), 20
duration (aiogram.types.input_media_animation.InputMediaAnimation

attribute), 202
duration (aiogram.types.input_media_audio.InputMediaAudio

attribute), 203
duration (aiogram.types.input_media_video.InputMediaVideo

attribute), 207
duration (aiogram.types.input_paid_media_video.InputPaidMediaVideo

attribute), 208
duration (aiogram.types.input_story_content_video.InputStoryContentVideo

attribute), 211
duration (aiogram.types.paid_media_preview.PaidMediaPreview

attribute), 290
duration (aiogram.types.video.Video attribute), 314

duration (aiogram.types.video_chat_ended.VideoChatEnded
attribute), 314

duration (aiogram.types.video_note.VideoNote at-
tribute), 315

duration (aiogram.types.voice.Voice attribute), 316
DZD (aiogram.enums.currency.Currency attribute), 608

E
edge_color (aiogram.types.unique_gift_backdrop_colors.UniqueGiftBackdropColors

attribute), 308
edit_caption() (aiogram.types.message.Message

method), 276
edit_date (aiogram.types.message.Message attribute),

223
edit_invite_link() (aiogram.types.chat.Chat

method), 41
edit_live_location()

(aiogram.types.message.Message method),
275

edit_media() (aiogram.types.message.Message
method), 274

edit_reply_markup()
(aiogram.types.message.Message method),
274

edit_text() (aiogram.types.message.Message method),
272

EditChatInviteLink (class in
aiogram.methods.edit_chat_invite_link),
436

EditChatSubscriptionInviteLink (class in
aiogram.methods.edit_chat_subscription_invite_link),
437

EDITED_BUSINESS_MESSAGE
(aiogram.enums.update_type.UpdateType
attribute), 620

edited_business_message
(aiogram.types.update.Update attribute),
393

EDITED_CHANNEL_POST
(aiogram.enums.update_type.UpdateType
attribute), 620

edited_channel_post (aiogram.types.update.Update
attribute), 392

EDITED_MESSAGE (aiogram.enums.update_type.UpdateType
attribute), 620

edited_message (aiogram.types.update.Update at-
tribute), 392

EditForumTopic (class in
aiogram.methods.edit_forum_topic), 438

EditGeneralForumTopic (class in
aiogram.methods.edit_general_forum_topic),
440

EditMessageCaption (class in
aiogram.methods.edit_message_caption),

828 Index

aiogram Documentation, Release 3.23.0

562
EditMessageChecklist (class in

aiogram.methods.edit_message_checklist),
564

EditMessageLiveLocation (class in
aiogram.methods.edit_message_live_location),
565

EditMessageMedia (class in
aiogram.methods.edit_message_media), 567

EditMessageReplyMarkup (class in
aiogram.methods.edit_message_reply_markup),
569

EditMessageText (class in
aiogram.methods.edit_message_text), 570

EditStory (class in aiogram.methods.edit_story), 441
EditUserStarSubscription (class in

aiogram.methods.edit_user_star_subscription),
590

effect_id (aiogram.types.message.Message attribute),
223

EGP (aiogram.enums.currency.Currency attribute), 608
element_hash (aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified

attribute), 391
EMAIL (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
EMAIL (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
email (aiogram.types.encrypted_passport_element.EncryptedPassportElement

attribute), 383
email (aiogram.types.order_info.OrderInfo attribute),

366
Email (class in aiogram.utils.formatting), 729
EMOJI (aiogram.enums.reaction_type_type.ReactionTypeType

attribute), 617
emoji (aiogram.methods.send_dice.SendDice attribute),

492
emoji (aiogram.methods.send_sticker.SendSticker

attribute), 404
emoji (aiogram.types.dice.Dice attribute), 140
emoji (aiogram.types.reaction_type_emoji.ReactionTypeEmoji

attribute), 294
emoji (aiogram.types.sticker.Sticker attribute), 380
emoji (aiogram.types.story_area_type_weather.StoryAreaTypeWeather

attribute), 302
emoji_list (aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList

attribute), 406
emoji_list (aiogram.types.input_sticker.InputSticker

attribute), 379
emoji_status_custom_emoji_id

(aiogram.methods.set_user_emoji_status.SetUserEmojiStatus
attribute), 545

emoji_status_custom_emoji_id
(aiogram.types.chat.Chat attribute), 36

emoji_status_custom_emoji_id

(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

emoji_status_expiration_date
(aiogram.methods.set_user_emoji_status.SetUserEmojiStatus
attribute), 545

emoji_status_expiration_date
(aiogram.types.chat.Chat attribute), 36

emoji_status_expiration_date
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

EncryptedCredentials (class in
aiogram.types.encrypted_credentials), 382

EncryptedPassportElement (class in
aiogram.enums.encrypted_passport_element),
611

EncryptedPassportElement (class in
aiogram.types.encrypted_passport_element),
382

enter() (aiogram.fsm.scene.ScenesManager method),
681

enter() (aiogram.fsm.scene.SceneWizard method), 682
entities (aiogram.methods.edit_message_text.EditMessageText

attribute), 571
entities (aiogram.methods.send_message.SendMessage

attribute), 504
entities (aiogram.types.gift_info.GiftInfo attribute),

148
entities (aiogram.types.input_text_message_content.InputTextMessageContent

attribute), 363
entities (aiogram.types.message.Message attribute),

223
entities (aiogram.types.owned_gift_regular.OwnedGiftRegular

attribute), 287
entities (aiogram.types.text_quote.TextQuote at-

tribute), 307
error_message (aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery

attribute), 585
error_message (aiogram.methods.answer_shipping_query.AnswerShippingQuery

attribute), 586
ErrorEvent (class in aiogram.types.error_event), 689
errors (aiogram.methods.set_passport_data_errors.SetPassportDataErrors

attribute), 602
ETB (aiogram.enums.currency.Currency attribute), 609
EUR (aiogram.enums.currency.Currency attribute), 609
event (aiogram.types.update.Update property), 394
event_business_connection_id

(aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

event_chat (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

event_context (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

event_from_user (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

Index 829

aiogram Documentation, Release 3.23.0

event_router (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

event_thread_id (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

event_type (aiogram.types.update.Update property),
394

event_update (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

exception (aiogram.types.error_event.ErrorEvent at-
tribute), 689

ExceptionMessageFilter (class in
aiogram.filters.exception), 649

exceptions (aiogram.filters.exception.ExceptionTypeFilter
attribute), 649

ExceptionTypeFilter (class in
aiogram.filters.exception), 649

exclude_limited (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts
attribute), 447

exclude_saved (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts
attribute), 447

exclude_unique (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts
attribute), 447

exclude_unlimited (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts
attribute), 447

exclude_unsaved (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts
attribute), 447

exit() (aiogram.fsm.scene.SceneWizard method), 682
EXPANDABLE_BLOCKQUOTE

(aiogram.enums.message_entity_type.MessageEntityType
attribute), 615

ExpandableBlockQuote (class in
aiogram.utils.formatting), 731

expiration_date (aiogram.types.chat_boost.ChatBoost
attribute), 52

expiration_date (aiogram.types.prepared_inline_message.PreparedInlineMessage
attribute), 364

expire_date (aiogram.methods.create_chat_invite_link.CreateChatInviteLink
attribute), 425

expire_date (aiogram.methods.edit_chat_invite_link.EditChatInviteLink
attribute), 436

expire_date (aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

explanation (aiogram.methods.send_poll.SendPoll at-
tribute), 512

explanation (aiogram.types.poll.Poll attribute), 292
explanation_entities

(aiogram.methods.send_poll.SendPoll at-
tribute), 512

explanation_entities (aiogram.types.poll.Poll
attribute), 292

explanation_parse_mode
(aiogram.methods.send_poll.SendPoll at-
tribute), 512

export() (aiogram.utils.keyboard.InlineKeyboardBuilder

method), 709
export() (aiogram.utils.keyboard.ReplyKeyboardBuilder

method), 710
export_invite_link() (aiogram.types.chat.Chat

method), 41
ExportChatInviteLink (class in

aiogram.methods.export_chat_invite_link),
442

external_reply (aiogram.types.message.Message at-
tribute), 222

ExternalReplyInfo (class in
aiogram.types.external_reply_info), 142

extract_flags() (in module aiogram.dispatcher.flags),
692

extract_from() (aiogram.types.message_entity.MessageEntity
method), 282

EYES (aiogram.enums.mask_position_point.MaskPositionPoint
attribute), 614

F
FAILED (aiogram.enums.revenue_withdrawal_state_type.RevenueWithdrawalStateType

attribute), 618
feed_raw_update() (aiogram.dispatcher.dispatcher.Dispatcher

method), 634
feed_update() (aiogram.dispatcher.dispatcher.Dispatcher

method), 634
field_name (aiogram.types.passport_element_error_data_field.PassportElementErrorDataField

attribute), 385
file (aiogram.client.telegram.TelegramAPIServer

attribute), 14
FILE (aiogram.enums.passport_element_error_type.PassportElementErrorType

attribute), 617
File (class in aiogram.types.file), 144
file_date (aiogram.types.passport_file.PassportFile at-

tribute), 392
file_hash (aiogram.types.passport_element_error_file.PassportElementErrorFile

attribute), 386
file_hash (aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide

attribute), 387
file_hash (aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide

attribute), 388
file_hash (aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie

attribute), 389
file_hash (aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile

attribute), 389
file_hashes (aiogram.types.passport_element_error_files.PassportElementErrorFiles

attribute), 386
file_hashes (aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles

attribute), 390
file_id (aiogram.methods.get_file.GetFile attribute),

454
file_id (aiogram.types.animation.Animation attribute),

20
file_id (aiogram.types.audio.Audio attribute), 20

830 Index

aiogram Documentation, Release 3.23.0

file_id (aiogram.types.document.Document attribute),
141

file_id (aiogram.types.file.File attribute), 144
file_id (aiogram.types.passport_file.PassportFile at-

tribute), 391
file_id (aiogram.types.photo_size.PhotoSize attribute),

291
file_id (aiogram.types.sticker.Sticker attribute), 380
file_id (aiogram.types.video.Video attribute), 313
file_id (aiogram.types.video_note.VideoNote at-

tribute), 315
file_id (aiogram.types.voice.Voice attribute), 316
file_name (aiogram.types.animation.Animation at-

tribute), 20
file_name (aiogram.types.audio.Audio attribute), 21
file_name (aiogram.types.document.Document at-

tribute), 141
file_name (aiogram.types.video.Video attribute), 314
file_path (aiogram.types.file.File attribute), 144
file_size (aiogram.types.animation.Animation at-

tribute), 20
file_size (aiogram.types.audio.Audio attribute), 21
file_size (aiogram.types.document.Document at-

tribute), 142
file_size (aiogram.types.file.File attribute), 144
file_size (aiogram.types.passport_file.PassportFile at-

tribute), 391
file_size (aiogram.types.photo_size.PhotoSize at-

tribute), 291
file_size (aiogram.types.sticker.Sticker attribute), 381
file_size (aiogram.types.video.Video attribute), 314
file_size (aiogram.types.video_note.VideoNote at-

tribute), 315
file_size (aiogram.types.voice.Voice attribute), 316
file_unique_id (aiogram.types.animation.Animation

attribute), 20
file_unique_id (aiogram.types.audio.Audio attribute),

20
file_unique_id (aiogram.types.document.Document

attribute), 141
file_unique_id (aiogram.types.file.File attribute), 144
file_unique_id (aiogram.types.passport_file.PassportFile

attribute), 391
file_unique_id (aiogram.types.photo_size.PhotoSize

attribute), 291
file_unique_id (aiogram.types.sticker.Sticker at-

tribute), 380
file_unique_id (aiogram.types.video.Video attribute),

313
file_unique_id (aiogram.types.video_note.VideoNote

attribute), 315
file_unique_id (aiogram.types.voice.Voice attribute),

316
file_url() (aiogram.client.telegram.TelegramAPIServer

method), 14
FILES (aiogram.enums.passport_element_error_type.PassportElementErrorType

attribute), 617
files (aiogram.types.encrypted_passport_element.EncryptedPassportElement

attribute), 383
fill (aiogram.types.background_type_fill.BackgroundTypeFill

attribute), 23
fill (aiogram.types.background_type_pattern.BackgroundTypePattern

attribute), 24
Filter (class in aiogram.filters.base), 650
filter() (aiogram.filters.callback_data.CallbackData

class method), 647
FIND_LOCATION (aiogram.enums.chat_action.ChatAction

attribute), 604
find_location() (aiogram.utils.chat_action.ChatActionSender

class method), 716
first_name (aiogram.methods.send_contact.SendContact

attribute), 489
first_name (aiogram.methods.set_business_account_name.SetBusinessAccountName

attribute), 528
first_name (aiogram.types.chat.Chat attribute), 35
first_name (aiogram.types.chat_full_info.ChatFullInfo

attribute), 56
first_name (aiogram.types.contact.Contact attribute),

139
first_name (aiogram.types.inline_query_result_contact.InlineQueryResultContact

attribute), 340
first_name (aiogram.types.input_contact_message_content.InputContactMessageContent

attribute), 357
first_name (aiogram.types.shared_user.SharedUser at-

tribute), 297
first_name (aiogram.types.user.User attribute), 310
first_name (aiogram.utils.web_app.WebAppUser

attribute), 720
FOOTBALL (aiogram.enums.dice_emoji.DiceEmoji

attribute), 611
FOOTBALL (aiogram.types.dice.DiceEmoji attribute), 140
for_channels (aiogram.methods.get_my_default_administrator_rights.GetMyDefaultAdministratorRights

attribute), 457
for_channels (aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights

attribute), 541
force (aiogram.methods.set_game_score.SetGameScore

attribute), 584
force_reply (aiogram.types.force_reply.ForceReply at-

tribute), 145
ForceReply (class in aiogram.types.force_reply), 144
FOREHEAD (aiogram.enums.mask_position_point.MaskPositionPoint

attribute), 614
format (aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail

attribute), 410
format (aiogram.types.input_sticker.InputSticker at-

tribute), 379
FORUM_TOPIC_CLOSED (aiogram.enums.content_type.ContentType

attribute), 607

Index 831

aiogram Documentation, Release 3.23.0

forum_topic_closed (aiogram.types.message.Message
attribute), 227

FORUM_TOPIC_CREATED
(aiogram.enums.content_type.ContentType
attribute), 607

forum_topic_created
(aiogram.types.message.Message attribute),
226

FORUM_TOPIC_EDITED (aiogram.enums.content_type.ContentType
attribute), 607

forum_topic_edited (aiogram.types.message.Message
attribute), 226

FORUM_TOPIC_REOPENED
(aiogram.enums.content_type.ContentType
attribute), 607

forum_topic_reopened
(aiogram.types.message.Message attribute),
227

ForumTopic (class in aiogram.types.forum_topic), 145
ForumTopicClosed (class in

aiogram.types.forum_topic_closed), 145
ForumTopicCreated (class in

aiogram.types.forum_topic_created), 146
ForumTopicEdited (class in

aiogram.types.forum_topic_edited), 146
ForumTopicReopened (class in

aiogram.types.forum_topic_reopened), 146
forward() (aiogram.types.message.Message method),

273
forward_date (aiogram.types.message.Message at-

tribute), 228
forward_from (aiogram.types.message.Message at-

tribute), 228
forward_from_chat (aiogram.types.message.Message

attribute), 228
forward_from_message_id

(aiogram.types.message.Message attribute),
228

forward_origin (aiogram.types.message.Message at-
tribute), 222

forward_sender_name
(aiogram.types.message.Message attribute),
228

forward_signature (aiogram.types.message.Message
attribute), 228

forward_text (aiogram.types.login_url.LoginUrl
attribute), 218

ForwardMessage (class in
aiogram.methods.forward_message), 443

ForwardMessages (class in
aiogram.methods.forward_messages), 445

foursquare_id (aiogram.methods.send_venue.SendVenue
attribute), 515

foursquare_id (aiogram.types.inline_query_result_venue.InlineQueryResultVenue

attribute), 353
foursquare_id (aiogram.types.input_venue_message_content.InputVenueMessageContent

attribute), 363
foursquare_id (aiogram.types.venue.Venue attribute),

313
foursquare_type (aiogram.methods.send_venue.SendVenue

attribute), 515
foursquare_type (aiogram.types.inline_query_result_venue.InlineQueryResultVenue

attribute), 353
foursquare_type (aiogram.types.input_venue_message_content.InputVenueMessageContent

attribute), 363
foursquare_type (aiogram.types.venue.Venue at-

tribute), 313
FRAGMENT (aiogram.enums.transaction_partner_type.TransactionPartnerType

attribute), 619
from_attachment_menu

(aiogram.types.write_access_allowed.WriteAccessAllowed
attribute), 317

from_base() (aiogram.client.telegram.TelegramAPIServer
class method), 15

from_chat_id (aiogram.methods.copy_message.CopyMessage
attribute), 422

from_chat_id (aiogram.methods.copy_messages.CopyMessages
attribute), 424

from_chat_id (aiogram.methods.forward_message.ForwardMessage
attribute), 443

from_chat_id (aiogram.methods.forward_messages.ForwardMessages
attribute), 445

from_file() (aiogram.types.input_file.BufferedInputFile
class method), 200

from_markup() (aiogram.utils.keyboard.InlineKeyboardBuilder
class method), 709

from_markup() (aiogram.utils.keyboard.ReplyKeyboardBuilder
class method), 710

from_request (aiogram.types.write_access_allowed.WriteAccessAllowed
attribute), 317

from_url() (aiogram.fsm.storage.mongo.MongoStorage
class method), 663

from_url() (aiogram.fsm.storage.pymongo.PyMongoStorage
class method), 663

from_url() (aiogram.fsm.storage.redis.RedisStorage
class method), 662

from_user (aiogram.handlers.callback_query.CallbackQueryHandler
property), 703

from_user (aiogram.types.callback_query.CallbackQuery
attribute), 33

from_user (aiogram.types.chat_join_request.ChatJoinRequest
attribute), 59

from_user (aiogram.types.chat_member_updated.ChatMemberUpdated
attribute), 112

from_user (aiogram.types.chosen_inline_result.ChosenInlineResult
attribute), 317

from_user (aiogram.types.inline_query.InlineQuery at-
tribute), 318

832 Index

aiogram Documentation, Release 3.23.0

from_user (aiogram.types.message.Message attribute),
222

from_user (aiogram.types.paid_media_purchased.PaidMediaPurchased
attribute), 366

from_user (aiogram.types.pre_checkout_query.PreCheckoutQuery
attribute), 366

from_user (aiogram.types.shipping_query.ShippingQuery
attribute), 371

FRONT_SIDE (aiogram.enums.passport_element_error_type.PassportElementErrorType
attribute), 617

front_side (aiogram.types.encrypted_passport_element.EncryptedPassportElement
attribute), 383

FSInputFile (class in aiogram.types.input_file), 201,
624

fsm_storage (aiogram.dispatcher.middlewares.data.MiddlewareData
attribute), 639

FSMI18nMiddleware (class in
aiogram.utils.i18n.middleware), 713

FSMStrategy (class in aiogram.fsm.strategy), 665
full_name (aiogram.types.chat.Chat property), 39
full_name (aiogram.types.user.User property), 311

G
GAME (aiogram.enums.content_type.ContentType at-

tribute), 606
GAME (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
game (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
game (aiogram.types.message.Message attribute), 224
Game (class in aiogram.types.game), 395
game_short_name (aiogram.methods.send_game.SendGame

attribute), 582
game_short_name (aiogram.types.callback_query.CallbackQuery

attribute), 33
game_short_name (aiogram.types.inline_query_result_game.InlineQueryResultGame

attribute), 342
GameHighScore (class in

aiogram.types.game_high_score), 396
GBP (aiogram.enums.currency.Currency attribute), 609
GEL (aiogram.enums.currency.Currency attribute), 609
GENERAL_FORUM_TOPIC_HIDDEN

(aiogram.enums.content_type.ContentType
attribute), 607

general_forum_topic_hidden
(aiogram.types.message.Message attribute),
227

GENERAL_FORUM_TOPIC_UNHIDDEN
(aiogram.enums.content_type.ContentType
attribute), 607

general_forum_topic_unhidden
(aiogram.types.message.Message attribute),
227

GeneralForumTopicHidden (class in
aiogram.types.general_forum_topic_hidden),
146

GeneralForumTopicUnhidden (class in
aiogram.types.general_forum_topic_unhidden),
147

get() (aiogram.fsm.scene.SceneRegistry method), 680
get_administrators() (aiogram.types.chat.Chat

method), 39
get_data() (aiogram.fsm.scene.SceneWizard method),

682
get_data() (aiogram.fsm.storage.base.BaseStorage

method), 665
get_flag() (in module aiogram.dispatcher.flags), 692
get_locale() (aiogram.utils.i18n.middleware.I18nMiddleware

method), 714
get_member() (aiogram.types.chat.Chat method), 43
get_member_count() (aiogram.types.chat.Chat

method), 43
get_profile_photos() (aiogram.types.user.User

method), 311
get_state() (aiogram.fsm.storage.base.BaseStorage

method), 664
get_url() (aiogram.types.message.Message method),

278
GetAvailableGifts (class in

aiogram.methods.get_available_gifts), 446
GetBusinessAccountGifts (class in

aiogram.methods.get_business_account_gifts),
447

GetBusinessAccountStarBalance (class in
aiogram.methods.get_business_account_star_balance),
448

GetBusinessConnection (class in
aiogram.methods.get_business_connection),
449

GetChat (class in aiogram.methods.get_chat), 450
GetChatAdministrators (class in

aiogram.methods.get_chat_administrators),
451

GetChatMember (class in
aiogram.methods.get_chat_member), 451

GetChatMemberCount (class in
aiogram.methods.get_chat_member_count),
452

GetChatMenuButton (class in
aiogram.methods.get_chat_menu_button),
453

GetCustomEmojiStickers (class in
aiogram.methods.get_custom_emoji_stickers),
400

GetFile (class in aiogram.methods.get_file), 454
GetForumTopicIconStickers (class in

aiogram.methods.get_forum_topic_icon_stickers),

Index 833

aiogram Documentation, Release 3.23.0

455
GetGameHighScores (class in

aiogram.methods.get_game_high_scores),
581

GetMe (class in aiogram.methods.get_me), 455
GetMyCommands (class in

aiogram.methods.get_my_commands), 456
GetMyDefaultAdministratorRights (class in

aiogram.methods.get_my_default_administrator_rights),
457

GetMyDescription (class in
aiogram.methods.get_my_description), 458

GetMyName (class in aiogram.methods.get_my_name),
459

GetMyShortDescription (class in
aiogram.methods.get_my_short_description),
460

GetMyStarBalance (class in
aiogram.methods.get_my_star_balance),
591

GetStarTransactions (class in
aiogram.methods.get_star_transactions),
592

GetStickerSet (class in
aiogram.methods.get_sticker_set), 401

GetUpdates (class in aiogram.methods.get_updates),
598

GetUserChatBoosts (class in
aiogram.methods.get_user_chat_boosts),
460

GetUserProfilePhotos (class in
aiogram.methods.get_user_profile_photos),
461

GetWebhookInfo (class in
aiogram.methods.get_webhook_info), 599

GIF (aiogram.enums.inline_query_result_type.InlineQueryResultType
attribute), 612

gif_duration (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

gif_file_id (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif
attribute), 328

gif_height (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

gif_url (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

gif_width (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

GIFT (aiogram.enums.content_type.ContentType at-
tribute), 606

gift (aiogram.types.gift_info.GiftInfo attribute), 147
gift (aiogram.types.message.Message attribute), 226
gift (aiogram.types.owned_gift_regular.OwnedGiftRegular

attribute), 287
gift (aiogram.types.owned_gift_unique.OwnedGiftUnique

attribute), 288
gift (aiogram.types.transaction_partner_chat.TransactionPartnerChat

attribute), 375
gift (aiogram.types.transaction_partner_user.TransactionPartnerUser

attribute), 378
gift (aiogram.types.unique_gift_info.UniqueGiftInfo at-

tribute), 309
Gift (class in aiogram.types.gift), 147
GIFT_CODE (aiogram.enums.chat_boost_source_type.ChatBoostSourceType

attribute), 604
gift_id (aiogram.methods.send_gift.SendGift attribute),

496
GIFT_PURCHASE (aiogram.enums.transaction_partner_user_transaction_type_enum.TransactionPartnerUserTransactionTypeEnum

attribute), 620
GiftInfo (class in aiogram.types.gift_info), 147
GiftPremiumSubscription (class in

aiogram.methods.gift_premium_subscription),
462

gifts (aiogram.types.gifts.Gifts attribute), 148
gifts (aiogram.types.owned_gifts.OwnedGifts at-

tribute), 289
Gifts (class in aiogram.types.gifts), 148
GIVEAWAY (aiogram.enums.chat_boost_source_type.ChatBoostSourceType

attribute), 604
GIVEAWAY (aiogram.enums.content_type.ContentType at-

tribute), 607
giveaway (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
giveaway (aiogram.types.message.Message attribute),

227
Giveaway (class in aiogram.types.giveaway), 148
GIVEAWAY_COMPLETED (aiogram.enums.content_type.ContentType

attribute), 607
giveaway_completed (aiogram.types.message.Message

attribute), 227
GIVEAWAY_CREATED (aiogram.enums.content_type.ContentType

attribute), 607
giveaway_created (aiogram.types.message.Message

attribute), 227
giveaway_message (aiogram.types.giveaway_completed.GiveawayCompleted

attribute), 149
giveaway_message_id

(aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway
attribute), 54

giveaway_message_id
(aiogram.types.giveaway_winners.GiveawayWinners
attribute), 150

GIVEAWAY_WINNERS (aiogram.enums.content_type.ContentType
attribute), 607

giveaway_winners (aiogram.types.external_reply_info.ExternalReplyInfo
attribute), 143

giveaway_winners (aiogram.types.message.Message
attribute), 227

GiveawayCompleted (class in

834 Index

aiogram Documentation, Release 3.23.0

aiogram.types.giveaway_completed), 149
GiveawayCreated (class in

aiogram.types.giveaway_created), 150
GiveawayWinners (class in

aiogram.types.giveaway_winners), 150
GLOBAL_USER (aiogram.fsm.strategy.FSMStrategy

attribute), 665
google_place_id (aiogram.methods.send_venue.SendVenue

attribute), 515
google_place_id (aiogram.types.inline_query_result_venue.InlineQueryResultVenue

attribute), 353
google_place_id (aiogram.types.input_venue_message_content.InputVenueMessageContent

attribute), 363
google_place_id (aiogram.types.venue.Venue at-

tribute), 313
google_place_type (aiogram.methods.send_venue.SendVenue

attribute), 515
google_place_type (aiogram.types.inline_query_result_venue.InlineQueryResultVenue

attribute), 353
google_place_type (aiogram.types.input_venue_message_content.InputVenueMessageContent

attribute), 363
google_place_type (aiogram.types.venue.Venue

attribute), 313
goto() (aiogram.fsm.scene.SceneWizard method), 683
GREEN (aiogram.enums.topic_icon_color.TopicIconColor

attribute), 619
GROUP (aiogram.enums.chat_type.ChatType attribute),

605
GROUP_CHAT_CREATED (aiogram.enums.content_type.ContentType

attribute), 606
group_chat_created (aiogram.types.message.Message

attribute), 225
GTQ (aiogram.enums.currency.Currency attribute), 609

H
handler (aiogram.dispatcher.middlewares.data.MiddlewareData

attribute), 639
handlers (aiogram.fsm.scene.SceneConfig attribute),

681
has_aggressive_anti_spam_enabled

(aiogram.types.chat.Chat attribute), 36
has_aggressive_anti_spam_enabled

(aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

has_custom_certificate
(aiogram.types.webhook_info.WebhookInfo
attribute), 394

has_hidden_members (aiogram.types.chat.Chat at-
tribute), 36

has_hidden_members (aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

has_main_web_app (aiogram.types.user.User attribute),
311

has_media_spoiler (aiogram.types.external_reply_info.ExternalReplyInfo
attribute), 143

has_media_spoiler (aiogram.types.message.Message
attribute), 224

has_private_forwards (aiogram.types.chat.Chat at-
tribute), 37

has_private_forwards
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

has_protected_content (aiogram.types.chat.Chat at-
tribute), 37

has_protected_content
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

has_protected_content
(aiogram.types.message.Message attribute),
223

has_public_winners (aiogram.types.giveaway.Giveaway
attribute), 149

has_restricted_voice_and_video_messages
(aiogram.types.chat.Chat attribute), 37

has_restricted_voice_and_video_messages
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

has_spoiler (aiogram.methods.send_animation.SendAnimation
attribute), 481

has_spoiler (aiogram.methods.send_photo.SendPhoto
attribute), 509

has_spoiler (aiogram.methods.send_video.SendVideo
attribute), 518

has_spoiler (aiogram.types.input_media_animation.InputMediaAnimation
attribute), 202

has_spoiler (aiogram.types.input_media_photo.InputMediaPhoto
attribute), 205

has_spoiler (aiogram.types.input_media_video.InputMediaVideo
attribute), 207

has_visible_history (aiogram.types.chat.Chat
attribute), 37

has_visible_history
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

hash (aiogram.types.encrypted_credentials.EncryptedCredentials
attribute), 382

hash (aiogram.types.encrypted_passport_element.EncryptedPassportElement
attribute), 383

hash (aiogram.utils.web_app.WebAppInitData attribute),
720

HASHTAG (aiogram.enums.message_entity_type.MessageEntityType
attribute), 615

HashTag (class in aiogram.utils.formatting), 729
heading (aiogram.methods.edit_message_live_location.EditMessageLiveLocation

attribute), 566
heading (aiogram.methods.send_location.SendLocation

attribute), 499

Index 835

aiogram Documentation, Release 3.23.0

heading (aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

heading (aiogram.types.input_location_message_content.InputLocationMessageContent
attribute), 362

heading (aiogram.types.location.Location attribute),
217

height (aiogram.methods.send_animation.SendAnimation
attribute), 481

height (aiogram.methods.send_video.SendVideo at-
tribute), 518

height (aiogram.types.animation.Animation attribute),
20

height (aiogram.types.input_media_animation.InputMediaAnimation
attribute), 202

height (aiogram.types.input_media_video.InputMediaVideo
attribute), 207

height (aiogram.types.input_paid_media_video.InputPaidMediaVideo
attribute), 208

height (aiogram.types.paid_media_preview.PaidMediaPreview
attribute), 290

height (aiogram.types.photo_size.PhotoSize attribute),
291

height (aiogram.types.sticker.Sticker attribute), 380
height (aiogram.types.video.Video attribute), 314
height_percentage (aiogram.types.story_area_position.StoryAreaPosition

attribute), 299
HIDDEN_USER (aiogram.enums.message_origin_type.MessageOriginType

attribute), 615
hide_url (aiogram.types.inline_query_result_article.InlineQueryResultArticle

attribute), 321
HideGeneralForumTopic (class in

aiogram.methods.hide_general_forum_topic),
463

HKD (aiogram.enums.currency.Currency attribute), 609
HNL (aiogram.enums.currency.Currency attribute), 609
horizontal_accuracy

(aiogram.methods.edit_message_live_location.EditMessageLiveLocation
attribute), 566

horizontal_accuracy
(aiogram.methods.send_location.SendLocation
attribute), 499

horizontal_accuracy
(aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

horizontal_accuracy
(aiogram.types.input_location_message_content.InputLocationMessageContent
attribute), 361

horizontal_accuracy
(aiogram.types.location.Location attribute),
217

HRK (aiogram.enums.currency.Currency attribute), 609
HTML (aiogram.enums.parse_mode.ParseMode attribute),

616
html_text (aiogram.types.message.Message property),

228
HUF (aiogram.enums.currency.Currency attribute), 609

I
i18n (aiogram.dispatcher.middlewares.data.I18nData

attribute), 639
i18n_middleware (aiogram.dispatcher.middlewares.data.I18nData

attribute), 639
I18nData (class in aiogram.dispatcher.middlewares.data),

639
I18nMiddleware (class in

aiogram.utils.i18n.middleware), 714
icon_color (aiogram.methods.create_forum_topic.CreateForumTopic

attribute), 428
icon_color (aiogram.types.forum_topic.ForumTopic at-

tribute), 145
icon_color (aiogram.types.forum_topic_created.ForumTopicCreated

attribute), 146
icon_custom_emoji_id

(aiogram.methods.create_forum_topic.CreateForumTopic
attribute), 428

icon_custom_emoji_id
(aiogram.methods.edit_forum_topic.EditForumTopic
attribute), 439

icon_custom_emoji_id
(aiogram.types.forum_topic.ForumTopic
attribute), 145

icon_custom_emoji_id
(aiogram.types.forum_topic_created.ForumTopicCreated
attribute), 146

icon_custom_emoji_id
(aiogram.types.forum_topic_edited.ForumTopicEdited
attribute), 146

id (aiogram.types.business_connection.BusinessConnection
attribute), 30

id (aiogram.types.callback_query.CallbackQuery at-
tribute), 33

id (aiogram.types.chat.Chat attribute), 35
id (aiogram.types.chat_full_info.ChatFullInfo attribute),

55
id (aiogram.types.checklist_task.ChecklistTask attribute),

138
id (aiogram.types.gift.Gift attribute), 147
id (aiogram.types.inline_query.InlineQuery attribute),

318
id (aiogram.types.inline_query_result_article.InlineQueryResultArticle

attribute), 320
id (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 322
id (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio

attribute), 324
id (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

attribute), 326

836 Index

aiogram Documentation, Release 3.23.0

id (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif
attribute), 327

id (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif
attribute), 330

id (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto
attribute), 333

id (aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker
attribute), 335

id (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo
attribute), 337

id (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice
attribute), 338

id (aiogram.types.inline_query_result_contact.InlineQueryResultContact
attribute), 340

id (aiogram.types.inline_query_result_document.InlineQueryResultDocument
attribute), 341

id (aiogram.types.inline_query_result_game.InlineQueryResultGame
attribute), 342

id (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 343

id (aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 345

id (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif
attribute), 349

id (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 350

id (aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 352

id (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 354

id (aiogram.types.inline_query_result_voice.InlineQueryResultVoice
attribute), 356

id (aiogram.types.input_checklist_task.InputChecklistTask
attribute), 200

id (aiogram.types.poll.Poll attribute), 291
id (aiogram.types.pre_checkout_query.PreCheckoutQuery

attribute), 366
id (aiogram.types.prepared_inline_message.PreparedInlineMessage

attribute), 364
id (aiogram.types.shipping_option.ShippingOption at-

tribute), 370
id (aiogram.types.shipping_query.ShippingQuery at-

tribute), 371
id (aiogram.types.star_transaction.StarTransaction at-

tribute), 372
id (aiogram.types.story.Story attribute), 298
id (aiogram.types.user.User attribute), 310
id (aiogram.utils.web_app.WebAppChat attribute), 720
id (aiogram.utils.web_app.WebAppUser attribute), 720
IDENTITY_CARD (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
IDR (aiogram.enums.currency.Currency attribute), 609
ILS (aiogram.enums.currency.Currency attribute), 609
InaccessibleMessage (class in

aiogram.types.inaccessible_message), 151
include_router() (aiogram.dispatcher.router.Router

method), 628
include_routers() (aiogram.dispatcher.router.Router

method), 628
inline_keyboard (aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup

attribute), 199
inline_message_id (aiogram.methods.edit_message_caption.EditMessageCaption

attribute), 563
inline_message_id (aiogram.methods.edit_message_live_location.EditMessageLiveLocation

attribute), 566
inline_message_id (aiogram.methods.edit_message_media.EditMessageMedia

attribute), 568
inline_message_id (aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup

attribute), 569
inline_message_id (aiogram.methods.edit_message_text.EditMessageText

attribute), 571
inline_message_id (aiogram.methods.get_game_high_scores.GetGameHighScores

attribute), 581
inline_message_id (aiogram.methods.set_game_score.SetGameScore

attribute), 584
inline_message_id (aiogram.methods.stop_message_live_location.StopMessageLiveLocation

attribute), 572
inline_message_id (aiogram.types.callback_query.CallbackQuery

attribute), 33
inline_message_id (aiogram.types.chosen_inline_result.ChosenInlineResult

attribute), 317
inline_message_id (aiogram.types.sent_web_app_message.SentWebAppMessage

attribute), 364
INLINE_QUERY (aiogram.enums.update_type.UpdateType

attribute), 621
inline_query (aiogram.types.update.Update attribute),

393
inline_query_id (aiogram.methods.answer_inline_query.AnswerInlineQuery

attribute), 575
InlineKeyboardBuilder (class in

aiogram.utils.keyboard), 708
InlineKeyboardButton (class in

aiogram.types.inline_keyboard_button), 198
InlineKeyboardMarkup (class in

aiogram.types.inline_keyboard_markup),
199

InlineQuery (class in aiogram.types.inline_query), 318
InlineQueryResult (class in

aiogram.types.inline_query_result), 319
InlineQueryResultArticle (class in

aiogram.types.inline_query_result_article),
320

InlineQueryResultAudio (class in
aiogram.types.inline_query_result_audio),
321

InlineQueryResultCachedAudio (class in
aiogram.types.inline_query_result_cached_audio),
323

Index 837

aiogram Documentation, Release 3.23.0

InlineQueryResultCachedDocument (class in
aiogram.types.inline_query_result_cached_document),
324

InlineQueryResultCachedGif (class in
aiogram.types.inline_query_result_cached_gif),
327

InlineQueryResultCachedMpeg4Gif (class in
aiogram.types.inline_query_result_cached_mpeg4_gif),
328

InlineQueryResultCachedPhoto (class in
aiogram.types.inline_query_result_cached_photo),
331

InlineQueryResultCachedSticker (class in
aiogram.types.inline_query_result_cached_sticker),
333

InlineQueryResultCachedVideo (class in
aiogram.types.inline_query_result_cached_video),
335

InlineQueryResultCachedVoice (class in
aiogram.types.inline_query_result_cached_voice),
337

InlineQueryResultContact (class in
aiogram.types.inline_query_result_contact),
339

InlineQueryResultDocument (class in
aiogram.types.inline_query_result_document),
340

InlineQueryResultGame (class in
aiogram.types.inline_query_result_game),
342

InlineQueryResultGif (class in
aiogram.types.inline_query_result_gif), 343

InlineQueryResultLocation (class in
aiogram.types.inline_query_result_location),
344

InlineQueryResultMpeg4Gif (class in
aiogram.types.inline_query_result_mpeg4_gif),
347

InlineQueryResultPhoto (class in
aiogram.types.inline_query_result_photo),
350

InlineQueryResultsButton (class in
aiogram.types.inline_query_results_button),
357

InlineQueryResultType (class in
aiogram.enums.inline_query_result_type),
612

InlineQueryResultVenue (class in
aiogram.types.inline_query_result_venue),
352

InlineQueryResultVideo (class in
aiogram.types.inline_query_result_video),
353

InlineQueryResultVoice (class in

aiogram.types.inline_query_result_voice),
355

input_field_placeholder
(aiogram.types.force_reply.ForceReply at-
tribute), 145

input_field_placeholder
(aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
attribute), 295

input_message_content
(aiogram.types.inline_query_result_article.InlineQueryResultArticle
attribute), 320

input_message_content
(aiogram.types.inline_query_result_audio.InlineQueryResultAudio
attribute), 322

input_message_content
(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio
attribute), 324

input_message_content
(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument
attribute), 326

input_message_content
(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif
attribute), 328

input_message_content
(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif
attribute), 330

input_message_content
(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto
attribute), 333

input_message_content
(aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker
attribute), 335

input_message_content
(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo
attribute), 337

input_message_content
(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice
attribute), 339

input_message_content
(aiogram.types.inline_query_result_contact.InlineQueryResultContact
attribute), 340

input_message_content
(aiogram.types.inline_query_result_document.InlineQueryResultDocument
attribute), 342

input_message_content
(aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

input_message_content
(aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

input_message_content
(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif
attribute), 349

input_message_content

838 Index

aiogram Documentation, Release 3.23.0

(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 351

input_message_content
(aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 353

input_message_content
(aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

input_message_content
(aiogram.types.inline_query_result_voice.InlineQueryResultVoice
attribute), 357

InputChecklist (class in
aiogram.types.input_checklist), 199

InputChecklistTask (class in
aiogram.types.input_checklist_task), 200

InputContactMessageContent (class in
aiogram.types.input_contact_message_content),
357

InputFile (class in aiogram.types.input_file), 200
InputInvoiceMessageContent (class in

aiogram.types.input_invoice_message_content),
358

InputLocationMessageContent (class in
aiogram.types.input_location_message_content),
361

InputMedia (class in aiogram.types.input_media), 201
InputMediaAnimation (class in

aiogram.types.input_media_animation), 201
InputMediaAudio (class in

aiogram.types.input_media_audio), 202
InputMediaDocument (class in

aiogram.types.input_media_document), 204
InputMediaPhoto (class in

aiogram.types.input_media_photo), 205
InputMediaType (class in

aiogram.enums.input_media_type), 612
InputMediaVideo (class in

aiogram.types.input_media_video), 205
InputMessageContent (class in

aiogram.types.input_message_content), 362
InputPaidMedia (class in

aiogram.types.input_paid_media), 207
InputPaidMediaPhoto (class in

aiogram.types.input_paid_media_photo),
207

InputPaidMediaType (class in
aiogram.enums.input_paid_media_type),
613

InputPaidMediaVideo (class in
aiogram.types.input_paid_media_video),
208

InputPollOption (class in
aiogram.types.input_poll_option), 209

InputProfilePhoto (class in

aiogram.types.input_profile_photo), 209
InputProfilePhotoAnimated (class in

aiogram.types.input_profile_photo_animated),
209

InputProfilePhotoStatic (class in
aiogram.types.input_profile_photo_static),
210

InputProfilePhotoType (class in
aiogram.enums.input_profile_photo_type),
613

InputSticker (class in aiogram.types.input_sticker),
379

InputStoryContent (class in
aiogram.types.input_story_content), 210

InputStoryContentPhoto (class in
aiogram.types.input_story_content_photo),
210

InputStoryContentType (class in
aiogram.enums.input_story_content_type),
613

InputStoryContentVideo (class in
aiogram.types.input_story_content_video),
211

InputTextMessageContent (class in
aiogram.types.input_text_message_content),
362

InputVenueMessageContent (class in
aiogram.types.input_venue_message_content),
363

INR (aiogram.enums.currency.Currency attribute), 609
intensity (aiogram.types.background_type_pattern.BackgroundTypePattern

attribute), 24
INTERNAL_PASSPORT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
invite_link (aiogram.methods.edit_chat_invite_link.EditChatInviteLink

attribute), 436
invite_link (aiogram.methods.edit_chat_subscription_invite_link.EditChatSubscriptionInviteLink

attribute), 438
invite_link (aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink

attribute), 478
invite_link (aiogram.types.chat.Chat attribute), 37
invite_link (aiogram.types.chat_full_info.ChatFullInfo

attribute), 57
invite_link (aiogram.types.chat_invite_link.ChatInviteLink

attribute), 59
invite_link (aiogram.types.chat_join_request.ChatJoinRequest

attribute), 60
invite_link (aiogram.types.chat_member_updated.ChatMemberUpdated

attribute), 112
INVOICE (aiogram.enums.content_type.ContentType at-

tribute), 606
invoice (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
invoice (aiogram.types.message.Message attribute), 225

Index 839

aiogram Documentation, Release 3.23.0

Invoice (class in aiogram.types.invoice), 365
invoice_payload (aiogram.types.pre_checkout_query.PreCheckoutQuery

attribute), 367
invoice_payload (aiogram.types.refunded_payment.RefundedPayment

attribute), 368
invoice_payload (aiogram.types.shipping_query.ShippingQuery

attribute), 371
invoice_payload (aiogram.types.successful_payment.SuccessfulPayment

attribute), 373
invoice_payload (aiogram.types.transaction_partner_user.TransactionPartnerUser

attribute), 378
INVOICE_PAYMENT (aiogram.enums.transaction_partner_user_transaction_type_enum.TransactionPartnerUserTransactionTypeEnum

attribute), 620
ip_address (aiogram.methods.set_webhook.SetWebhook

attribute), 601
ip_address (aiogram.types.webhook_info.WebhookInfo

attribute), 394
ip_filter_middleware() (in module

aiogram.webhook.aiohttp_server), 696
IPFilter (class in aiogram.webhook.security), 696
is_animated (aiogram.types.sticker.Sticker attribute),

380
is_animated (aiogram.types.sticker_set.StickerSet at-

tribute), 382
is_animation (aiogram.types.input_story_content_video.InputStoryContentVideo

attribute), 211
is_anonymous (aiogram.methods.promote_chat_member.PromoteChatMember

attribute), 469
is_anonymous (aiogram.methods.send_poll.SendPoll at-

tribute), 512
is_anonymous (aiogram.types.chat_administrator_rights.ChatAdministratorRights

attribute), 50
is_anonymous (aiogram.types.chat_member_administrator.ChatMemberAdministrator

attribute), 107
is_anonymous (aiogram.types.chat_member_owner.ChatMemberOwner

attribute), 110
is_anonymous (aiogram.types.poll.Poll attribute), 292
is_automatic_forward

(aiogram.types.message.Message attribute),
222

is_big (aiogram.methods.set_message_reaction.SetMessageReaction
attribute), 539

is_blurred (aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper
attribute), 24

is_bot (aiogram.types.user.User attribute), 310
is_bot (aiogram.utils.web_app.WebAppUser attribute),

720
is_canceled (aiogram.methods.edit_user_star_subscription.EditUserStarSubscription

attribute), 590
is_closed (aiogram.methods.send_poll.SendPoll

attribute), 512
is_closed (aiogram.types.poll.Poll attribute), 292
is_dark (aiogram.types.story_area_type_suggested_reaction.StoryAreaTypeSuggestedReaction

attribute), 302

is_direct_messages (aiogram.types.chat.Chat at-
tribute), 35

is_direct_messages (aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

is_disabled (aiogram.types.link_preview_options.LinkPreviewOptions
attribute), 216

is_enabled (aiogram.types.business_connection.BusinessConnection
attribute), 31

is_first_recurring (aiogram.types.successful_payment.SuccessfulPayment
attribute), 373

is_flexible (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

is_flexible (aiogram.methods.send_invoice.SendInvoice
attribute), 596

is_flexible (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 361

is_flipped (aiogram.types.story_area_type_suggested_reaction.StoryAreaTypeSuggestedReaction
attribute), 302

is_forum (aiogram.types.chat.Chat attribute), 35
is_forum (aiogram.types.chat_full_info.ChatFullInfo at-

tribute), 56
is_from_offline (aiogram.types.message.Message at-

tribute), 223
is_inverted (aiogram.types.background_type_pattern.BackgroundTypePattern

attribute), 24
is_local (aiogram.client.telegram.TelegramAPIServer

attribute), 15
is_manual (aiogram.types.text_quote.TextQuote at-

tribute), 307
is_member (aiogram.types.chat_member_restricted.ChatMemberRestricted

attribute), 111
is_moving (aiogram.types.background_type_pattern.BackgroundTypePattern

attribute), 24
is_moving (aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper

attribute), 24
is_paid_post (aiogram.types.message.Message at-

tribute), 223
is_persistent (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup

attribute), 295
is_personal (aiogram.methods.answer_inline_query.AnswerInlineQuery

attribute), 575
is_premium (aiogram.types.user.User attribute), 310
is_premium (aiogram.utils.web_app.WebAppUser

attribute), 720
is_primary (aiogram.types.chat_invite_link.ChatInviteLink

attribute), 59
is_private (aiogram.types.gift_info.GiftInfo attribute),

148
is_private (aiogram.types.owned_gift_regular.OwnedGiftRegular

attribute), 287
is_public (aiogram.methods.remove_business_account_profile_photo.RemoveBusinessAccountProfilePhoto

attribute), 472
is_public (aiogram.methods.set_business_account_profile_photo.SetBusinessAccountProfilePhoto

attribute), 529

840 Index

aiogram Documentation, Release 3.23.0

is_recurring (aiogram.types.successful_payment.SuccessfulPayment
attribute), 373

is_revoked (aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

is_saved (aiogram.types.owned_gift_regular.OwnedGiftRegular
attribute), 287

is_saved (aiogram.types.owned_gift_unique.OwnedGiftUnique
attribute), 288

is_star_giveaway (aiogram.types.giveaway_completed.GiveawayCompleted
attribute), 149

is_topic_message (aiogram.types.message.Message
attribute), 222

is_unclaimed (aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway
attribute), 54

is_video (aiogram.types.sticker.Sticker attribute), 380
is_video (aiogram.types.sticker_set.StickerSet at-

tribute), 382
ISK (aiogram.enums.currency.Currency attribute), 609
ITALIC (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
Italic (class in aiogram.utils.formatting), 730

J
JMD (aiogram.enums.currency.Currency attribute), 609
join_by_request (aiogram.types.chat.Chat attribute),

37
join_by_request (aiogram.types.chat_full_info.ChatFullInfo

attribute), 57
join_to_send_messages (aiogram.types.chat.Chat at-

tribute), 37
join_to_send_messages

(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

JPY (aiogram.enums.currency.Currency attribute), 609

K
keep_original_details

(aiogram.methods.upgrade_gift.UpgradeGift
attribute), 555

KES (aiogram.enums.currency.Currency attribute), 609
keyboard (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup

attribute), 295
KeyboardButton (class in

aiogram.types.keyboard_button), 211
KeyboardButtonPollType (class in

aiogram.types.keyboard_button_poll_type),
212

KeyboardButtonPollTypeType (class in
aiogram.enums.keyboard_button_poll_type_type),
613

KeyboardButtonRequestChat (class in
aiogram.types.keyboard_button_request_chat),
213

KeyboardButtonRequestUser (class in
aiogram.types.keyboard_button_request_user),
214

KeyboardButtonRequestUsers (class in
aiogram.types.keyboard_button_request_users),
215

KeyBuilder (class in aiogram.fsm.storage.base), 664
keywords (aiogram.methods.set_sticker_keywords.SetStickerKeywords

attribute), 407
keywords (aiogram.types.input_sticker.InputSticker at-

tribute), 379
KGS (aiogram.enums.currency.Currency attribute), 609
KICKED (aiogram.enums.chat_member_status.ChatMemberStatus

attribute), 605
KRW (aiogram.enums.currency.Currency attribute), 609
KZT (aiogram.enums.currency.Currency attribute), 609

L
label (aiogram.types.labeled_price.LabeledPrice

attribute), 365
LabeledPrice (class in aiogram.types.labeled_price),

365
language (aiogram.types.message_entity.MessageEntity

attribute), 282
language_code (aiogram.methods.delete_my_commands.DeleteMyCommands

attribute), 434
language_code (aiogram.methods.get_my_commands.GetMyCommands

attribute), 456
language_code (aiogram.methods.get_my_description.GetMyDescription

attribute), 458
language_code (aiogram.methods.get_my_name.GetMyName

attribute), 459
language_code (aiogram.methods.get_my_short_description.GetMyShortDescription

attribute), 460
language_code (aiogram.methods.set_my_commands.SetMyCommands

attribute), 540
language_code (aiogram.methods.set_my_description.SetMyDescription

attribute), 542
language_code (aiogram.methods.set_my_name.SetMyName

attribute), 543
language_code (aiogram.methods.set_my_short_description.SetMyShortDescription

attribute), 544
language_code (aiogram.types.user.User attribute), 310
language_code (aiogram.utils.web_app.WebAppUser

attribute), 720
last_error_date (aiogram.types.webhook_info.WebhookInfo

attribute), 394
last_error_message (aiogram.types.webhook_info.WebhookInfo

attribute), 394
last_name (aiogram.methods.send_contact.SendContact

attribute), 489
last_name (aiogram.methods.set_business_account_name.SetBusinessAccountName

attribute), 528
last_name (aiogram.types.chat.Chat attribute), 35

Index 841

aiogram Documentation, Release 3.23.0

last_name (aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

last_name (aiogram.types.contact.Contact attribute),
139

last_name (aiogram.types.inline_query_result_contact.InlineQueryResultContact
attribute), 340

last_name (aiogram.types.input_contact_message_content.InputContactMessageContent
attribute), 357

last_name (aiogram.types.shared_user.SharedUser at-
tribute), 298

last_name (aiogram.types.user.User attribute), 310
last_name (aiogram.utils.web_app.WebAppUser at-

tribute), 720
last_resale_star_count

(aiogram.types.unique_gift_info.UniqueGiftInfo
attribute), 309

last_synchronization_error_date
(aiogram.types.webhook_info.WebhookInfo
attribute), 394

latitude (aiogram.methods.edit_message_live_location.EditMessageLiveLocation
attribute), 566

latitude (aiogram.methods.send_location.SendLocation
attribute), 498

latitude (aiogram.methods.send_venue.SendVenue at-
tribute), 514

latitude (aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 345

latitude (aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 352

latitude (aiogram.types.input_location_message_content.InputLocationMessageContent
attribute), 361

latitude (aiogram.types.input_venue_message_content.InputVenueMessageContent
attribute), 363

latitude (aiogram.types.location.Location attribute),
216

latitude (aiogram.types.story_area_type_location.StoryAreaTypeLocation
attribute), 300

LBP (aiogram.enums.currency.Currency attribute), 609
leave() (aiogram.fsm.scene.SceneWizard method), 683
leave() (aiogram.types.chat.Chat method), 44
LeaveChat (class in aiogram.methods.leave_chat), 464
LEFT (aiogram.enums.chat_member_status.ChatMemberStatus

attribute), 605
LEFT_CHAT_MEMBER (aiogram.enums.content_type.ContentType

attribute), 606
left_chat_member (aiogram.types.message.Message

attribute), 225
length (aiogram.methods.send_video_note.SendVideoNote

attribute), 521
length (aiogram.types.message_entity.MessageEntity at-

tribute), 282
length (aiogram.types.video_note.VideoNote attribute),

315
limit (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts

attribute), 448
limit (aiogram.methods.get_star_transactions.GetStarTransactions

attribute), 592
limit (aiogram.methods.get_updates.GetUpdates at-

tribute), 598
limit (aiogram.methods.get_user_profile_photos.GetUserProfilePhotos

attribute), 461
limited_gifts (aiogram.types.accepted_gift_types.AcceptedGiftTypes

attribute), 19
LINK (aiogram.enums.story_area_type_type.StoryAreaTypeType

attribute), 619
link_preview (aiogram.client.default.DefaultBotProperties

attribute), 625
link_preview_is_disabled

(aiogram.client.default.DefaultBotProperties
attribute), 625

link_preview_options
(aiogram.methods.edit_message_text.EditMessageText
attribute), 571

link_preview_options
(aiogram.methods.send_message.SendMessage
attribute), 504

link_preview_options
(aiogram.types.external_reply_info.ExternalReplyInfo
attribute), 142

link_preview_options
(aiogram.types.input_text_message_content.InputTextMessageContent
attribute), 363

link_preview_options
(aiogram.types.message.Message attribute),
223

link_preview_prefer_large_media
(aiogram.client.default.DefaultBotProperties
attribute), 626

link_preview_prefer_small_media
(aiogram.client.default.DefaultBotProperties
attribute), 626

link_preview_show_above_text
(aiogram.client.default.DefaultBotProperties
attribute), 626

linked_chat_id (aiogram.types.chat.Chat attribute),
37

linked_chat_id (aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

LinkPreviewOptions (class in
aiogram.types.link_preview_options), 216

live_period (aiogram.methods.edit_message_live_location.EditMessageLiveLocation
attribute), 566

live_period (aiogram.methods.send_location.SendLocation
attribute), 499

live_period (aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

live_period (aiogram.types.input_location_message_content.InputLocationMessageContent
attribute), 361

842 Index

aiogram Documentation, Release 3.23.0

live_period (aiogram.types.location.Location at-
tribute), 217

LKR (aiogram.enums.currency.Currency attribute), 609
LOCATION (aiogram.enums.content_type.ContentType at-

tribute), 606
LOCATION (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
LOCATION (aiogram.enums.story_area_type_type.StoryAreaTypeType

attribute), 619
location (aiogram.types.business_location.BusinessLocation

attribute), 31
location (aiogram.types.chat.Chat attribute), 37
location (aiogram.types.chat_full_info.ChatFullInfo at-

tribute), 58
location (aiogram.types.chat_location.ChatLocation

attribute), 106
location (aiogram.types.chosen_inline_result.ChosenInlineResult

attribute), 317
location (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
location (aiogram.types.inline_query.InlineQuery at-

tribute), 318
location (aiogram.types.message.Message attribute),

225
location (aiogram.types.venue.Venue attribute), 313
Location (class in aiogram.types.location), 216
LocationAddress (class in

aiogram.types.location_address), 217
login_url (aiogram.types.inline_keyboard_button.InlineKeyboardButton

attribute), 198
LoginUrl (class in aiogram.types.login_url), 217
LogOut (class in aiogram.methods.log_out), 465
longitude (aiogram.methods.edit_message_live_location.EditMessageLiveLocation

attribute), 566
longitude (aiogram.methods.send_location.SendLocation

attribute), 498
longitude (aiogram.methods.send_venue.SendVenue at-

tribute), 514
longitude (aiogram.types.inline_query_result_location.InlineQueryResultLocation

attribute), 345
longitude (aiogram.types.inline_query_result_venue.InlineQueryResultVenue

attribute), 352
longitude (aiogram.types.input_location_message_content.InputLocationMessageContent

attribute), 361
longitude (aiogram.types.input_venue_message_content.InputVenueMessageContent

attribute), 363
longitude (aiogram.types.location.Location attribute),

217
longitude (aiogram.types.story_area_type_location.StoryAreaTypeLocation

attribute), 300

M
MAD (aiogram.enums.currency.Currency attribute), 609

magic_data (aiogram.filters.magic_data.MagicData at-
tribute), 646

magic_result (aiogram.filters.command.CommandObject
attribute), 641

MagicData (class in aiogram.filters.magic_data), 646
main_frame_timestamp

(aiogram.types.input_profile_photo_animated.InputProfilePhotoAnimated
attribute), 210

make_request() (aiogram.client.session.base.BaseSession
method), 15

MARKDOWN (aiogram.enums.parse_mode.ParseMode at-
tribute), 616

MARKDOWN_V2 (aiogram.enums.parse_mode.ParseMode
attribute), 616

marked_as_done_task_ids
(aiogram.types.checklist_tasks_done.ChecklistTasksDone
attribute), 139

marked_as_not_done_task_ids
(aiogram.types.checklist_tasks_done.ChecklistTasksDone
attribute), 139

MASK (aiogram.enums.sticker_type.StickerType attribute),
618

mask_position (aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition
attribute), 408

mask_position (aiogram.types.input_sticker.InputSticker
attribute), 379

mask_position (aiogram.types.sticker.Sticker attribute),
380

MaskPosition (class in aiogram.types.mask_position),
379

MaskPositionPoint (class in
aiogram.enums.mask_position_point), 614

max_connections (aiogram.methods.set_webhook.SetWebhook
attribute), 601

max_connections (aiogram.types.webhook_info.WebhookInfo
attribute), 395

max_quantity (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers
attribute), 215

max_reaction_count (aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

max_tip_amount (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

max_tip_amount (aiogram.methods.send_invoice.SendInvoice
attribute), 595

max_tip_amount (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

MaybeInaccessibleMessage (class in
aiogram.types.maybe_inaccessible_message),
218

md_text (aiogram.types.message.Message property),
228

MDL (aiogram.enums.currency.Currency attribute), 609
media (aiogram.methods.edit_message_media.EditMessageMedia

attribute), 567

Index 843

aiogram Documentation, Release 3.23.0

media (aiogram.methods.send_media_group.SendMediaGroup
attribute), 501

media (aiogram.methods.send_paid_media.SendPaidMedia
attribute), 506

media (aiogram.types.input_media_animation.InputMediaAnimation
attribute), 202

media (aiogram.types.input_media_audio.InputMediaAudio
attribute), 203

media (aiogram.types.input_media_document.InputMediaDocument
attribute), 204

media (aiogram.types.input_media_photo.InputMediaPhoto
attribute), 205

media (aiogram.types.input_media_video.InputMediaVideo
attribute), 206

media (aiogram.types.input_paid_media_photo.InputPaidMediaPhoto
attribute), 207

media (aiogram.types.input_paid_media_video.InputPaidMediaVideo
attribute), 208

media_group_id (aiogram.types.message.Message at-
tribute), 223

MediaGroupBuilder (class in
aiogram.utils.media_group), 732

MEMBER (aiogram.enums.chat_member_status.ChatMemberStatus
attribute), 605

member_limit (aiogram.methods.create_chat_invite_link.CreateChatInviteLink
attribute), 425

member_limit (aiogram.methods.edit_chat_invite_link.EditChatInviteLink
attribute), 436

member_limit (aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

member_status_changed
(aiogram.filters.chat_member_updated.ChatMemberUpdatedFilter
attribute), 642

MemoryStorage (class in aiogram.fsm.storage.memory),
661

MENTION (aiogram.enums.message_entity_type.MessageEntityType
attribute), 615

mention (aiogram.filters.command.CommandObject at-
tribute), 641

mention_html() (aiogram.types.user.User method),
311

mention_markdown() (aiogram.types.user.User
method), 311

mentioned (aiogram.filters.command.CommandObject
property), 641

menu_button (aiogram.methods.set_chat_menu_button.SetChatMenuButton
attribute), 533

MenuButton (class in aiogram.types.menu_button), 218
MenuButtonCommands (class in

aiogram.types.menu_button_commands),
219

MenuButtonDefault (class in
aiogram.types.menu_button_default), 219

MenuButtonType (class in

aiogram.enums.menu_button_type), 614
MenuButtonWebApp (class in

aiogram.types.menu_button_web_app), 219
MESSAGE (aiogram.enums.update_type.UpdateType at-

tribute), 620
message (aiogram.handlers.callback_query.CallbackQueryHandler

property), 703
message (aiogram.types.business_intro.BusinessIntro at-

tribute), 31
message (aiogram.types.callback_query.CallbackQuery

attribute), 33
message (aiogram.types.passport_element_error_data_field.PassportElementErrorDataField

attribute), 385
message (aiogram.types.passport_element_error_file.PassportElementErrorFile

attribute), 386
message (aiogram.types.passport_element_error_files.PassportElementErrorFiles

attribute), 386
message (aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide

attribute), 387
message (aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide

attribute), 388
message (aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie

attribute), 389
message (aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile

attribute), 389
message (aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles

attribute), 390
message (aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified

attribute), 391
message (aiogram.types.update.Update attribute), 392
Message (class in aiogram.types.message), 220
message_auto_delete_time (aiogram.types.chat.Chat

attribute), 38
message_auto_delete_time

(aiogram.types.chat_full_info.ChatFullInfo
attribute), 58

message_auto_delete_time
(aiogram.types.message_auto_delete_timer_changed.MessageAutoDeleteTimerChanged
attribute), 281

MESSAGE_AUTO_DELETE_TIMER_CHANGED
(aiogram.enums.content_type.ContentType
attribute), 606

message_auto_delete_timer_changed
(aiogram.types.message.Message attribute),
225

message_effect_id (aiogram.methods.send_animation.SendAnimation
attribute), 481

message_effect_id (aiogram.methods.send_audio.SendAudio
attribute), 484

message_effect_id (aiogram.methods.send_checklist.SendChecklist
attribute), 488

message_effect_id (aiogram.methods.send_contact.SendContact
attribute), 490

message_effect_id (aiogram.methods.send_dice.SendDice

844 Index

aiogram Documentation, Release 3.23.0

attribute), 492
message_effect_id (aiogram.methods.send_document.SendDocument

attribute), 495
message_effect_id (aiogram.methods.send_game.SendGame

attribute), 582
message_effect_id (aiogram.methods.send_invoice.SendInvoice

attribute), 596
message_effect_id (aiogram.methods.send_location.SendLocation

attribute), 499
message_effect_id (aiogram.methods.send_media_group.SendMediaGroup

attribute), 501
message_effect_id (aiogram.methods.send_message.SendMessage

attribute), 504
message_effect_id (aiogram.methods.send_photo.SendPhoto

attribute), 509
message_effect_id (aiogram.methods.send_poll.SendPoll

attribute), 512
message_effect_id (aiogram.methods.send_sticker.SendSticker

attribute), 404
message_effect_id (aiogram.methods.send_venue.SendVenue

attribute), 515
message_effect_id (aiogram.methods.send_video.SendVideo

attribute), 518
message_effect_id (aiogram.methods.send_video_note.SendVideoNote

attribute), 521
message_effect_id (aiogram.methods.send_voice.SendVoice

attribute), 524
message_id (aiogram.methods.approve_suggested_post.ApproveSuggestedPost

attribute), 558
message_id (aiogram.methods.copy_message.CopyMessage

attribute), 422
message_id (aiogram.methods.decline_suggested_post.DeclineSuggestedPost

attribute), 559
message_id (aiogram.methods.delete_message.DeleteMessage

attribute), 561
message_id (aiogram.methods.edit_message_caption.EditMessageCaption

attribute), 563
message_id (aiogram.methods.edit_message_checklist.EditMessageChecklist

attribute), 564
message_id (aiogram.methods.edit_message_live_location.EditMessageLiveLocation

attribute), 566
message_id (aiogram.methods.edit_message_media.EditMessageMedia

attribute), 568
message_id (aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup

attribute), 569
message_id (aiogram.methods.edit_message_text.EditMessageText

attribute), 571
message_id (aiogram.methods.forward_message.ForwardMessage

attribute), 443
message_id (aiogram.methods.get_game_high_scores.GetGameHighScores

attribute), 581
message_id (aiogram.methods.pin_chat_message.PinChatMessage

attribute), 466
message_id (aiogram.methods.read_business_message.ReadBusinessMessage

attribute), 471
message_id (aiogram.methods.set_game_score.SetGameScore

attribute), 584
message_id (aiogram.methods.set_message_reaction.SetMessageReaction

attribute), 538
message_id (aiogram.methods.stop_message_live_location.StopMessageLiveLocation

attribute), 572
message_id (aiogram.methods.stop_poll.StopPoll

attribute), 573
message_id (aiogram.methods.unpin_chat_message.UnpinChatMessage

attribute), 554
message_id (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 142
message_id (aiogram.types.inaccessible_message.InaccessibleMessage

attribute), 151
message_id (aiogram.types.message.Message attribute),

222
message_id (aiogram.types.message_id.MessageId at-

tribute), 282
message_id (aiogram.types.message_origin_channel.MessageOriginChannel

attribute), 283
message_id (aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated

attribute), 285
message_id (aiogram.types.message_reaction_updated.MessageReactionUpdated

attribute), 286
message_id (aiogram.types.reply_parameters.ReplyParameters

attribute), 296
message_ids (aiogram.methods.copy_messages.CopyMessages

attribute), 424
message_ids (aiogram.methods.delete_business_messages.DeleteBusinessMessages

attribute), 430
message_ids (aiogram.methods.delete_messages.DeleteMessages

attribute), 561
message_ids (aiogram.methods.forward_messages.ForwardMessages

attribute), 445
message_ids (aiogram.types.business_messages_deleted.BusinessMessagesDeleted

attribute), 32
MESSAGE_REACTION (aiogram.enums.update_type.UpdateType

attribute), 621
message_reaction (aiogram.types.update.Update at-

tribute), 393
MESSAGE_REACTION_COUNT

(aiogram.enums.update_type.UpdateType
attribute), 621

message_reaction_count
(aiogram.types.update.Update attribute),
393

message_text (aiogram.types.input_text_message_content.InputTextMessageContent
attribute), 362

message_thread_id (aiogram.methods.close_forum_topic.CloseForumTopic
attribute), 418

message_thread_id (aiogram.methods.copy_message.CopyMessage
attribute), 422

message_thread_id (aiogram.methods.copy_messages.CopyMessages

Index 845

aiogram Documentation, Release 3.23.0

attribute), 424
message_thread_id (aiogram.methods.delete_forum_topic.DeleteForumTopic

attribute), 433
message_thread_id (aiogram.methods.edit_forum_topic.EditForumTopic

attribute), 439
message_thread_id (aiogram.methods.forward_message.ForwardMessage

attribute), 443
message_thread_id (aiogram.methods.forward_messages.ForwardMessages

attribute), 445
message_thread_id (aiogram.methods.reopen_forum_topic.ReopenForumTopic

attribute), 475
message_thread_id (aiogram.methods.send_animation.SendAnimation

attribute), 481
message_thread_id (aiogram.methods.send_audio.SendAudio

attribute), 484
message_thread_id (aiogram.methods.send_chat_action.SendChatAction

attribute), 486
message_thread_id (aiogram.methods.send_contact.SendContact

attribute), 489
message_thread_id (aiogram.methods.send_dice.SendDice

attribute), 492
message_thread_id (aiogram.methods.send_document.SendDocument

attribute), 494
message_thread_id (aiogram.methods.send_game.SendGame

attribute), 582
message_thread_id (aiogram.methods.send_invoice.SendInvoice

attribute), 595
message_thread_id (aiogram.methods.send_location.SendLocation

attribute), 498
message_thread_id (aiogram.methods.send_media_group.SendMediaGroup

attribute), 501
message_thread_id (aiogram.methods.send_message.SendMessage

attribute), 503
message_thread_id (aiogram.methods.send_paid_media.SendPaidMedia

attribute), 506
message_thread_id (aiogram.methods.send_photo.SendPhoto

attribute), 509
message_thread_id (aiogram.methods.send_poll.SendPoll

attribute), 511
message_thread_id (aiogram.methods.send_sticker.SendSticker

attribute), 403
message_thread_id (aiogram.methods.send_venue.SendVenue

attribute), 514
message_thread_id (aiogram.methods.send_video.SendVideo

attribute), 517
message_thread_id (aiogram.methods.send_video_note.SendVideoNote

attribute), 521
message_thread_id (aiogram.methods.send_voice.SendVoice

attribute), 523
message_thread_id (aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages

attribute), 552
message_thread_id (aiogram.types.forum_topic.ForumTopic

attribute), 145
message_thread_id (aiogram.types.message.Message

attribute), 222
MessageAutoDeleteTimerChanged (class in

aiogram.types.message_auto_delete_timer_changed),
281

MessageEntity (class in
aiogram.types.message_entity), 282

MessageEntityType (class in
aiogram.enums.message_entity_type), 615

MessageId (class in aiogram.types.message_id), 282
MessageOrigin (class in

aiogram.types.message_origin), 283
MessageOriginChannel (class in

aiogram.types.message_origin_channel),
283

MessageOriginChat (class in
aiogram.types.message_origin_chat), 283

MessageOriginHiddenUser (class in
aiogram.types.message_origin_hidden_user),
284

MessageOriginType (class in
aiogram.enums.message_origin_type), 615

MessageOriginUser (class in
aiogram.types.message_origin_user), 284

MessageReactionCountUpdated (class in
aiogram.types.message_reaction_count_updated),
285

MessageReactionUpdated (class in
aiogram.types.message_reaction_updated),
285

MiddlewareData (class in
aiogram.dispatcher.middlewares.data), 639

MIGRATE_FROM_CHAT_ID
(aiogram.enums.content_type.ContentType
attribute), 606

migrate_from_chat_id
(aiogram.types.message.Message attribute),
225

MIGRATE_TO_CHAT_ID (aiogram.enums.content_type.ContentType
attribute), 606

migrate_to_chat_id (aiogram.types.message.Message
attribute), 225

migrate_to_chat_id (aiogram.types.response_parameters.ResponseParameters
attribute), 297

mime_type (aiogram.types.animation.Animation at-
tribute), 20

mime_type (aiogram.types.audio.Audio attribute), 21
mime_type (aiogram.types.document.Document at-

tribute), 142
mime_type (aiogram.types.inline_query_result_document.InlineQueryResultDocument

attribute), 342
mime_type (aiogram.types.inline_query_result_video.InlineQueryResultVideo

attribute), 355
mime_type (aiogram.types.video.Video attribute), 314
mime_type (aiogram.types.voice.Voice attribute), 316

846 Index

aiogram Documentation, Release 3.23.0

MNT (aiogram.enums.currency.Currency attribute), 609
model (aiogram.types.unique_gift.UniqueGift attribute),

307
module

aiogram.dispatcher.flags, 692
aiogram.enums.bot_command_scope_type, 603
aiogram.enums.chat_action, 604
aiogram.enums.chat_boost_source_type, 604
aiogram.enums.chat_member_status, 605
aiogram.enums.chat_type, 605
aiogram.enums.content_type, 605
aiogram.enums.currency, 608
aiogram.enums.dice_emoji, 611
aiogram.enums.encrypted_passport_element,

611
aiogram.enums.inline_query_result_type,

612
aiogram.enums.input_media_type, 612
aiogram.enums.input_paid_media_type, 613
aiogram.enums.input_profile_photo_type,

613
aiogram.enums.input_story_content_type,

613
aiogram.enums.keyboard_button_poll_type_type,

613
aiogram.enums.mask_position_point, 614
aiogram.enums.menu_button_type, 614
aiogram.enums.message_entity_type, 615
aiogram.enums.message_origin_type, 615
aiogram.enums.owned_gift_type, 616
aiogram.enums.paid_media_type, 616
aiogram.enums.parse_mode, 616
aiogram.enums.passport_element_error_type,

617
aiogram.enums.poll_type, 617
aiogram.enums.reaction_type_type, 617
aiogram.enums.revenue_withdrawal_state_type,

618
aiogram.enums.sticker_format, 618
aiogram.enums.sticker_type, 618
aiogram.enums.story_area_type_type, 619
aiogram.enums.topic_icon_color, 619
aiogram.enums.transaction_partner_type,

619
aiogram.enums.transaction_partner_user_transaction_type_enum,

620
aiogram.enums.update_type, 620
aiogram.exceptions, 690
aiogram.handlers.callback_query, 703
aiogram.methods.add_sticker_to_set, 396
aiogram.methods.answer_callback_query,

413
aiogram.methods.answer_inline_query, 574

aiogram.methods.answer_pre_checkout_query,
585

aiogram.methods.answer_shipping_query,
586

aiogram.methods.answer_web_app_query, 576
aiogram.methods.approve_chat_join_request,

414
aiogram.methods.approve_suggested_post,

558
aiogram.methods.ban_chat_member, 415
aiogram.methods.ban_chat_sender_chat, 416
aiogram.methods.close, 417
aiogram.methods.close_forum_topic, 418
aiogram.methods.close_general_forum_topic,

419
aiogram.methods.convert_gift_to_stars,

420
aiogram.methods.copy_message, 421
aiogram.methods.copy_messages, 424
aiogram.methods.create_chat_invite_link,

425
aiogram.methods.create_chat_subscription_invite_link,

426
aiogram.methods.create_forum_topic, 428
aiogram.methods.create_invoice_link, 588
aiogram.methods.create_new_sticker_set,

397
aiogram.methods.decline_chat_join_request,

429
aiogram.methods.decline_suggested_post,

559
aiogram.methods.delete_business_messages,

430
aiogram.methods.delete_chat_photo, 431
aiogram.methods.delete_chat_sticker_set,

432
aiogram.methods.delete_forum_topic, 433
aiogram.methods.delete_message, 560
aiogram.methods.delete_messages, 561
aiogram.methods.delete_my_commands, 434
aiogram.methods.delete_sticker_from_set,

398
aiogram.methods.delete_sticker_set, 399
aiogram.methods.delete_story, 435
aiogram.methods.delete_webhook, 597
aiogram.methods.edit_chat_invite_link,

436
aiogram.methods.edit_chat_subscription_invite_link,

437
aiogram.methods.edit_forum_topic, 438
aiogram.methods.edit_general_forum_topic,

440
aiogram.methods.edit_message_caption, 562
aiogram.methods.edit_message_checklist,

Index 847

aiogram Documentation, Release 3.23.0

564
aiogram.methods.edit_message_live_location,

565
aiogram.methods.edit_message_media, 567
aiogram.methods.edit_message_reply_markup,

569
aiogram.methods.edit_message_text, 570
aiogram.methods.edit_story, 441
aiogram.methods.edit_user_star_subscription,

590
aiogram.methods.export_chat_invite_link,

442
aiogram.methods.forward_message, 443
aiogram.methods.forward_messages, 445
aiogram.methods.get_available_gifts, 446
aiogram.methods.get_business_account_gifts,

447
aiogram.methods.get_business_account_star_balance,

448
aiogram.methods.get_business_connection,

449
aiogram.methods.get_chat, 450
aiogram.methods.get_chat_administrators,

451
aiogram.methods.get_chat_member, 451
aiogram.methods.get_chat_member_count,

452
aiogram.methods.get_chat_menu_button, 453
aiogram.methods.get_custom_emoji_stickers,

400
aiogram.methods.get_file, 454
aiogram.methods.get_forum_topic_icon_stickers,

455
aiogram.methods.get_game_high_scores, 581
aiogram.methods.get_me, 455
aiogram.methods.get_my_commands, 456
aiogram.methods.get_my_default_administrator_rights,

457
aiogram.methods.get_my_description, 458
aiogram.methods.get_my_name, 459
aiogram.methods.get_my_short_description,

460
aiogram.methods.get_my_star_balance, 591
aiogram.methods.get_star_transactions,

592
aiogram.methods.get_sticker_set, 401
aiogram.methods.get_updates, 598
aiogram.methods.get_user_chat_boosts, 460
aiogram.methods.get_user_profile_photos,

461
aiogram.methods.get_webhook_info, 599
aiogram.methods.gift_premium_subscription,

462
aiogram.methods.hide_general_forum_topic,

463
aiogram.methods.leave_chat, 464
aiogram.methods.log_out, 465
aiogram.methods.pin_chat_message, 466
aiogram.methods.post_story, 467
aiogram.methods.promote_chat_member, 469
aiogram.methods.read_business_message,

471
aiogram.methods.refund_star_payment, 593
aiogram.methods.remove_business_account_profile_photo,

472
aiogram.methods.remove_chat_verification,

473
aiogram.methods.remove_user_verification,

474
aiogram.methods.reopen_forum_topic, 475
aiogram.methods.reopen_general_forum_topic,

476
aiogram.methods.replace_sticker_in_set,

402
aiogram.methods.restrict_chat_member, 477
aiogram.methods.revoke_chat_invite_link,

478
aiogram.methods.save_prepared_inline_message,

578
aiogram.methods.send_animation, 480
aiogram.methods.send_audio, 483
aiogram.methods.send_chat_action, 486
aiogram.methods.send_checklist, 487
aiogram.methods.send_contact, 489
aiogram.methods.send_dice, 491
aiogram.methods.send_document, 493
aiogram.methods.send_game, 582
aiogram.methods.send_gift, 496
aiogram.methods.send_invoice, 594
aiogram.methods.send_location, 498
aiogram.methods.send_media_group, 500
aiogram.methods.send_message, 503
aiogram.methods.send_paid_media, 505
aiogram.methods.send_photo, 508
aiogram.methods.send_poll, 511
aiogram.methods.send_sticker, 403
aiogram.methods.send_venue, 514
aiogram.methods.send_video, 516
aiogram.methods.send_video_note, 520
aiogram.methods.send_voice, 523
aiogram.methods.set_business_account_bio,

525
aiogram.methods.set_business_account_gift_settings,

526
aiogram.methods.set_business_account_name,

527
aiogram.methods.set_business_account_profile_photo,

528

848 Index

aiogram Documentation, Release 3.23.0

aiogram.methods.set_business_account_username,
530

aiogram.methods.set_chat_administrator_custom_title,
531

aiogram.methods.set_chat_description, 532
aiogram.methods.set_chat_menu_button, 533
aiogram.methods.set_chat_permissions, 534
aiogram.methods.set_chat_photo, 535
aiogram.methods.set_chat_sticker_set, 536
aiogram.methods.set_chat_title, 537
aiogram.methods.set_custom_emoji_sticker_set_thumbnail,

405
aiogram.methods.set_game_score, 584
aiogram.methods.set_message_reaction, 538
aiogram.methods.set_my_commands, 540
aiogram.methods.set_my_default_administrator_rights,

541
aiogram.methods.set_my_description, 542
aiogram.methods.set_my_name, 543
aiogram.methods.set_my_short_description,

544
aiogram.methods.set_passport_data_errors,

602
aiogram.methods.set_sticker_emoji_list,

406
aiogram.methods.set_sticker_keywords, 407
aiogram.methods.set_sticker_mask_position,

408
aiogram.methods.set_sticker_position_in_set,

409
aiogram.methods.set_sticker_set_thumbnail,

410
aiogram.methods.set_sticker_set_title,

411
aiogram.methods.set_user_emoji_status,

545
aiogram.methods.set_webhook, 600
aiogram.methods.stop_message_live_location,

572
aiogram.methods.stop_poll, 573
aiogram.methods.transfer_business_account_stars,

546
aiogram.methods.transfer_gift, 547
aiogram.methods.unban_chat_member, 548
aiogram.methods.unban_chat_sender_chat,

549
aiogram.methods.unhide_general_forum_topic,

550
aiogram.methods.unpin_all_chat_messages,

551
aiogram.methods.unpin_all_forum_topic_messages,

552
aiogram.methods.unpin_all_general_forum_topic_messages,

553

aiogram.methods.unpin_chat_message, 554
aiogram.methods.upgrade_gift, 555
aiogram.methods.upload_sticker_file, 412
aiogram.methods.verify_chat, 556
aiogram.methods.verify_user, 557
aiogram.types.accepted_gift_types, 19
aiogram.types.affiliate_info, 364
aiogram.types.animation, 20
aiogram.types.audio, 20
aiogram.types.background_fill, 21
aiogram.types.background_fill_freeform_gradient,

21
aiogram.types.background_fill_gradient,

22
aiogram.types.background_fill_solid, 22
aiogram.types.background_type, 22
aiogram.types.background_type_chat_theme,

23
aiogram.types.background_type_fill, 23
aiogram.types.background_type_pattern, 23
aiogram.types.background_type_wallpaper,

24
aiogram.types.birthdate, 25
aiogram.types.bot_command, 25
aiogram.types.bot_command_scope, 25
aiogram.types.bot_command_scope_all_chat_administrators,

26
aiogram.types.bot_command_scope_all_group_chats,

26
aiogram.types.bot_command_scope_all_private_chats,

26
aiogram.types.bot_command_scope_chat, 27
aiogram.types.bot_command_scope_chat_administrators,

27
aiogram.types.bot_command_scope_chat_member,

28
aiogram.types.bot_command_scope_default,

28
aiogram.types.bot_description, 28
aiogram.types.bot_name, 29
aiogram.types.bot_short_description, 29
aiogram.types.business_bot_rights, 29
aiogram.types.business_connection, 30
aiogram.types.business_intro, 31
aiogram.types.business_location, 31
aiogram.types.business_messages_deleted,

32
aiogram.types.business_opening_hours, 32
aiogram.types.business_opening_hours_interval,

32
aiogram.types.callback_game, 395
aiogram.types.callback_query, 33
aiogram.types.chat, 34

Index 849

aiogram Documentation, Release 3.23.0

aiogram.types.chat_administrator_rights,
50

aiogram.types.chat_background, 51
aiogram.types.chat_boost, 52
aiogram.types.chat_boost_added, 52
aiogram.types.chat_boost_removed, 52
aiogram.types.chat_boost_source, 53
aiogram.types.chat_boost_source_gift_code,

53
aiogram.types.chat_boost_source_giveaway,

53
aiogram.types.chat_boost_source_premium,

54
aiogram.types.chat_boost_updated, 54
aiogram.types.chat_full_info, 55
aiogram.types.chat_invite_link, 58
aiogram.types.chat_join_request, 59
aiogram.types.chat_location, 106
aiogram.types.chat_member, 106
aiogram.types.chat_member_administrator,

107
aiogram.types.chat_member_banned, 109
aiogram.types.chat_member_left, 109
aiogram.types.chat_member_member, 109
aiogram.types.chat_member_owner, 110
aiogram.types.chat_member_restricted, 110
aiogram.types.chat_member_updated, 112
aiogram.types.chat_permissions, 135
aiogram.types.chat_photo, 137
aiogram.types.chat_shared, 137
aiogram.types.checklist, 138
aiogram.types.checklist_task, 138
aiogram.types.checklist_tasks_added, 139
aiogram.types.checklist_tasks_done, 139
aiogram.types.chosen_inline_result, 317
aiogram.types.contact, 139
aiogram.types.copy_text_button, 140
aiogram.types.dice, 140
aiogram.types.direct_message_price_changed,

141
aiogram.types.direct_messages_topic, 141
aiogram.types.document, 141
aiogram.types.encrypted_credentials, 382
aiogram.types.encrypted_passport_element,

382
aiogram.types.error_event, 689
aiogram.types.external_reply_info, 142
aiogram.types.file, 144
aiogram.types.force_reply, 144
aiogram.types.forum_topic, 145
aiogram.types.forum_topic_closed, 145
aiogram.types.forum_topic_created, 146
aiogram.types.forum_topic_edited, 146
aiogram.types.forum_topic_reopened, 146

aiogram.types.game, 395
aiogram.types.game_high_score, 396
aiogram.types.general_forum_topic_hidden,

146
aiogram.types.general_forum_topic_unhidden,

147
aiogram.types.gift, 147
aiogram.types.gift_info, 147
aiogram.types.gifts, 148
aiogram.types.giveaway, 148
aiogram.types.giveaway_completed, 149
aiogram.types.giveaway_created, 150
aiogram.types.giveaway_winners, 150
aiogram.types.inaccessible_message, 151
aiogram.types.inline_keyboard_button, 198
aiogram.types.inline_keyboard_markup, 199
aiogram.types.inline_query, 318
aiogram.types.inline_query_result, 319
aiogram.types.inline_query_result_article,

320
aiogram.types.inline_query_result_audio,

321
aiogram.types.inline_query_result_cached_audio,

323
aiogram.types.inline_query_result_cached_document,

324
aiogram.types.inline_query_result_cached_gif,

327
aiogram.types.inline_query_result_cached_mpeg4_gif,

328
aiogram.types.inline_query_result_cached_photo,

331
aiogram.types.inline_query_result_cached_sticker,

333
aiogram.types.inline_query_result_cached_video,

335
aiogram.types.inline_query_result_cached_voice,

337
aiogram.types.inline_query_result_contact,

339
aiogram.types.inline_query_result_document,

340
aiogram.types.inline_query_result_game,

342
aiogram.types.inline_query_result_gif,

343
aiogram.types.inline_query_result_location,

344
aiogram.types.inline_query_result_mpeg4_gif,

347
aiogram.types.inline_query_result_photo,

350
aiogram.types.inline_query_result_venue,

352

850 Index

aiogram Documentation, Release 3.23.0

aiogram.types.inline_query_result_video,
353

aiogram.types.inline_query_result_voice,
355

aiogram.types.inline_query_results_button,
357

aiogram.types.input_checklist, 199
aiogram.types.input_checklist_task, 200
aiogram.types.input_contact_message_content,

357
aiogram.types.input_file, 200
aiogram.types.input_invoice_message_content,

358
aiogram.types.input_location_message_content,

361
aiogram.types.input_media, 201
aiogram.types.input_media_animation, 201
aiogram.types.input_media_audio, 202
aiogram.types.input_media_document, 204
aiogram.types.input_media_photo, 205
aiogram.types.input_media_video, 205
aiogram.types.input_message_content, 362
aiogram.types.input_paid_media, 207
aiogram.types.input_paid_media_photo, 207
aiogram.types.input_paid_media_video, 208
aiogram.types.input_poll_option, 209
aiogram.types.input_profile_photo, 209
aiogram.types.input_profile_photo_animated,

209
aiogram.types.input_profile_photo_static,

210
aiogram.types.input_sticker, 379
aiogram.types.input_story_content, 210
aiogram.types.input_story_content_photo,

210
aiogram.types.input_story_content_video,

211
aiogram.types.input_text_message_content,

362
aiogram.types.input_venue_message_content,

363
aiogram.types.invoice, 365
aiogram.types.keyboard_button, 211
aiogram.types.keyboard_button_poll_type,

212
aiogram.types.keyboard_button_request_chat,

213
aiogram.types.keyboard_button_request_user,

214
aiogram.types.keyboard_button_request_users,

215
aiogram.types.labeled_price, 365
aiogram.types.link_preview_options, 216
aiogram.types.location, 216

aiogram.types.location_address, 217
aiogram.types.login_url, 217
aiogram.types.mask_position, 379
aiogram.types.maybe_inaccessible_message,

218
aiogram.types.menu_button, 218
aiogram.types.menu_button_commands, 219
aiogram.types.menu_button_default, 219
aiogram.types.menu_button_web_app, 219
aiogram.types.message, 220
aiogram.types.message_auto_delete_timer_changed,

281
aiogram.types.message_entity, 282
aiogram.types.message_id, 282
aiogram.types.message_origin, 283
aiogram.types.message_origin_channel, 283
aiogram.types.message_origin_chat, 283
aiogram.types.message_origin_hidden_user,

284
aiogram.types.message_origin_user, 284
aiogram.types.message_reaction_count_updated,

285
aiogram.types.message_reaction_updated,

285
aiogram.types.order_info, 366
aiogram.types.owned_gift, 286
aiogram.types.owned_gift_regular, 287
aiogram.types.owned_gift_unique, 288
aiogram.types.owned_gifts, 289
aiogram.types.paid_media, 289
aiogram.types.paid_media_info, 289
aiogram.types.paid_media_photo, 290
aiogram.types.paid_media_preview, 290
aiogram.types.paid_media_purchased, 366
aiogram.types.paid_media_video, 290
aiogram.types.paid_message_price_changed,

291
aiogram.types.passport_data, 384
aiogram.types.passport_element_error, 384
aiogram.types.passport_element_error_data_field,

385
aiogram.types.passport_element_error_file,

385
aiogram.types.passport_element_error_files,

386
aiogram.types.passport_element_error_front_side,

387
aiogram.types.passport_element_error_reverse_side,

388
aiogram.types.passport_element_error_selfie,

388
aiogram.types.passport_element_error_translation_file,

389

Index 851

aiogram Documentation, Release 3.23.0

aiogram.types.passport_element_error_translation_files,
390

aiogram.types.passport_element_error_unspecified,
391

aiogram.types.passport_file, 391
aiogram.types.photo_size, 291
aiogram.types.poll, 291
aiogram.types.poll_answer, 292
aiogram.types.poll_option, 293
aiogram.types.pre_checkout_query, 366
aiogram.types.prepared_inline_message,

364
aiogram.types.proximity_alert_triggered,

293
aiogram.types.reaction_count, 293
aiogram.types.reaction_type, 294
aiogram.types.reaction_type_custom_emoji,

294
aiogram.types.reaction_type_emoji, 294
aiogram.types.reaction_type_paid, 295
aiogram.types.refunded_payment, 367
aiogram.types.reply_keyboard_markup, 295
aiogram.types.reply_keyboard_remove, 296
aiogram.types.reply_parameters, 296
aiogram.types.response_parameters, 297
aiogram.types.revenue_withdrawal_state,

368
aiogram.types.revenue_withdrawal_state_failed,

368
aiogram.types.revenue_withdrawal_state_pending,

369
aiogram.types.revenue_withdrawal_state_succeeded,

369
aiogram.types.sent_web_app_message, 364
aiogram.types.shared_user, 297
aiogram.types.shipping_address, 370
aiogram.types.shipping_option, 370
aiogram.types.shipping_query, 371
aiogram.types.star_amount, 298
aiogram.types.star_transaction, 372
aiogram.types.star_transactions, 373
aiogram.types.sticker, 380
aiogram.types.sticker_set, 381
aiogram.types.story, 298
aiogram.types.story_area, 298
aiogram.types.story_area_position, 299
aiogram.types.story_area_type, 299
aiogram.types.story_area_type_link, 299
aiogram.types.story_area_type_location,

300
aiogram.types.story_area_type_suggested_reaction,

301
aiogram.types.story_area_type_unique_gift,

302

aiogram.types.story_area_type_weather,
302

aiogram.types.successful_payment, 373
aiogram.types.suggested_post_approval_failed,

303
aiogram.types.suggested_post_approved,

303
aiogram.types.suggested_post_declined,

304
aiogram.types.suggested_post_info, 304
aiogram.types.suggested_post_paid, 304
aiogram.types.suggested_post_parameters,

305
aiogram.types.suggested_post_price, 305
aiogram.types.suggested_post_refunded,

306
aiogram.types.switch_inline_query_chosen_chat,

306
aiogram.types.text_quote, 307
aiogram.types.transaction_partner, 374
aiogram.types.transaction_partner_affiliate_program,

374
aiogram.types.transaction_partner_chat,

375
aiogram.types.transaction_partner_fragment,

376
aiogram.types.transaction_partner_other,

376
aiogram.types.transaction_partner_telegram_ads,

377
aiogram.types.transaction_partner_telegram_api,

377
aiogram.types.transaction_partner_user,

378
aiogram.types.unique_gift, 307
aiogram.types.unique_gift_backdrop, 308
aiogram.types.unique_gift_backdrop_colors,

308
aiogram.types.unique_gift_info, 309
aiogram.types.unique_gift_model, 309
aiogram.types.unique_gift_symbol, 310
aiogram.types.update, 392
aiogram.types.user, 310
aiogram.types.user_chat_boosts, 311
aiogram.types.user_profile_photos, 312
aiogram.types.user_shared, 312
aiogram.types.users_shared, 312
aiogram.types.venue, 313
aiogram.types.video, 313
aiogram.types.video_chat_ended, 314
aiogram.types.video_chat_participants_invited,

314
aiogram.types.video_chat_scheduled, 315
aiogram.types.video_chat_started, 315

852 Index

aiogram Documentation, Release 3.23.0

aiogram.types.video_note, 315
aiogram.types.voice, 316
aiogram.types.web_app_data, 316
aiogram.types.web_app_info, 316
aiogram.types.webhook_info, 394
aiogram.types.write_access_allowed, 317

MongoStorage (class in aiogram.fsm.storage.mongo),
663

month (aiogram.types.birthdate.Birthdate attribute), 25
month_count (aiogram.methods.gift_premium_subscription.GiftPremiumSubscription

attribute), 462
MOUTH (aiogram.enums.mask_position_point.MaskPositionPoint

attribute), 614
mpeg4_duration (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
mpeg4_file_id (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif

attribute), 330
MPEG4_GIF (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
mpeg4_height (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
mpeg4_url (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
mpeg4_width (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
MUR (aiogram.enums.currency.Currency attribute), 609
MVR (aiogram.enums.currency.Currency attribute), 609
MXN (aiogram.enums.currency.Currency attribute), 609
MY_CHAT_MEMBER (aiogram.enums.update_type.UpdateType

attribute), 621
my_chat_member (aiogram.types.update.Update at-

tribute), 393
MYR (aiogram.enums.currency.Currency attribute), 609
MZN (aiogram.enums.currency.Currency attribute), 609

N
name (aiogram.methods.add_sticker_to_set.AddStickerToSet

attribute), 396
name (aiogram.methods.create_chat_invite_link.CreateChatInviteLink

attribute), 425
name (aiogram.methods.create_chat_subscription_invite_link.CreateChatSubscriptionInviteLink

attribute), 427
name (aiogram.methods.create_forum_topic.CreateForumTopic

attribute), 428
name (aiogram.methods.create_new_sticker_set.CreateNewStickerSet

attribute), 397
name (aiogram.methods.delete_sticker_set.DeleteStickerSet

attribute), 399
name (aiogram.methods.edit_chat_invite_link.EditChatInviteLink

attribute), 436
name (aiogram.methods.edit_chat_subscription_invite_link.EditChatSubscriptionInviteLink

attribute), 438
name (aiogram.methods.edit_forum_topic.EditForumTopic

attribute), 439

name (aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic
attribute), 440

name (aiogram.methods.get_sticker_set.GetStickerSet at-
tribute), 401

name (aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet
attribute), 402

name (aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail
attribute), 405

name (aiogram.methods.set_my_name.SetMyName
attribute), 543

name (aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail
attribute), 410

name (aiogram.methods.set_sticker_set_title.SetStickerSetTitle
attribute), 411

name (aiogram.types.bot_name.BotName attribute), 29
name (aiogram.types.chat_invite_link.ChatInviteLink at-

tribute), 59
name (aiogram.types.forum_topic.ForumTopic attribute),

145
name (aiogram.types.forum_topic_created.ForumTopicCreated

attribute), 146
name (aiogram.types.forum_topic_edited.ForumTopicEdited

attribute), 146
name (aiogram.types.order_info.OrderInfo attribute), 366
name (aiogram.types.sticker_set.StickerSet attribute), 381
name (aiogram.types.story_area_type_unique_gift.StoryAreaTypeUniqueGift

attribute), 302
name (aiogram.types.unique_gift.UniqueGift attribute),

307
name (aiogram.types.unique_gift_backdrop.UniqueGiftBackdrop

attribute), 308
name (aiogram.types.unique_gift_model.UniqueGiftModel

attribute), 309
name (aiogram.types.unique_gift_symbol.UniqueGiftSymbol

attribute), 310
nanostar_amount (aiogram.types.affiliate_info.AffiliateInfo

attribute), 365
nanostar_amount (aiogram.types.star_amount.StarAmount

attribute), 298
nanostar_amount (aiogram.types.star_transaction.StarTransaction

attribute), 372
need_email (aiogram.methods.create_invoice_link.CreateInvoiceLink

attribute), 589
need_email (aiogram.methods.send_invoice.SendInvoice

attribute), 595
need_email (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

attribute), 360
need_name (aiogram.methods.create_invoice_link.CreateInvoiceLink

attribute), 589
need_name (aiogram.methods.send_invoice.SendInvoice

attribute), 595
need_name (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

attribute), 360
need_phone_number (aiogram.methods.create_invoice_link.CreateInvoiceLink

Index 853

aiogram Documentation, Release 3.23.0

attribute), 589
need_phone_number (aiogram.methods.send_invoice.SendInvoice

attribute), 595
need_phone_number (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

attribute), 360
need_shipping_address

(aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

need_shipping_address
(aiogram.methods.send_invoice.SendInvoice
attribute), 595

need_shipping_address
(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 361

needs_repainting (aiogram.methods.create_new_sticker_set.CreateNewStickerSet
attribute), 398

needs_repainting (aiogram.types.sticker.Sticker
attribute), 381

new_chat_member (aiogram.types.chat_member_updated.ChatMemberUpdated
attribute), 112

NEW_CHAT_MEMBERS (aiogram.enums.content_type.ContentType
attribute), 606

new_chat_members (aiogram.types.message.Message
attribute), 225

NEW_CHAT_PHOTO (aiogram.enums.content_type.ContentType
attribute), 606

new_chat_photo (aiogram.types.message.Message at-
tribute), 225

NEW_CHAT_TITLE (aiogram.enums.content_type.ContentType
attribute), 606

new_chat_title (aiogram.types.message.Message at-
tribute), 225

new_owner_chat_id (aiogram.methods.transfer_gift.TransferGift
attribute), 547

new_reaction (aiogram.types.message_reaction_updated.MessageReactionUpdated
attribute), 286

next_offset (aiogram.methods.answer_inline_query.AnswerInlineQuery
attribute), 575

next_offset (aiogram.types.owned_gifts.OwnedGifts
attribute), 289

next_transfer_date (aiogram.types.owned_gift_unique.OwnedGiftUnique
attribute), 288

next_transfer_date (aiogram.types.unique_gift_info.UniqueGiftInfo
attribute), 309

NGN (aiogram.enums.currency.Currency attribute), 609
NIO (aiogram.enums.currency.Currency attribute), 609
NOK (aiogram.enums.currency.Currency attribute), 610
NPR (aiogram.enums.currency.Currency attribute), 610
number (aiogram.types.unique_gift.UniqueGift at-

tribute), 307
NZD (aiogram.enums.currency.Currency attribute), 610

O
offset (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts

attribute), 447
offset (aiogram.methods.get_star_transactions.GetStarTransactions

attribute), 592
offset (aiogram.methods.get_updates.GetUpdates at-

tribute), 598
offset (aiogram.methods.get_user_profile_photos.GetUserProfilePhotos

attribute), 461
offset (aiogram.types.inline_query.InlineQuery at-

tribute), 318
offset (aiogram.types.message_entity.MessageEntity at-

tribute), 282
ok (aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery

attribute), 585
ok (aiogram.methods.answer_shipping_query.AnswerShippingQuery

attribute), 586
old_chat_member (aiogram.types.chat_member_updated.ChatMemberUpdated

attribute), 112
old_reaction (aiogram.types.message_reaction_updated.MessageReactionUpdated

attribute), 286
old_sticker (aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet

attribute), 402
one_time_keyboard (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup

attribute), 295
only_if_banned (aiogram.methods.unban_chat_member.UnbanChatMember

attribute), 548
only_new_members (aiogram.types.giveaway.Giveaway

attribute), 149
only_new_members (aiogram.types.giveaway_winners.GiveawayWinners

attribute), 151
open_period (aiogram.methods.send_poll.SendPoll at-

tribute), 512
open_period (aiogram.types.poll.Poll attribute), 292
opening_hours (aiogram.types.business_opening_hours.BusinessOpeningHours

attribute), 32
opening_minute (aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval

attribute), 32
option_ids (aiogram.types.poll_answer.PollAnswer at-

tribute), 292
options (aiogram.methods.send_poll.SendPoll at-

tribute), 511
options (aiogram.types.poll.Poll attribute), 292
order_info (aiogram.types.pre_checkout_query.PreCheckoutQuery

attribute), 367
order_info (aiogram.types.successful_payment.SuccessfulPayment

attribute), 374
OrderInfo (class in aiogram.types.order_info), 366
origin (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 142
origin (aiogram.types.unique_gift_info.UniqueGiftInfo

attribute), 309
OTHER (aiogram.enums.transaction_partner_type.TransactionPartnerType

attribute), 619
others_can_add_tasks

(aiogram.types.checklist.Checklist attribute),

854 Index

aiogram Documentation, Release 3.23.0

138
others_can_add_tasks

(aiogram.types.input_checklist.InputChecklist
attribute), 199

others_can_mark_tasks_as_done
(aiogram.types.checklist.Checklist attribute),
138

others_can_mark_tasks_as_done
(aiogram.types.input_checklist.InputChecklist
attribute), 200

owned_gift_id (aiogram.methods.convert_gift_to_stars.ConvertGiftToStars
attribute), 420

owned_gift_id (aiogram.methods.transfer_gift.TransferGift
attribute), 547

owned_gift_id (aiogram.methods.upgrade_gift.UpgradeGift
attribute), 555

owned_gift_id (aiogram.types.gift_info.GiftInfo at-
tribute), 147

owned_gift_id (aiogram.types.owned_gift_regular.OwnedGiftRegular
attribute), 287

owned_gift_id (aiogram.types.owned_gift_unique.OwnedGiftUnique
attribute), 288

owned_gift_id (aiogram.types.unique_gift_info.UniqueGiftInfo
attribute), 309

OwnedGift (class in aiogram.types.owned_gift), 286
OwnedGiftRegular (class in

aiogram.types.owned_gift_regular), 287
OwnedGifts (class in aiogram.types.owned_gifts), 289
OwnedGiftType (class in

aiogram.enums.owned_gift_type), 616
OwnedGiftUnique (class in

aiogram.types.owned_gift_unique), 288

P
PAB (aiogram.enums.currency.Currency attribute), 610
pack() (aiogram.filters.callback_data.CallbackData

method), 647
PAID (aiogram.enums.reaction_type_type.ReactionTypeType

attribute), 617
PAID_MEDIA (aiogram.enums.content_type.ContentType

attribute), 605
paid_media (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
paid_media (aiogram.types.message.Message attribute),

224
paid_media (aiogram.types.paid_media_info.PaidMediaInfo

attribute), 289
paid_media (aiogram.types.transaction_partner_user.TransactionPartnerUser

attribute), 378
paid_media_payload (aiogram.types.paid_media_purchased.PaidMediaPurchased

attribute), 366
paid_media_payload (aiogram.types.transaction_partner_user.TransactionPartnerUser

attribute), 378

PAID_MEDIA_PAYMENT (aiogram.enums.transaction_partner_user_transaction_type_enum.TransactionPartnerUserTransactionTypeEnum
attribute), 620

PAID_MESSAGE_PRICE_CHANGED
(aiogram.enums.content_type.ContentType
attribute), 607

paid_message_price_changed
(aiogram.types.message.Message attribute),
227

paid_message_star_count
(aiogram.types.paid_message_price_changed.PaidMessagePriceChanged
attribute), 291

paid_star_count (aiogram.types.message.Message at-
tribute), 223

PaidMedia (class in aiogram.types.paid_media), 289
PaidMediaInfo (class in

aiogram.types.paid_media_info), 289
PaidMediaPhoto (class in

aiogram.types.paid_media_photo), 290
PaidMediaPreview (class in

aiogram.types.paid_media_preview), 290
PaidMediaPurchased (class in

aiogram.types.paid_media_purchased), 366
PaidMediaType (class in

aiogram.enums.paid_media_type), 616
PaidMediaVideo (class in

aiogram.types.paid_media_video), 290
PaidMessagePriceChanged (class in

aiogram.types.paid_message_price_changed),
291

parent_chat (aiogram.types.chat_full_info.ChatFullInfo
attribute), 56

parse_mode (aiogram.client.default.DefaultBotProperties
attribute), 625

parse_mode (aiogram.methods.copy_message.CopyMessage
attribute), 422

parse_mode (aiogram.methods.edit_message_caption.EditMessageCaption
attribute), 563

parse_mode (aiogram.methods.edit_message_text.EditMessageText
attribute), 571

parse_mode (aiogram.methods.edit_story.EditStory at-
tribute), 441

parse_mode (aiogram.methods.post_story.PostStory at-
tribute), 468

parse_mode (aiogram.methods.send_animation.SendAnimation
attribute), 481

parse_mode (aiogram.methods.send_audio.SendAudio
attribute), 484

parse_mode (aiogram.methods.send_document.SendDocument
attribute), 495

parse_mode (aiogram.methods.send_message.SendMessage
attribute), 503

parse_mode (aiogram.methods.send_paid_media.SendPaidMedia
attribute), 506

parse_mode (aiogram.methods.send_photo.SendPhoto

Index 855

aiogram Documentation, Release 3.23.0

attribute), 509
parse_mode (aiogram.methods.send_video.SendVideo

attribute), 518
parse_mode (aiogram.methods.send_voice.SendVoice

attribute), 524
parse_mode (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 322
parse_mode (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio

attribute), 324
parse_mode (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

attribute), 326
parse_mode (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif

attribute), 328
parse_mode (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif

attribute), 330
parse_mode (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

attribute), 333
parse_mode (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo

attribute), 337
parse_mode (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice

attribute), 339
parse_mode (aiogram.types.inline_query_result_document.InlineQueryResultDocument

attribute), 342
parse_mode (aiogram.types.inline_query_result_gif.InlineQueryResultGif

attribute), 344
parse_mode (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
parse_mode (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

attribute), 351
parse_mode (aiogram.types.inline_query_result_video.InlineQueryResultVideo

attribute), 355
parse_mode (aiogram.types.inline_query_result_voice.InlineQueryResultVoice

attribute), 356
parse_mode (aiogram.types.input_checklist.InputChecklist

attribute), 199
parse_mode (aiogram.types.input_checklist_task.InputChecklistTask

attribute), 200
parse_mode (aiogram.types.input_media_animation.InputMediaAnimation

attribute), 202
parse_mode (aiogram.types.input_media_audio.InputMediaAudio

attribute), 203
parse_mode (aiogram.types.input_media_document.InputMediaDocument

attribute), 204
parse_mode (aiogram.types.input_media_photo.InputMediaPhoto

attribute), 205
parse_mode (aiogram.types.input_media_video.InputMediaVideo

attribute), 206
parse_mode (aiogram.types.input_text_message_content.InputTextMessageContent

attribute), 363
parse_webapp_init_data() (in module

aiogram.utils.web_app), 718
ParseMode (class in aiogram.enums.parse_mode), 616
PASSPORT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611

PASSPORT_DATA (aiogram.enums.content_type.ContentType
attribute), 607

passport_data (aiogram.types.message.Message
attribute), 226

PASSPORT_REGISTRATION
(aiogram.enums.encrypted_passport_element.EncryptedPassportElement
attribute), 611

PassportData (class in aiogram.types.passport_data),
384

PassportElementError (class in
aiogram.types.passport_element_error),
384

PassportElementErrorDataField (class in
aiogram.types.passport_element_error_data_field),
385

PassportElementErrorFile (class in
aiogram.types.passport_element_error_file),
385

PassportElementErrorFiles (class in
aiogram.types.passport_element_error_files),
386

PassportElementErrorFrontSide (class in
aiogram.types.passport_element_error_front_side),
387

PassportElementErrorReverseSide (class in
aiogram.types.passport_element_error_reverse_side),
388

PassportElementErrorSelfie (class in
aiogram.types.passport_element_error_selfie),
388

PassportElementErrorTranslationFile (class in
aiogram.types.passport_element_error_translation_file),
389

PassportElementErrorTranslationFiles (class in
aiogram.types.passport_element_error_translation_files),
390

PassportElementErrorType (class in
aiogram.enums.passport_element_error_type),
617

PassportElementErrorUnspecified (class in
aiogram.types.passport_element_error_unspecified),
391

PassportFile (class in aiogram.types.passport_file),
391

pattern (aiogram.filters.exception.ExceptionMessageFilter
attribute), 649

pay (aiogram.types.inline_keyboard_button.InlineKeyboardButton
attribute), 199

pay_for_upgrade (aiogram.methods.send_gift.SendGift
attribute), 497

payload (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

payload (aiogram.methods.send_invoice.SendInvoice at-
tribute), 594

856 Index

aiogram Documentation, Release 3.23.0

payload (aiogram.methods.send_paid_media.SendPaidMedia
attribute), 506

payload (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

PEN (aiogram.enums.currency.Currency attribute), 610
PENDING (aiogram.enums.revenue_withdrawal_state_type.RevenueWithdrawalStateType

attribute), 618
pending_join_request_count

(aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

pending_update_count
(aiogram.types.webhook_info.WebhookInfo
attribute), 394

performer (aiogram.methods.send_audio.SendAudio at-
tribute), 484

performer (aiogram.types.audio.Audio attribute), 21
performer (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 322
performer (aiogram.types.input_media_audio.InputMediaAudio

attribute), 203
permissions (aiogram.methods.restrict_chat_member.RestrictChatMember

attribute), 477
permissions (aiogram.methods.set_chat_permissions.SetChatPermissions

attribute), 534
permissions (aiogram.types.chat.Chat attribute), 38
permissions (aiogram.types.chat_full_info.ChatFullInfo

attribute), 57
personal_chat (aiogram.types.chat.Chat attribute), 38
personal_chat (aiogram.types.chat_full_info.ChatFullInfo

attribute), 56
PERSONAL_DETAILS (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
PHONE_NUMBER (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
PHONE_NUMBER (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
phone_number (aiogram.methods.send_contact.SendContact

attribute), 489
phone_number (aiogram.types.contact.Contact at-

tribute), 139
phone_number (aiogram.types.encrypted_passport_element.EncryptedPassportElement

attribute), 383
phone_number (aiogram.types.inline_query_result_contact.InlineQueryResultContact

attribute), 340
phone_number (aiogram.types.input_contact_message_content.InputContactMessageContent

attribute), 357
phone_number (aiogram.types.order_info.OrderInfo at-

tribute), 366
PhoneNumber (class in aiogram.utils.formatting), 730
PHOTO (aiogram.enums.content_type.ContentType at-

tribute), 606
PHOTO (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
PHOTO (aiogram.enums.input_media_type.InputMediaType

attribute), 612
PHOTO (aiogram.enums.input_paid_media_type.InputPaidMediaType

attribute), 613
PHOTO (aiogram.enums.input_story_content_type.InputStoryContentType

attribute), 613
PHOTO (aiogram.enums.paid_media_type.PaidMediaType

attribute), 616
photo (aiogram.methods.send_photo.SendPhoto at-

tribute), 509
photo (aiogram.methods.set_business_account_profile_photo.SetBusinessAccountProfilePhoto

attribute), 529
photo (aiogram.methods.set_chat_photo.SetChatPhoto

attribute), 535
photo (aiogram.types.chat.Chat attribute), 38
photo (aiogram.types.chat_full_info.ChatFullInfo at-

tribute), 56
photo (aiogram.types.chat_shared.ChatShared at-

tribute), 137
photo (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
photo (aiogram.types.game.Game attribute), 395
photo (aiogram.types.input_profile_photo_static.InputProfilePhotoStatic

attribute), 210
photo (aiogram.types.input_story_content_photo.InputStoryContentPhoto

attribute), 210
photo (aiogram.types.message.Message attribute), 224
photo (aiogram.types.paid_media_photo.PaidMediaPhoto

attribute), 290
photo (aiogram.types.shared_user.SharedUser at-

tribute), 298
photo_file_id (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

attribute), 333
photo_height (aiogram.methods.create_invoice_link.CreateInvoiceLink

attribute), 589
photo_height (aiogram.methods.send_invoice.SendInvoice

attribute), 595
photo_height (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

attribute), 351
photo_height (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

attribute), 360
photo_size (aiogram.methods.create_invoice_link.CreateInvoiceLink

attribute), 589
photo_size (aiogram.methods.send_invoice.SendInvoice

attribute), 595
photo_size (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

attribute), 360
photo_url (aiogram.methods.create_invoice_link.CreateInvoiceLink

attribute), 589
photo_url (aiogram.methods.send_invoice.SendInvoice

attribute), 595
photo_url (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

attribute), 350
photo_url (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

attribute), 360

Index 857

aiogram Documentation, Release 3.23.0

photo_url (aiogram.utils.web_app.WebAppChat at-
tribute), 721

photo_url (aiogram.utils.web_app.WebAppUser at-
tribute), 720

photo_width (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

photo_width (aiogram.methods.send_invoice.SendInvoice
attribute), 595

photo_width (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 351

photo_width (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

photos (aiogram.types.user_profile_photos.UserProfilePhotos
attribute), 312

PhotoSize (class in aiogram.types.photo_size), 291
PHP (aiogram.enums.currency.Currency attribute), 610
pin() (aiogram.types.message.Message method), 277
pin_message() (aiogram.types.chat.Chat method), 44
PinChatMessage (class in

aiogram.methods.pin_chat_message), 466
PINNED_MESSAGE (aiogram.enums.content_type.ContentType

attribute), 606
pinned_message (aiogram.types.chat.Chat attribute),

38
pinned_message (aiogram.types.chat_full_info.ChatFullInfo

attribute), 57
pinned_message (aiogram.types.message.Message at-

tribute), 225
PKR (aiogram.enums.currency.Currency attribute), 610
PLN (aiogram.enums.currency.Currency attribute), 610
point (aiogram.types.mask_position.MaskPosition at-

tribute), 379
POLL (aiogram.enums.content_type.ContentType at-

tribute), 606
POLL (aiogram.enums.update_type.UpdateType at-

tribute), 621
poll (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 144
poll (aiogram.types.message.Message attribute), 224
poll (aiogram.types.update.Update attribute), 393
Poll (class in aiogram.types.poll), 291
POLL_ANSWER (aiogram.enums.update_type.UpdateType

attribute), 621
poll_answer (aiogram.types.update.Update attribute),

393
poll_id (aiogram.types.poll_answer.PollAnswer at-

tribute), 292
PollAnswer (class in aiogram.types.poll_answer), 292
PollOption (class in aiogram.types.poll_option), 293
PollType (class in aiogram.enums.poll_type), 617
position (aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet

attribute), 409
position (aiogram.types.game_high_score.GameHighScore

attribute), 396

position (aiogram.types.story_area.StoryArea at-
tribute), 298

position (aiogram.types.text_quote.TextQuote at-
tribute), 307

post_code (aiogram.types.shipping_address.ShippingAddress
attribute), 370

post_to_chat_page (aiogram.methods.post_story.PostStory
attribute), 468

PostStory (class in aiogram.methods.post_story), 467
PRE (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
Pre (class in aiogram.utils.formatting), 730
PRE_CHECKOUT_QUERY (aiogram.enums.update_type.UpdateType

attribute), 621
pre_checkout_query (aiogram.types.update.Update at-

tribute), 393
pre_checkout_query_id

(aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery
attribute), 585

PreCheckoutQuery (class in
aiogram.types.pre_checkout_query), 366

prefer_large_media (aiogram.types.link_preview_options.LinkPreviewOptions
attribute), 216

prefer_small_media (aiogram.types.link_preview_options.LinkPreviewOptions
attribute), 216

prefix (aiogram.filters.command.CommandObject at-
tribute), 640

PREMIUM (aiogram.enums.chat_boost_source_type.ChatBoostSourceType
attribute), 604

premium_animation (aiogram.types.sticker.Sticker at-
tribute), 380

PREMIUM_PURCHASE (aiogram.enums.transaction_partner_user_transaction_type_enum.TransactionPartnerUserTransactionTypeEnum
attribute), 620

premium_subscription
(aiogram.types.accepted_gift_types.AcceptedGiftTypes
attribute), 19

premium_subscription_duration
(aiogram.types.transaction_partner_user.TransactionPartnerUser
attribute), 379

premium_subscription_month_count
(aiogram.types.giveaway.Giveaway attribute),
149

premium_subscription_month_count
(aiogram.types.giveaway_winners.GiveawayWinners
attribute), 150

prepaid_upgrade_star_count
(aiogram.types.gift_info.GiftInfo attribute),
148

prepaid_upgrade_star_count
(aiogram.types.owned_gift_regular.OwnedGiftRegular
attribute), 288

prepare_value() (aiogram.client.session.base.BaseSession
method), 16

PreparedInlineMessage (class in

858 Index

aiogram Documentation, Release 3.23.0

aiogram.types.prepared_inline_message),
364

PREVIEW (aiogram.enums.paid_media_type.PaidMediaType
attribute), 616

price (aiogram.types.suggested_post_approval_failed.SuggestedPostApprovalFailed
attribute), 303

price (aiogram.types.suggested_post_approved.SuggestedPostApproved
attribute), 303

price (aiogram.types.suggested_post_info.SuggestedPostInfo
attribute), 304

price (aiogram.types.suggested_post_parameters.SuggestedPostParameters
attribute), 305

prices (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

prices (aiogram.methods.send_invoice.SendInvoice at-
tribute), 594

prices (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

prices (aiogram.types.shipping_option.ShippingOption
attribute), 370

PRIVATE (aiogram.enums.chat_type.ChatType attribute),
605

prize_description (aiogram.types.giveaway.Giveaway
attribute), 149

prize_description (aiogram.types.giveaway_winners.GiveawayWinners
attribute), 151

prize_star_count (aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway
attribute), 54

prize_star_count (aiogram.types.giveaway.Giveaway
attribute), 149

prize_star_count (aiogram.types.giveaway_created.GiveawayCreated
attribute), 150

prize_star_count (aiogram.types.giveaway_winners.GiveawayWinners
attribute), 150

profile_accent_color_id (aiogram.types.chat.Chat
attribute), 38

profile_accent_color_id
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

profile_background_custom_emoji_id
(aiogram.types.chat.Chat attribute), 38

profile_background_custom_emoji_id
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

promote() (aiogram.types.chat.Chat method), 46
PromoteChatMember (class in

aiogram.methods.promote_chat_member),
469

protect_content (aiogram.client.default.DefaultBotProperties
attribute), 625

protect_content (aiogram.methods.copy_message.CopyMessage
attribute), 422

protect_content (aiogram.methods.copy_messages.CopyMessages
attribute), 424

protect_content (aiogram.methods.forward_message.ForwardMessage
attribute), 444

protect_content (aiogram.methods.forward_messages.ForwardMessages
attribute), 445

protect_content (aiogram.methods.post_story.PostStory
attribute), 468

protect_content (aiogram.methods.send_animation.SendAnimation
attribute), 481

protect_content (aiogram.methods.send_audio.SendAudio
attribute), 484

protect_content (aiogram.methods.send_checklist.SendChecklist
attribute), 488

protect_content (aiogram.methods.send_contact.SendContact
attribute), 490

protect_content (aiogram.methods.send_dice.SendDice
attribute), 492

protect_content (aiogram.methods.send_document.SendDocument
attribute), 495

protect_content (aiogram.methods.send_game.SendGame
attribute), 582

protect_content (aiogram.methods.send_invoice.SendInvoice
attribute), 596

protect_content (aiogram.methods.send_location.SendLocation
attribute), 499

protect_content (aiogram.methods.send_media_group.SendMediaGroup
attribute), 501

protect_content (aiogram.methods.send_message.SendMessage
attribute), 504

protect_content (aiogram.methods.send_paid_media.SendPaidMedia
attribute), 507

protect_content (aiogram.methods.send_photo.SendPhoto
attribute), 509

protect_content (aiogram.methods.send_poll.SendPoll
attribute), 512

protect_content (aiogram.methods.send_sticker.SendSticker
attribute), 404

protect_content (aiogram.methods.send_venue.SendVenue
attribute), 515

protect_content (aiogram.methods.send_video.SendVideo
attribute), 518

protect_content (aiogram.methods.send_video_note.SendVideoNote
attribute), 521

protect_content (aiogram.methods.send_voice.SendVoice
attribute), 524

provider_data (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

provider_data (aiogram.methods.send_invoice.SendInvoice
attribute), 595

provider_data (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

provider_payment_charge_id
(aiogram.types.refunded_payment.RefundedPayment
attribute), 368

provider_payment_charge_id

Index 859

aiogram Documentation, Release 3.23.0

(aiogram.types.successful_payment.SuccessfulPayment
attribute), 373

provider_token (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

provider_token (aiogram.methods.send_invoice.SendInvoice
attribute), 595

provider_token (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

proximity_alert_radius
(aiogram.methods.edit_message_live_location.EditMessageLiveLocation
attribute), 566

proximity_alert_radius
(aiogram.methods.send_location.SendLocation
attribute), 499

proximity_alert_radius
(aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

proximity_alert_radius
(aiogram.types.input_location_message_content.InputLocationMessageContent
attribute), 362

proximity_alert_radius
(aiogram.types.location.Location attribute),
217

PROXIMITY_ALERT_TRIGGERED
(aiogram.enums.content_type.ContentType
attribute), 607

proximity_alert_triggered
(aiogram.types.message.Message attribute),
226

ProximityAlertTriggered (class in
aiogram.types.proximity_alert_triggered),
293

publisher_chat (aiogram.types.gift.Gift attribute), 147
publisher_chat (aiogram.types.unique_gift.UniqueGift

attribute), 307
PURCHASED_PAID_MEDIA

(aiogram.enums.update_type.UpdateType
attribute), 621

purchased_paid_media (aiogram.types.update.Update
attribute), 393

PYG (aiogram.enums.currency.Currency attribute), 610
PyMongoStorage (class in

aiogram.fsm.storage.pymongo), 662
Python Enhancement Proposals

PEP 484, 3
PEP 492, 3

Q
QAR (aiogram.enums.currency.Currency attribute), 610
query (aiogram.types.chosen_inline_result.ChosenInlineResult

attribute), 317
query (aiogram.types.inline_query.InlineQuery at-

tribute), 318

query (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat
attribute), 306

query_id (aiogram.utils.web_app.WebAppInitData at-
tribute), 719

question (aiogram.methods.send_poll.SendPoll at-
tribute), 511

question (aiogram.types.poll.Poll attribute), 291
question_entities (aiogram.methods.send_poll.SendPoll

attribute), 512
question_entities (aiogram.types.poll.Poll attribute),

292
question_parse_mode

(aiogram.methods.send_poll.SendPoll at-
tribute), 512

QUIZ (aiogram.enums.keyboard_button_poll_type_type.KeyboardButtonPollTypeType
attribute), 614

QUIZ (aiogram.enums.poll_type.PollType attribute), 617
quote (aiogram.types.message.Message attribute), 223
quote (aiogram.types.reply_parameters.ReplyParameters

attribute), 296
quote_entities (aiogram.types.reply_parameters.ReplyParameters

attribute), 297
quote_parse_mode (aiogram.types.reply_parameters.ReplyParameters

attribute), 297
quote_position (aiogram.types.reply_parameters.ReplyParameters

attribute), 297

R
rarity_per_mille (aiogram.types.unique_gift_backdrop.UniqueGiftBackdrop

attribute), 308
rarity_per_mille (aiogram.types.unique_gift_model.UniqueGiftModel

attribute), 309
rarity_per_mille (aiogram.types.unique_gift_symbol.UniqueGiftSymbol

attribute), 310
raw_state (aiogram.dispatcher.middlewares.data.MiddlewareData

attribute), 639
react() (aiogram.types.message.Message method), 278
reaction (aiogram.methods.set_message_reaction.SetMessageReaction

attribute), 539
reaction_type (aiogram.types.story_area_type_suggested_reaction.StoryAreaTypeSuggestedReaction

attribute), 301
ReactionCount (class in

aiogram.types.reaction_count), 293
reactions (aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated

attribute), 285
ReactionType (class in aiogram.types.reaction_type),

294
ReactionTypeCustomEmoji (class in

aiogram.types.reaction_type_custom_emoji),
294

ReactionTypeEmoji (class in
aiogram.types.reaction_type_emoji), 294

ReactionTypePaid (class in
aiogram.types.reaction_type_paid), 295

860 Index

aiogram Documentation, Release 3.23.0

ReactionTypeType (class in
aiogram.enums.reaction_type_type), 617

read() (aiogram.types.input_file.BufferedInputFile
method), 200

read() (aiogram.types.input_file.FSInputFile method),
201

read() (aiogram.types.input_file.InputFile method), 200
read() (aiogram.types.input_file.URLInputFile method),

201
ReadBusinessMessage (class in

aiogram.methods.read_business_message),
471

reason (aiogram.types.suggested_post_refunded.SuggestedPostRefunded
attribute), 306

receiver (aiogram.types.star_transaction.StarTransaction
attribute), 372

receiver (aiogram.utils.web_app.WebAppInitData at-
tribute), 719

RECORD_VIDEO (aiogram.enums.chat_action.ChatAction
attribute), 604

record_video() (aiogram.utils.chat_action.ChatActionSender
class method), 716

RECORD_VIDEO_NOTE (aiogram.enums.chat_action.ChatAction
attribute), 604

record_video_note()
(aiogram.utils.chat_action.ChatActionSender
class method), 716

RECORD_VOICE (aiogram.enums.chat_action.ChatAction
attribute), 604

record_voice() (aiogram.utils.chat_action.ChatActionSender
class method), 716

RED (aiogram.enums.topic_icon_color.TopicIconColor
attribute), 619

RedisStorage (class in aiogram.fsm.storage.redis), 662
REFUNDED_PAYMENT (aiogram.enums.content_type.ContentType

attribute), 606
refunded_payment (aiogram.types.message.Message

attribute), 226
RefundedPayment (class in

aiogram.types.refunded_payment), 367
RefundStarPayment (class in

aiogram.methods.refund_star_payment),
593

regexp_match (aiogram.filters.command.CommandObject
attribute), 641

register() (aiogram.fsm.scene.SceneRegistry method),
680

register() (aiogram.webhook.aiohttp_server.BaseRequestHandler
method), 694

register() (aiogram.webhook.aiohttp_server.SimpleRequestHandler
method), 694

register() (aiogram.webhook.aiohttp_server.TokenBasedRequestHandler
method), 695

REGULAR (aiogram.enums.keyboard_button_poll_type_type.KeyboardButtonPollTypeType

attribute), 614
REGULAR (aiogram.enums.owned_gift_type.OwnedGiftType

attribute), 616
REGULAR (aiogram.enums.poll_type.PollType attribute),

617
REGULAR (aiogram.enums.sticker_type.StickerType

attribute), 618
remaining_count (aiogram.types.gift.Gift attribute),

147
remove_caption (aiogram.methods.copy_messages.CopyMessages

attribute), 424
remove_date (aiogram.types.chat_boost_removed.ChatBoostRemoved

attribute), 52
remove_keyboard (aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove

attribute), 296
RemoveBusinessAccountProfilePhoto (class in

aiogram.methods.remove_business_account_profile_photo),
472

RemoveChatVerification (class in
aiogram.methods.remove_chat_verification),
473

REMOVED_CHAT_BOOST (aiogram.enums.update_type.UpdateType
attribute), 621

removed_chat_boost (aiogram.types.update.Update at-
tribute), 394

RemoveUserVerification (class in
aiogram.methods.remove_user_verification),
474

render() (aiogram.utils.formatting.Text method), 727
RENTAL_AGREEMENT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
ReopenForumTopic (class in

aiogram.methods.reopen_forum_topic), 475
ReopenGeneralForumTopic (class in

aiogram.methods.reopen_general_forum_topic),
476

ReplaceStickerInSet (class in
aiogram.methods.replace_sticker_in_set),
402

reply() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 152

reply() (aiogram.types.message.Message method), 249
reply_animation() (aiogram.types.inaccessible_message.InaccessibleMessage

method), 155
reply_animation() (aiogram.types.message.Message

method), 228
reply_audio() (aiogram.types.inaccessible_message.InaccessibleMessage

method), 158
reply_audio() (aiogram.types.message.Message

method), 232
reply_contact() (aiogram.types.inaccessible_message.InaccessibleMessage

method), 161
reply_contact() (aiogram.types.message.Message

method), 234

Index 861

aiogram Documentation, Release 3.23.0

reply_dice() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 181

reply_dice() (aiogram.types.message.Message
method), 256

reply_document() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 163

reply_document() (aiogram.types.message.Message
method), 236

reply_game() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 165

reply_game() (aiogram.types.message.Message
method), 239

reply_invoice() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 168

reply_invoice() (aiogram.types.message.Message
method), 240

reply_location() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 171

reply_location() (aiogram.types.message.Message
method), 245

reply_markup (aiogram.methods.copy_message.CopyMessage
attribute), 423

reply_markup (aiogram.methods.edit_message_caption.EditMessageCaption
attribute), 563

reply_markup (aiogram.methods.edit_message_checklist.EditMessageChecklist
attribute), 564

reply_markup (aiogram.methods.edit_message_live_location.EditMessageLiveLocation
attribute), 566

reply_markup (aiogram.methods.edit_message_media.EditMessageMedia
attribute), 568

reply_markup (aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup
attribute), 569

reply_markup (aiogram.methods.edit_message_text.EditMessageText
attribute), 571

reply_markup (aiogram.methods.send_animation.SendAnimation
attribute), 482

reply_markup (aiogram.methods.send_audio.SendAudio
attribute), 485

reply_markup (aiogram.methods.send_checklist.SendChecklist
attribute), 488

reply_markup (aiogram.methods.send_contact.SendContact
attribute), 490

reply_markup (aiogram.methods.send_dice.SendDice
attribute), 492

reply_markup (aiogram.methods.send_document.SendDocument
attribute), 495

reply_markup (aiogram.methods.send_game.SendGame
attribute), 582

reply_markup (aiogram.methods.send_invoice.SendInvoice
attribute), 596

reply_markup (aiogram.methods.send_location.SendLocation
attribute), 499

reply_markup (aiogram.methods.send_message.SendMessage
attribute), 504

reply_markup (aiogram.methods.send_paid_media.SendPaidMedia
attribute), 507

reply_markup (aiogram.methods.send_photo.SendPhoto
attribute), 509

reply_markup (aiogram.methods.send_poll.SendPoll at-
tribute), 512

reply_markup (aiogram.methods.send_sticker.SendSticker
attribute), 404

reply_markup (aiogram.methods.send_venue.SendVenue
attribute), 515

reply_markup (aiogram.methods.send_video.SendVideo
attribute), 519

reply_markup (aiogram.methods.send_video_note.SendVideoNote
attribute), 521

reply_markup (aiogram.methods.send_voice.SendVoice
attribute), 524

reply_markup (aiogram.methods.stop_message_live_location.StopMessageLiveLocation
attribute), 572

reply_markup (aiogram.methods.stop_poll.StopPoll at-
tribute), 573

reply_markup (aiogram.types.inline_query_result_article.InlineQueryResultArticle
attribute), 320

reply_markup (aiogram.types.inline_query_result_audio.InlineQueryResultAudio
attribute), 322

reply_markup (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio
attribute), 324

reply_markup (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument
attribute), 326

reply_markup (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif
attribute), 328

reply_markup (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif
attribute), 330

reply_markup (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto
attribute), 333

reply_markup (aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker
attribute), 335

reply_markup (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo
attribute), 337

reply_markup (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice
attribute), 339

reply_markup (aiogram.types.inline_query_result_contact.InlineQueryResultContact
attribute), 340

reply_markup (aiogram.types.inline_query_result_document.InlineQueryResultDocument
attribute), 342

reply_markup (aiogram.types.inline_query_result_game.InlineQueryResultGame
attribute), 342

reply_markup (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

reply_markup (aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

reply_markup (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif
attribute), 349

reply_markup (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 351

862 Index

aiogram Documentation, Release 3.23.0

reply_markup (aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 353

reply_markup (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

reply_markup (aiogram.types.inline_query_result_voice.InlineQueryResultVoice
attribute), 357

reply_markup (aiogram.types.message.Message at-
tribute), 228

reply_media_group()
(aiogram.types.inaccessible_message.InaccessibleMessage
method), 174

reply_media_group()
(aiogram.types.message.Message method),
247

reply_paid_media() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 196

reply_paid_media() (aiogram.types.message.Message
method), 280

reply_parameters (aiogram.methods.copy_message.CopyMessage
attribute), 422

reply_parameters (aiogram.methods.send_animation.SendAnimation
attribute), 482

reply_parameters (aiogram.methods.send_audio.SendAudio
attribute), 485

reply_parameters (aiogram.methods.send_checklist.SendChecklist
attribute), 488

reply_parameters (aiogram.methods.send_contact.SendContact
attribute), 490

reply_parameters (aiogram.methods.send_dice.SendDice
attribute), 492

reply_parameters (aiogram.methods.send_document.SendDocument
attribute), 495

reply_parameters (aiogram.methods.send_game.SendGame
attribute), 582

reply_parameters (aiogram.methods.send_invoice.SendInvoice
attribute), 596

reply_parameters (aiogram.methods.send_location.SendLocation
attribute), 499

reply_parameters (aiogram.methods.send_media_group.SendMediaGroup
attribute), 501

reply_parameters (aiogram.methods.send_message.SendMessage
attribute), 504

reply_parameters (aiogram.methods.send_paid_media.SendPaidMedia
attribute), 507

reply_parameters (aiogram.methods.send_photo.SendPhoto
attribute), 509

reply_parameters (aiogram.methods.send_poll.SendPoll
attribute), 512

reply_parameters (aiogram.methods.send_sticker.SendSticker
attribute), 404

reply_parameters (aiogram.methods.send_venue.SendVenue
attribute), 515

reply_parameters (aiogram.methods.send_video.SendVideo
attribute), 519

reply_parameters (aiogram.methods.send_video_note.SendVideoNote
attribute), 521

reply_parameters (aiogram.methods.send_voice.SendVoice
attribute), 524

reply_photo() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 176

reply_photo() (aiogram.types.message.Message
method), 251

reply_poll() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 179

reply_poll() (aiogram.types.message.Message
method), 253

reply_sticker() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 183

reply_sticker() (aiogram.types.message.Message
method), 258

reply_to_checklist_task_id
(aiogram.types.message.Message attribute),
223

reply_to_message (aiogram.types.message.Message
attribute), 222

reply_to_message_id
(aiogram.methods.copy_message.CopyMessage
attribute), 423

reply_to_message_id
(aiogram.methods.send_animation.SendAnimation
attribute), 482

reply_to_message_id
(aiogram.methods.send_audio.SendAudio
attribute), 485

reply_to_message_id
(aiogram.methods.send_contact.SendContact
attribute), 490

reply_to_message_id
(aiogram.methods.send_dice.SendDice at-
tribute), 492

reply_to_message_id
(aiogram.methods.send_document.SendDocument
attribute), 495

reply_to_message_id
(aiogram.methods.send_game.SendGame
attribute), 583

reply_to_message_id
(aiogram.methods.send_invoice.SendInvoice
attribute), 596

reply_to_message_id
(aiogram.methods.send_location.SendLocation
attribute), 499

reply_to_message_id
(aiogram.methods.send_media_group.SendMediaGroup
attribute), 502

reply_to_message_id
(aiogram.methods.send_message.SendMessage
attribute), 504

Index 863

aiogram Documentation, Release 3.23.0

reply_to_message_id
(aiogram.methods.send_photo.SendPhoto
attribute), 510

reply_to_message_id
(aiogram.methods.send_poll.SendPoll at-
tribute), 513

reply_to_message_id
(aiogram.methods.send_sticker.SendSticker
attribute), 404

reply_to_message_id
(aiogram.methods.send_venue.SendVenue
attribute), 515

reply_to_message_id
(aiogram.methods.send_video.SendVideo
attribute), 519

reply_to_message_id
(aiogram.methods.send_video_note.SendVideoNote
attribute), 522

reply_to_message_id
(aiogram.methods.send_voice.SendVoice
attribute), 524

reply_to_story (aiogram.types.message.Message at-
tribute), 223

reply_venue() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 185

reply_venue() (aiogram.types.message.Message
method), 260

reply_video() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 188

reply_video() (aiogram.types.message.Message
method), 262

reply_video_note() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 191

reply_video_note() (aiogram.types.message.Message
method), 266

reply_voice() (aiogram.types.inaccessible_message.InaccessibleMessage
method), 194

reply_voice() (aiogram.types.message.Message
method), 268

ReplyKeyboardBuilder (class in
aiogram.utils.keyboard), 710

ReplyKeyboardMarkup (class in
aiogram.types.reply_keyboard_markup),
295

ReplyKeyboardRemove (class in
aiogram.types.reply_keyboard_remove), 296

ReplyParameters (class in
aiogram.types.reply_parameters), 296

request_chat (aiogram.types.keyboard_button.KeyboardButton
attribute), 212

request_contact (aiogram.types.keyboard_button.KeyboardButton
attribute), 212

request_count (aiogram.types.transaction_partner_telegram_api.TransactionPartnerTelegramApi
attribute), 377

request_id (aiogram.types.chat_shared.ChatShared at-
tribute), 137

request_id (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 213

request_id (aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser
attribute), 214

request_id (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers
attribute), 215

request_id (aiogram.types.user_shared.UserShared at-
tribute), 312

request_id (aiogram.types.users_shared.UsersShared
attribute), 312

request_location (aiogram.types.keyboard_button.KeyboardButton
attribute), 212

request_name (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers
attribute), 215

request_photo (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 214

request_photo (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers
attribute), 215

request_poll (aiogram.types.keyboard_button.KeyboardButton
attribute), 212

request_title (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 214

request_user (aiogram.types.keyboard_button.KeyboardButton
attribute), 212

request_username (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 214

request_username (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers
attribute), 215

request_users (aiogram.types.keyboard_button.KeyboardButton
attribute), 212

request_write_access
(aiogram.types.login_url.LoginUrl attribute),
218

reset_data_on_enter
(aiogram.fsm.scene.SceneConfig attribute),
681

reset_history_on_enter
(aiogram.fsm.scene.SceneConfig attribute),
682

resize_keyboard (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup
attribute), 295

resolve_bot() (aiogram.webhook.aiohttp_server.BaseRequestHandler
method), 694

resolve_bot() (aiogram.webhook.aiohttp_server.SimpleRequestHandler
method), 695

resolve_bot() (aiogram.webhook.aiohttp_server.TokenBasedRequestHandler
method), 695

resolve_used_update_types()
(aiogram.dispatcher.router.Router method),
628

ResponseParameters (class in
aiogram.types.response_parameters), 297

864 Index

aiogram Documentation, Release 3.23.0

RestartingTelegram, 690
restrict() (aiogram.types.chat.Chat method), 47
RestrictChatMember (class in

aiogram.methods.restrict_chat_member),
477

RESTRICTED (aiogram.enums.chat_member_status.ChatMemberStatus
attribute), 605

result (aiogram.methods.answer_web_app_query.AnswerWebAppQuery
attribute), 577

result (aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage
attribute), 580

result_id (aiogram.types.chosen_inline_result.ChosenInlineResult
attribute), 317

results (aiogram.methods.answer_inline_query.AnswerInlineQuery
attribute), 575

retake() (aiogram.fsm.scene.SceneWizard method), 683
retry_after (aiogram.types.response_parameters.ResponseParameters

attribute), 297
RevenueWithdrawalState (class in

aiogram.types.revenue_withdrawal_state),
368

RevenueWithdrawalStateFailed (class in
aiogram.types.revenue_withdrawal_state_failed),
368

RevenueWithdrawalStatePending (class in
aiogram.types.revenue_withdrawal_state_pending),
369

RevenueWithdrawalStateSucceeded (class in
aiogram.types.revenue_withdrawal_state_succeeded),
369

RevenueWithdrawalStateType (class in
aiogram.enums.revenue_withdrawal_state_type),
618

REVERSE_SIDE (aiogram.enums.passport_element_error_type.PassportElementErrorType
attribute), 617

reverse_side (aiogram.types.encrypted_passport_element.EncryptedPassportElement
attribute), 383

revoke_invite_link() (aiogram.types.chat.Chat
method), 40

revoke_messages (aiogram.methods.ban_chat_member.BanChatMember
attribute), 416

RevokeChatInviteLink (class in
aiogram.methods.revoke_chat_invite_link),
478

rights (aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights
attribute), 541

rights (aiogram.types.business_connection.BusinessConnection
attribute), 31

RON (aiogram.enums.currency.Currency attribute), 610
ROSE (aiogram.enums.topic_icon_color.TopicIconColor

attribute), 619
rotation_angle (aiogram.types.background_fill_gradient.BackgroundFillGradient

attribute), 22
rotation_angle (aiogram.types.story_area_position.StoryAreaPosition

attribute), 299
Router (class in aiogram.dispatcher.router), 627
row() (aiogram.utils.keyboard.InlineKeyboardBuilder

method), 709
row() (aiogram.utils.keyboard.ReplyKeyboardBuilder

method), 711
RSD (aiogram.enums.currency.Currency attribute), 610
RUB (aiogram.enums.currency.Currency attribute), 610
run_polling() (aiogram.dispatcher.dispatcher.Dispatcher

method), 634

S
safe_parse_webapp_init_data() (in module

aiogram.utils.web_app), 718
SAR (aiogram.enums.currency.Currency attribute), 610
SavePreparedInlineMessage (class in

aiogram.methods.save_prepared_inline_message),
578

scale (aiogram.types.mask_position.MaskPosition at-
tribute), 380

Scene (class in aiogram.fsm.scene), 679
SceneConfig (class in aiogram.fsm.scene), 681
SceneException, 690
SceneRegistry (class in aiogram.fsm.scene), 680
ScenesManager (class in aiogram.fsm.scene), 681
SceneWizard (class in aiogram.fsm.scene), 682
scope (aiogram.methods.delete_my_commands.DeleteMyCommands

attribute), 434
scope (aiogram.methods.get_my_commands.GetMyCommands

attribute), 456
scope (aiogram.methods.set_my_commands.SetMyCommands

attribute), 540
score (aiogram.methods.set_game_score.SetGameScore

attribute), 584
score (aiogram.types.game_high_score.GameHighScore

attribute), 396
secret (aiogram.types.encrypted_credentials.EncryptedCredentials

attribute), 382
secret_token (aiogram.methods.set_webhook.SetWebhook

attribute), 601
SEK (aiogram.enums.currency.Currency attribute), 610
selective (aiogram.types.force_reply.ForceReply

attribute), 145
selective (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup

attribute), 295
selective (aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove

attribute), 296
SELFIE (aiogram.enums.passport_element_error_type.PassportElementErrorType

attribute), 617
selfie (aiogram.types.encrypted_passport_element.EncryptedPassportElement

attribute), 384
send_copy() (aiogram.types.message.Message method),

270

Index 865

aiogram Documentation, Release 3.23.0

send_date (aiogram.methods.approve_suggested_post.ApproveSuggestedPost
attribute), 558

send_date (aiogram.types.owned_gift_regular.OwnedGiftRegular
attribute), 287

send_date (aiogram.types.owned_gift_unique.OwnedGiftUnique
attribute), 288

send_date (aiogram.types.suggested_post_approved.SuggestedPostApproved
attribute), 303

send_date (aiogram.types.suggested_post_info.SuggestedPostInfo
attribute), 304

send_date (aiogram.types.suggested_post_parameters.SuggestedPostParameters
attribute), 305

send_email_to_provider
(aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

send_email_to_provider
(aiogram.methods.send_invoice.SendInvoice
attribute), 596

send_email_to_provider
(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 361

send_phone_number_to_provider
(aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

send_phone_number_to_provider
(aiogram.methods.send_invoice.SendInvoice
attribute), 596

send_phone_number_to_provider
(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 361

SendAnimation (class in
aiogram.methods.send_animation), 480

SendAudio (class in aiogram.methods.send_audio), 483
SendChatAction (class in

aiogram.methods.send_chat_action), 486
SendChecklist (class in

aiogram.methods.send_checklist), 487
SendContact (class in aiogram.methods.send_contact),

489
SendDice (class in aiogram.methods.send_dice), 491
SendDocument (class in

aiogram.methods.send_document), 493
SENDER (aiogram.enums.chat_type.ChatType attribute),

605
sender_boost_count (aiogram.types.message.Message

attribute), 222
sender_business_bot

(aiogram.types.message.Message attribute),
222

sender_chat (aiogram.types.message.Message at-
tribute), 222

sender_chat (aiogram.types.message_origin_chat.MessageOriginChat
attribute), 284

sender_chat_id (aiogram.methods.ban_chat_sender_chat.BanChatSenderChat

attribute), 417
sender_chat_id (aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat

attribute), 549
sender_user (aiogram.types.message_origin_user.MessageOriginUser

attribute), 285
sender_user (aiogram.types.owned_gift_regular.OwnedGiftRegular

attribute), 287
sender_user (aiogram.types.owned_gift_unique.OwnedGiftUnique

attribute), 288
sender_user_name (aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser

attribute), 284
SendGame (class in aiogram.methods.send_game), 582
SendGift (class in aiogram.methods.send_gift), 496
SendInvoice (class in aiogram.methods.send_invoice),

594
SendLocation (class in

aiogram.methods.send_location), 498
SendMediaGroup (class in

aiogram.methods.send_media_group), 500
SendMessage (class in aiogram.methods.send_message),

503
SendPaidMedia (class in

aiogram.methods.send_paid_media), 505
SendPhoto (class in aiogram.methods.send_photo), 508
SendPoll (class in aiogram.methods.send_poll), 511
SendSticker (class in aiogram.methods.send_sticker),

403
SendVenue (class in aiogram.methods.send_venue), 514
SendVideo (class in aiogram.methods.send_video), 516
SendVideoNote (class in

aiogram.methods.send_video_note), 520
SendVoice (class in aiogram.methods.send_voice), 523
SentWebAppMessage (class in

aiogram.types.sent_web_app_message), 364
set_administrator_custom_title()

(aiogram.types.chat.Chat method), 45
set_data() (aiogram.fsm.scene.SceneWizard method),

683
set_data() (aiogram.fsm.storage.base.BaseStorage

method), 665
set_description() (aiogram.types.chat.Chat method),

48
set_locale() (aiogram.utils.i18n.middleware.FSMI18nMiddleware

method), 713
set_name (aiogram.types.sticker.Sticker attribute), 380
set_permissions() (aiogram.types.chat.Chat method),

45
set_photo() (aiogram.types.chat.Chat method), 49
set_position_in_set() (aiogram.types.sticker.Sticker

method), 381
set_state() (aiogram.fsm.storage.base.BaseStorage

method), 664
set_sticker_set() (aiogram.types.chat.Chat method),

43

866 Index

aiogram Documentation, Release 3.23.0

set_title() (aiogram.types.chat.Chat method), 48
SetBusinessAccountBio (class in

aiogram.methods.set_business_account_bio),
525

SetBusinessAccountGiftSettings (class in
aiogram.methods.set_business_account_gift_settings),
526

SetBusinessAccountName (class in
aiogram.methods.set_business_account_name),
527

SetBusinessAccountProfilePhoto (class in
aiogram.methods.set_business_account_profile_photo),
528

SetBusinessAccountUsername (class in
aiogram.methods.set_business_account_username),
530

SetChatAdministratorCustomTitle (class in
aiogram.methods.set_chat_administrator_custom_title),
531

SetChatDescription (class in
aiogram.methods.set_chat_description), 532

SetChatMenuButton (class in
aiogram.methods.set_chat_menu_button),
533

SetChatPermissions (class in
aiogram.methods.set_chat_permissions),
534

SetChatPhoto (class in
aiogram.methods.set_chat_photo), 535

SetChatStickerSet (class in
aiogram.methods.set_chat_sticker_set), 536

SetChatTitle (class in
aiogram.methods.set_chat_title), 537

SetCustomEmojiStickerSetThumbnail (class in
aiogram.methods.set_custom_emoji_sticker_set_thumbnail),
405

SetGameScore (class in
aiogram.methods.set_game_score), 584

SetMessageReaction (class in
aiogram.methods.set_message_reaction),
538

SetMyCommands (class in
aiogram.methods.set_my_commands), 540

SetMyDefaultAdministratorRights (class in
aiogram.methods.set_my_default_administrator_rights),
541

SetMyDescription (class in
aiogram.methods.set_my_description), 542

SetMyName (class in aiogram.methods.set_my_name),
543

SetMyShortDescription (class in
aiogram.methods.set_my_short_description),
544

SetPassportDataErrors (class in

aiogram.methods.set_passport_data_errors),
602

SetStickerEmojiList (class in
aiogram.methods.set_sticker_emoji_list),
406

SetStickerKeywords (class in
aiogram.methods.set_sticker_keywords),
407

SetStickerMaskPosition (class in
aiogram.methods.set_sticker_mask_position),
408

SetStickerPositionInSet (class in
aiogram.methods.set_sticker_position_in_set),
409

SetStickerSetThumbnail (class in
aiogram.methods.set_sticker_set_thumbnail),
410

SetStickerSetTitle (class in
aiogram.methods.set_sticker_set_title), 411

setup() (aiogram.utils.i18n.middleware.I18nMiddleware
method), 714

SetUserEmojiStatus (class in
aiogram.methods.set_user_emoji_status),
545

SetWebhook (class in aiogram.methods.set_webhook),
600

SGD (aiogram.enums.currency.Currency attribute), 610
SharedUser (class in aiogram.types.shared_user), 297
shifted_id (aiogram.types.chat.Chat property), 39
shipping_address (aiogram.types.order_info.OrderInfo

attribute), 366
shipping_address (aiogram.types.shipping_query.ShippingQuery

attribute), 371
shipping_option_id (aiogram.types.pre_checkout_query.PreCheckoutQuery

attribute), 367
shipping_option_id (aiogram.types.successful_payment.SuccessfulPayment

attribute), 373
shipping_options (aiogram.methods.answer_shipping_query.AnswerShippingQuery

attribute), 586
SHIPPING_QUERY (aiogram.enums.update_type.UpdateType

attribute), 621
shipping_query (aiogram.types.update.Update at-

tribute), 393
shipping_query_id (aiogram.methods.answer_shipping_query.AnswerShippingQuery

attribute), 586
ShippingAddress (class in

aiogram.types.shipping_address), 370
ShippingOption (class in

aiogram.types.shipping_option), 370
ShippingQuery (class in

aiogram.types.shipping_query), 371
short_description (aiogram.methods.set_my_short_description.SetMyShortDescription

attribute), 544
short_description (aiogram.types.bot_short_description.BotShortDescription

Index 867

aiogram Documentation, Release 3.23.0

attribute), 29
show_above_text (aiogram.types.link_preview_options.LinkPreviewOptions

attribute), 216
show_alert (aiogram.methods.answer_callback_query.AnswerCallbackQuery

attribute), 413
show_alert (aiogram.utils.callback_answer.CallbackAnswer

property), 723
show_caption_above_media

(aiogram.client.default.DefaultBotProperties
attribute), 626

show_caption_above_media
(aiogram.methods.copy_message.CopyMessage
attribute), 422

show_caption_above_media
(aiogram.methods.edit_message_caption.EditMessageCaption
attribute), 563

show_caption_above_media
(aiogram.methods.send_animation.SendAnimation
attribute), 481

show_caption_above_media
(aiogram.methods.send_paid_media.SendPaidMedia
attribute), 506

show_caption_above_media
(aiogram.methods.send_photo.SendPhoto
attribute), 509

show_caption_above_media
(aiogram.methods.send_video.SendVideo
attribute), 518

show_caption_above_media
(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif
attribute), 328

show_caption_above_media
(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif
attribute), 330

show_caption_above_media
(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto
attribute), 333

show_caption_above_media
(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo
attribute), 337

show_caption_above_media
(aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

show_caption_above_media
(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif
attribute), 349

show_caption_above_media
(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 351

show_caption_above_media
(aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

show_caption_above_media
(aiogram.types.input_media_animation.InputMediaAnimation

attribute), 202
show_caption_above_media

(aiogram.types.input_media_photo.InputMediaPhoto
attribute), 205

show_caption_above_media
(aiogram.types.input_media_video.InputMediaVideo
attribute), 207

show_caption_above_media
(aiogram.types.message.Message attribute),
224

show_gift_button (aiogram.methods.set_business_account_gift_settings.SetBusinessAccountGiftSettings
attribute), 527

SimpleI18nMiddleware (class in
aiogram.utils.i18n.middleware), 712

SimpleRequestHandler (class in
aiogram.webhook.aiohttp_server), 694

SLOT_MACHINE (aiogram.enums.dice_emoji.DiceEmoji
attribute), 611

SLOT_MACHINE (aiogram.types.dice.DiceEmoji at-
tribute), 140

slow_mode_delay (aiogram.types.chat.Chat attribute),
38

slow_mode_delay (aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

small_file_id (aiogram.types.chat_photo.ChatPhoto
attribute), 137

small_file_unique_id
(aiogram.types.chat_photo.ChatPhoto at-
tribute), 137

sort_by_price (aiogram.methods.get_business_account_gifts.GetBusinessAccountGifts
attribute), 447

source (aiogram.types.chat_boost.ChatBoost attribute),
52

source (aiogram.types.chat_boost_removed.ChatBoostRemoved
attribute), 53

source (aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode
attribute), 53

source (aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway
attribute), 54

source (aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium
attribute), 54

source (aiogram.types.passport_element_error_data_field.PassportElementErrorDataField
attribute), 385

source (aiogram.types.passport_element_error_file.PassportElementErrorFile
attribute), 386

source (aiogram.types.passport_element_error_files.PassportElementErrorFiles
attribute), 386

source (aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide
attribute), 387

source (aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide
attribute), 388

source (aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie
attribute), 388

source (aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile

868 Index

aiogram Documentation, Release 3.23.0

attribute), 389
source (aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles

attribute), 390
source (aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified

attribute), 391
source (aiogram.types.star_transaction.StarTransaction

attribute), 372
SPOILER (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
Spoiler (class in aiogram.utils.formatting), 730
sponsor_user (aiogram.types.transaction_partner_affiliate_program.TransactionPartnerAffiliateProgram

attribute), 375
star_amount (aiogram.types.suggested_post_paid.SuggestedPostPaid

attribute), 305
star_count (aiogram.methods.gift_premium_subscription.GiftPremiumSubscription

attribute), 462
star_count (aiogram.methods.send_paid_media.SendPaidMedia

attribute), 506
star_count (aiogram.methods.transfer_business_account_stars.TransferBusinessAccountStars

attribute), 546
star_count (aiogram.methods.transfer_gift.TransferGift

attribute), 547
star_count (aiogram.methods.upgrade_gift.UpgradeGift

attribute), 555
star_count (aiogram.types.gift.Gift attribute), 147
star_count (aiogram.types.paid_media_info.PaidMediaInfo

attribute), 289
StarAmount (class in aiogram.types.star_amount), 298
start_date (aiogram.types.video_chat_scheduled.VideoChatScheduled

attribute), 315
start_param (aiogram.utils.web_app.WebAppInitData

attribute), 719
start_parameter (aiogram.methods.send_invoice.SendInvoice

attribute), 595
start_parameter (aiogram.types.inline_query_results_button.InlineQueryResultsButton

attribute), 357
start_parameter (aiogram.types.invoice.Invoice

attribute), 365
start_polling() (aiogram.dispatcher.dispatcher.Dispatcher

method), 635
start_timestamp (aiogram.methods.send_video.SendVideo

attribute), 518
start_timestamp (aiogram.types.input_media_video.InputMediaVideo

attribute), 206
start_timestamp (aiogram.types.input_paid_media_video.InputPaidMediaVideo

attribute), 208
start_timestamp (aiogram.types.video.Video at-

tribute), 314
StarTransaction (class in

aiogram.types.star_transaction), 372
StarTransactions (class in

aiogram.types.star_transactions), 373
state (aiogram.dispatcher.middlewares.data.MiddlewareData

attribute), 639

state (aiogram.fsm.scene.SceneConfig attribute), 682
state (aiogram.types.location_address.LocationAddress

attribute), 217
state (aiogram.types.shipping_address.ShippingAddress

attribute), 370
state (aiogram.types.suggested_post_info.SuggestedPostInfo

attribute), 304
STATIC (aiogram.enums.input_profile_photo_type.InputProfilePhotoType

attribute), 613
STATIC (aiogram.enums.sticker_format.StickerFormat

attribute), 618
status (aiogram.types.chat_member_administrator.ChatMemberAdministrator

attribute), 107
status (aiogram.types.chat_member_banned.ChatMemberBanned

attribute), 109
status (aiogram.types.chat_member_left.ChatMemberLeft

attribute), 109
status (aiogram.types.chat_member_member.ChatMemberMember

attribute), 109
status (aiogram.types.chat_member_owner.ChatMemberOwner

attribute), 110
status (aiogram.types.chat_member_restricted.ChatMemberRestricted

attribute), 110
STICKER (aiogram.enums.content_type.ContentType at-

tribute), 606
STICKER (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
sticker (aiogram.methods.add_sticker_to_set.AddStickerToSet

attribute), 396
sticker (aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet

attribute), 398
sticker (aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet

attribute), 402
sticker (aiogram.methods.send_sticker.SendSticker at-

tribute), 403
sticker (aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList

attribute), 406
sticker (aiogram.methods.set_sticker_keywords.SetStickerKeywords

attribute), 407
sticker (aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition

attribute), 408
sticker (aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet

attribute), 409
sticker (aiogram.methods.upload_sticker_file.UploadStickerFile

attribute), 412
sticker (aiogram.types.business_intro.BusinessIntro at-

tribute), 31
sticker (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
sticker (aiogram.types.gift.Gift attribute), 147
sticker (aiogram.types.input_sticker.InputSticker

attribute), 379
sticker (aiogram.types.message.Message attribute), 224
sticker (aiogram.types.unique_gift_model.UniqueGiftModel

Index 869

aiogram Documentation, Release 3.23.0

attribute), 309
sticker (aiogram.types.unique_gift_symbol.UniqueGiftSymbol

attribute), 310
Sticker (class in aiogram.types.sticker), 380
sticker_file_id (aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker

attribute), 335
sticker_format (aiogram.methods.create_new_sticker_set.CreateNewStickerSet

attribute), 398
sticker_format (aiogram.methods.upload_sticker_file.UploadStickerFile

attribute), 412
sticker_set_name (aiogram.methods.set_chat_sticker_set.SetChatStickerSet

attribute), 536
sticker_set_name (aiogram.types.chat.Chat attribute),

38
sticker_set_name (aiogram.types.chat_full_info.ChatFullInfo

attribute), 58
sticker_type (aiogram.methods.create_new_sticker_set.CreateNewStickerSet

attribute), 398
sticker_type (aiogram.types.sticker_set.StickerSet at-

tribute), 381
StickerFormat (class in

aiogram.enums.sticker_format), 618
stickers (aiogram.methods.create_new_sticker_set.CreateNewStickerSet

attribute), 397
stickers (aiogram.types.sticker_set.StickerSet at-

tribute), 382
StickerSet (class in aiogram.types.sticker_set), 381
StickerType (class in aiogram.enums.sticker_type), 618
stop_live_location()

(aiogram.types.message.Message method),
276

stop_polling() (aiogram.dispatcher.dispatcher.Dispatcher
method), 635

StopMessageLiveLocation (class in
aiogram.methods.stop_message_live_location),
572

StopPoll (class in aiogram.methods.stop_poll), 573
STORY (aiogram.enums.content_type.ContentType at-

tribute), 606
story (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
story (aiogram.types.message.Message attribute), 224
Story (class in aiogram.types.story), 298
story_id (aiogram.methods.delete_story.DeleteStory at-

tribute), 435
story_id (aiogram.methods.edit_story.EditStory at-

tribute), 441
StoryArea (class in aiogram.types.story_area), 298
StoryAreaPosition (class in

aiogram.types.story_area_position), 299
StoryAreaType (class in

aiogram.types.story_area_type), 299
StoryAreaTypeLink (class in

aiogram.types.story_area_type_link), 299

StoryAreaTypeLocation (class in
aiogram.types.story_area_type_location),
300

StoryAreaTypeSuggestedReaction (class in
aiogram.types.story_area_type_suggested_reaction),
301

StoryAreaTypeType (class in
aiogram.enums.story_area_type_type), 619

StoryAreaTypeUniqueGift (class in
aiogram.types.story_area_type_unique_gift),
302

StoryAreaTypeWeather (class in
aiogram.types.story_area_type_weather),
302

stream_content() (aiogram.client.session.base.BaseSession
method), 16

street (aiogram.types.location_address.LocationAddress
attribute), 217

street_line1 (aiogram.types.shipping_address.ShippingAddress
attribute), 370

street_line2 (aiogram.types.shipping_address.ShippingAddress
attribute), 370

STRIKETHROUGH (aiogram.enums.message_entity_type.MessageEntityType
attribute), 615

Strikethrough (class in aiogram.utils.formatting), 730
subscription_expiration_date

(aiogram.types.successful_payment.SuccessfulPayment
attribute), 373

subscription_period
(aiogram.methods.create_chat_subscription_invite_link.CreateChatSubscriptionInviteLink
attribute), 427

subscription_period
(aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

subscription_period
(aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

subscription_period
(aiogram.types.transaction_partner_user.TransactionPartnerUser
attribute), 378

subscription_price (aiogram.methods.create_chat_subscription_invite_link.CreateChatSubscriptionInviteLink
attribute), 427

subscription_price (aiogram.types.chat_invite_link.ChatInviteLink
attribute), 59

SUCCEEDED (aiogram.enums.revenue_withdrawal_state_type.RevenueWithdrawalStateType
attribute), 618

SUCCESSFUL_PAYMENT (aiogram.enums.content_type.ContentType
attribute), 606

successful_payment (aiogram.types.message.Message
attribute), 226

SuccessfulPayment (class in
aiogram.types.successful_payment), 373

SUGGESTED_POST_APPROVAL_FAILED
(aiogram.enums.content_type.ContentType

870 Index

aiogram Documentation, Release 3.23.0

attribute), 607
suggested_post_approval_failed

(aiogram.types.message.Message attribute),
227

SUGGESTED_POST_APPROVED
(aiogram.enums.content_type.ContentType
attribute), 607

suggested_post_approved
(aiogram.types.message.Message attribute),
227

SUGGESTED_POST_DECLINED
(aiogram.enums.content_type.ContentType
attribute), 607

suggested_post_declined
(aiogram.types.message.Message attribute),
227

suggested_post_info
(aiogram.types.message.Message attribute),
223

suggested_post_message
(aiogram.types.suggested_post_approval_failed.SuggestedPostApprovalFailed
attribute), 303

suggested_post_message
(aiogram.types.suggested_post_approved.SuggestedPostApproved
attribute), 303

suggested_post_message
(aiogram.types.suggested_post_declined.SuggestedPostDeclined
attribute), 304

suggested_post_message
(aiogram.types.suggested_post_paid.SuggestedPostPaid
attribute), 304

suggested_post_message
(aiogram.types.suggested_post_refunded.SuggestedPostRefunded
attribute), 306

SUGGESTED_POST_PAID
(aiogram.enums.content_type.ContentType
attribute), 607

suggested_post_paid
(aiogram.types.message.Message attribute),
227

suggested_post_parameters
(aiogram.methods.copy_message.CopyMessage
attribute), 422

suggested_post_parameters
(aiogram.methods.forward_message.ForwardMessage
attribute), 444

suggested_post_parameters
(aiogram.methods.send_animation.SendAnimation
attribute), 481

suggested_post_parameters
(aiogram.methods.send_audio.SendAudio
attribute), 484

suggested_post_parameters
(aiogram.methods.send_contact.SendContact

attribute), 490
suggested_post_parameters

(aiogram.methods.send_dice.SendDice at-
tribute), 492

suggested_post_parameters
(aiogram.methods.send_document.SendDocument
attribute), 495

suggested_post_parameters
(aiogram.methods.send_invoice.SendInvoice
attribute), 596

suggested_post_parameters
(aiogram.methods.send_location.SendLocation
attribute), 499

suggested_post_parameters
(aiogram.methods.send_message.SendMessage
attribute), 504

suggested_post_parameters
(aiogram.methods.send_paid_media.SendPaidMedia
attribute), 507

suggested_post_parameters
(aiogram.methods.send_photo.SendPhoto
attribute), 509

suggested_post_parameters
(aiogram.methods.send_sticker.SendSticker
attribute), 404

suggested_post_parameters
(aiogram.methods.send_venue.SendVenue
attribute), 515

suggested_post_parameters
(aiogram.methods.send_video.SendVideo
attribute), 519

suggested_post_parameters
(aiogram.methods.send_video_note.SendVideoNote
attribute), 521

suggested_post_parameters
(aiogram.methods.send_voice.SendVoice
attribute), 524

SUGGESTED_POST_REFUNDED
(aiogram.enums.content_type.ContentType
attribute), 607

suggested_post_refunded
(aiogram.types.message.Message attribute),
227

SUGGESTED_REACTION (aiogram.enums.story_area_type_type.StoryAreaTypeType
attribute), 619

suggested_tip_amounts
(aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 589

suggested_tip_amounts
(aiogram.methods.send_invoice.SendInvoice
attribute), 595

suggested_tip_amounts
(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent
attribute), 360

Index 871

aiogram Documentation, Release 3.23.0

SuggestedPostApprovalFailed (class in
aiogram.types.suggested_post_approval_failed),
303

SuggestedPostApproved (class in
aiogram.types.suggested_post_approved),
303

SuggestedPostDeclined (class in
aiogram.types.suggested_post_declined),
304

SuggestedPostInfo (class in
aiogram.types.suggested_post_info), 304

SuggestedPostPaid (class in
aiogram.types.suggested_post_paid), 304

SuggestedPostParameters (class in
aiogram.types.suggested_post_parameters),
305

SuggestedPostPrice (class in
aiogram.types.suggested_post_price), 305

SuggestedPostRefunded (class in
aiogram.types.suggested_post_refunded),
306

SUPERGROUP (aiogram.enums.chat_type.ChatType
attribute), 605

SUPERGROUP_CHAT_CREATED
(aiogram.enums.content_type.ContentType
attribute), 606

supergroup_chat_created
(aiogram.types.message.Message attribute),
225

supports_inline_queries (aiogram.types.user.User
attribute), 311

supports_streaming (aiogram.methods.send_video.SendVideo
attribute), 518

supports_streaming (aiogram.types.input_media_video.InputMediaVideo
attribute), 207

supports_streaming (aiogram.types.input_paid_media_video.InputPaidMediaVideo
attribute), 208

switch_inline_query
(aiogram.types.inline_keyboard_button.InlineKeyboardButton
attribute), 198

switch_inline_query_chosen_chat
(aiogram.types.inline_keyboard_button.InlineKeyboardButton
attribute), 198

switch_inline_query_current_chat
(aiogram.types.inline_keyboard_button.InlineKeyboardButton
attribute), 198

switch_pm_parameter
(aiogram.methods.answer_inline_query.AnswerInlineQuery
attribute), 575

switch_pm_text (aiogram.methods.answer_inline_query.AnswerInlineQuery
attribute), 576

SwitchInlineQueryChosenChat (class in
aiogram.types.switch_inline_query_chosen_chat),
306

symbol (aiogram.types.unique_gift.UniqueGift at-
tribute), 307

symbol_color (aiogram.types.unique_gift_backdrop_colors.UniqueGiftBackdropColors
attribute), 308

T
tasks (aiogram.types.checklist.Checklist attribute), 138
tasks (aiogram.types.checklist_tasks_added.ChecklistTasksAdded

attribute), 139
tasks (aiogram.types.input_checklist.InputChecklist at-

tribute), 199
TELEGRAM_ADS (aiogram.enums.transaction_partner_type.TransactionPartnerType

attribute), 620
TELEGRAM_API (aiogram.enums.transaction_partner_type.TransactionPartnerType

attribute), 620
telegram_payment_charge_id

(aiogram.methods.edit_user_star_subscription.EditUserStarSubscription
attribute), 590

telegram_payment_charge_id
(aiogram.methods.refund_star_payment.RefundStarPayment
attribute), 593

telegram_payment_charge_id
(aiogram.types.refunded_payment.RefundedPayment
attribute), 368

telegram_payment_charge_id
(aiogram.types.successful_payment.SuccessfulPayment
attribute), 373

TelegramAPIError, 690
TelegramAPIServer (class in aiogram.client.telegram),

14
TelegramBadRequest, 690
TelegramConflictError, 690
TelegramEntityTooLarge, 690
TelegramForbiddenError, 690
TelegramMigrateToChat, 690
TelegramNetworkError, 690
TelegramNotFound, 690
TelegramRetryAfter, 690
TelegramServerError, 690
TelegramUnauthorizedError, 690
temperature (aiogram.types.story_area_type_weather.StoryAreaTypeWeather

attribute), 302
TEMPORARY_REGISTRATION

(aiogram.enums.encrypted_passport_element.EncryptedPassportElement
attribute), 611

TEXT (aiogram.enums.content_type.ContentType at-
tribute), 605

text (aiogram.filters.command.CommandObject prop-
erty), 641

text (aiogram.methods.answer_callback_query.AnswerCallbackQuery
attribute), 413

text (aiogram.methods.edit_message_text.EditMessageText
attribute), 570

872 Index

aiogram Documentation, Release 3.23.0

text (aiogram.methods.gift_premium_subscription.GiftPremiumSubscription
attribute), 462

text (aiogram.methods.send_gift.SendGift attribute),
497

text (aiogram.methods.send_message.SendMessage at-
tribute), 503

text (aiogram.types.checklist_task.ChecklistTask at-
tribute), 138

text (aiogram.types.copy_text_button.CopyTextButton
attribute), 140

text (aiogram.types.game.Game attribute), 395
text (aiogram.types.gift_info.GiftInfo attribute), 148
text (aiogram.types.inline_keyboard_button.InlineKeyboardButton

attribute), 198
text (aiogram.types.inline_query_results_button.InlineQueryResultsButton

attribute), 357
text (aiogram.types.input_checklist_task.InputChecklistTask

attribute), 200
text (aiogram.types.input_poll_option.InputPollOption

attribute), 209
text (aiogram.types.keyboard_button.KeyboardButton

attribute), 212
text (aiogram.types.menu_button.MenuButton at-

tribute), 218
text (aiogram.types.menu_button_web_app.MenuButtonWebApp

attribute), 219
text (aiogram.types.message.Message attribute), 223
text (aiogram.types.owned_gift_regular.OwnedGiftRegular

attribute), 287
text (aiogram.types.poll_option.PollOption attribute),

293
text (aiogram.types.text_quote.TextQuote attribute), 307
text (aiogram.utils.callback_answer.CallbackAnswer

property), 723
Text (class in aiogram.utils.formatting), 727
text_color (aiogram.types.unique_gift_backdrop_colors.UniqueGiftBackdropColors

attribute), 308
text_entities (aiogram.methods.gift_premium_subscription.GiftPremiumSubscription

attribute), 462
text_entities (aiogram.methods.send_gift.SendGift

attribute), 497
text_entities (aiogram.types.checklist_task.ChecklistTask

attribute), 138
text_entities (aiogram.types.game.Game attribute),

395
text_entities (aiogram.types.input_checklist_task.InputChecklistTask

attribute), 200
text_entities (aiogram.types.input_poll_option.InputPollOption

attribute), 209
text_entities (aiogram.types.poll_option.PollOption

attribute), 293
TEXT_LINK (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
TEXT_MENTION (aiogram.enums.message_entity_type.MessageEntityType

attribute), 615
text_parse_mode (aiogram.methods.gift_premium_subscription.GiftPremiumSubscription

attribute), 462
text_parse_mode (aiogram.methods.send_gift.SendGift

attribute), 497
text_parse_mode (aiogram.types.input_poll_option.InputPollOption

attribute), 209
TextLink (class in aiogram.utils.formatting), 731
TextMention (class in aiogram.utils.formatting), 731
TextQuote (class in aiogram.types.text_quote), 307
THB (aiogram.enums.currency.Currency attribute), 610
theme_name (aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme

attribute), 23
thumbnail (aiogram.methods.send_animation.SendAnimation

attribute), 481
thumbnail (aiogram.methods.send_audio.SendAudio at-

tribute), 484
thumbnail (aiogram.methods.send_document.SendDocument

attribute), 494
thumbnail (aiogram.methods.send_video.SendVideo at-

tribute), 518
thumbnail (aiogram.methods.send_video_note.SendVideoNote

attribute), 521
thumbnail (aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail

attribute), 410
thumbnail (aiogram.types.animation.Animation at-

tribute), 20
thumbnail (aiogram.types.audio.Audio attribute), 21
thumbnail (aiogram.types.document.Document at-

tribute), 141
thumbnail (aiogram.types.input_media_animation.InputMediaAnimation

attribute), 202
thumbnail (aiogram.types.input_media_audio.InputMediaAudio

attribute), 203
thumbnail (aiogram.types.input_media_document.InputMediaDocument

attribute), 204
thumbnail (aiogram.types.input_media_video.InputMediaVideo

attribute), 206
thumbnail (aiogram.types.input_paid_media_video.InputPaidMediaVideo

attribute), 208
thumbnail (aiogram.types.sticker.Sticker attribute), 380
thumbnail (aiogram.types.sticker_set.StickerSet at-

tribute), 382
thumbnail (aiogram.types.video.Video attribute), 314
thumbnail (aiogram.types.video_note.VideoNote at-

tribute), 315
thumbnail_height (aiogram.types.inline_query_result_article.InlineQueryResultArticle

attribute), 321
thumbnail_height (aiogram.types.inline_query_result_contact.InlineQueryResultContact

attribute), 340
thumbnail_height (aiogram.types.inline_query_result_document.InlineQueryResultDocument

attribute), 342
thumbnail_height (aiogram.types.inline_query_result_location.InlineQueryResultLocation

attribute), 346

Index 873

aiogram Documentation, Release 3.23.0

thumbnail_height (aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 353

thumbnail_mime_type
(aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

thumbnail_mime_type
(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif
attribute), 349

thumbnail_url (aiogram.types.inline_query_result_article.InlineQueryResultArticle
attribute), 321

thumbnail_url (aiogram.types.inline_query_result_contact.InlineQueryResultContact
attribute), 340

thumbnail_url (aiogram.types.inline_query_result_document.InlineQueryResultDocument
attribute), 342

thumbnail_url (aiogram.types.inline_query_result_gif.InlineQueryResultGif
attribute), 344

thumbnail_url (aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

thumbnail_url (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif
attribute), 349

thumbnail_url (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto
attribute), 351

thumbnail_url (aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 353

thumbnail_url (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

thumbnail_width (aiogram.types.inline_query_result_article.InlineQueryResultArticle
attribute), 321

thumbnail_width (aiogram.types.inline_query_result_contact.InlineQueryResultContact
attribute), 340

thumbnail_width (aiogram.types.inline_query_result_document.InlineQueryResultDocument
attribute), 342

thumbnail_width (aiogram.types.inline_query_result_location.InlineQueryResultLocation
attribute), 346

thumbnail_width (aiogram.types.inline_query_result_venue.InlineQueryResultVenue
attribute), 353

time_zone_name (aiogram.types.business_opening_hours.BusinessOpeningHours
attribute), 32

timeout (aiogram.methods.get_updates.GetUpdates at-
tribute), 599

title (aiogram.methods.create_invoice_link.CreateInvoiceLink
attribute), 588

title (aiogram.methods.create_new_sticker_set.CreateNewStickerSet
attribute), 397

title (aiogram.methods.send_audio.SendAudio at-
tribute), 484

title (aiogram.methods.send_invoice.SendInvoice at-
tribute), 594

title (aiogram.methods.send_venue.SendVenue at-
tribute), 514

title (aiogram.methods.set_chat_title.SetChatTitle at-
tribute), 537

title (aiogram.methods.set_sticker_set_title.SetStickerSetTitle
attribute), 411

title (aiogram.types.audio.Audio attribute), 21
title (aiogram.types.business_intro.BusinessIntro at-

tribute), 31
title (aiogram.types.chat.Chat attribute), 35
title (aiogram.types.chat_full_info.ChatFullInfo at-

tribute), 56
title (aiogram.types.chat_shared.ChatShared at-

tribute), 137
title (aiogram.types.checklist.Checklist attribute), 138
title (aiogram.types.game.Game attribute), 395
title (aiogram.types.inline_query_result_article.InlineQueryResultArticle

attribute), 320
title (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 322
title (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

attribute), 326
title (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif

attribute), 328
title (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif

attribute), 330
title (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

attribute), 333
title (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo

attribute), 337
title (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice

attribute), 339
title (aiogram.types.inline_query_result_document.InlineQueryResultDocument

attribute), 341
title (aiogram.types.inline_query_result_gif.InlineQueryResultGif

attribute), 344
title (aiogram.types.inline_query_result_location.InlineQueryResultLocation

attribute), 346
title (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
title (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

attribute), 351
title (aiogram.types.inline_query_result_venue.InlineQueryResultVenue

attribute), 352
title (aiogram.types.inline_query_result_video.InlineQueryResultVideo

attribute), 355
title (aiogram.types.inline_query_result_voice.InlineQueryResultVoice

attribute), 356
title (aiogram.types.input_checklist.InputChecklist at-

tribute), 199
title (aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

attribute), 359
title (aiogram.types.input_media_audio.InputMediaAudio

attribute), 203
title (aiogram.types.input_venue_message_content.InputVenueMessageContent

attribute), 363
title (aiogram.types.invoice.Invoice attribute), 365
title (aiogram.types.shipping_option.ShippingOption

attribute), 370
title (aiogram.types.sticker_set.StickerSet attribute),

874 Index

aiogram Documentation, Release 3.23.0

381
title (aiogram.types.venue.Venue attribute), 313
title (aiogram.utils.web_app.WebAppChat attribute),

720
title_entities (aiogram.types.checklist.Checklist at-

tribute), 138
title_entities (aiogram.types.input_checklist.InputChecklist

attribute), 199
TJS (aiogram.enums.currency.Currency attribute), 610
TokenBasedRequestHandler (class in

aiogram.webhook.aiohttp_server), 695
top_color (aiogram.types.background_fill_gradient.BackgroundFillGradient

attribute), 22
topic_id (aiogram.types.direct_messages_topic.DirectMessagesTopic

attribute), 141
TopicIconColor (class in

aiogram.enums.topic_icon_color), 619
total_amount (aiogram.types.invoice.Invoice attribute),

365
total_amount (aiogram.types.pre_checkout_query.PreCheckoutQuery

attribute), 367
total_amount (aiogram.types.refunded_payment.RefundedPayment

attribute), 367
total_amount (aiogram.types.successful_payment.SuccessfulPayment

attribute), 373
total_count (aiogram.types.gift.Gift attribute), 147
total_count (aiogram.types.owned_gifts.OwnedGifts

attribute), 289
total_count (aiogram.types.reaction_count.ReactionCount

attribute), 294
total_count (aiogram.types.user_profile_photos.UserProfilePhotos

attribute), 312
total_voter_count (aiogram.types.poll.Poll attribute),

292
transaction_type (aiogram.types.transaction_partner_user.TransactionPartnerUser

attribute), 378
TransactionPartner (class in

aiogram.types.transaction_partner), 374
TransactionPartnerAffiliateProgram (class in

aiogram.types.transaction_partner_affiliate_program),
374

TransactionPartnerChat (class in
aiogram.types.transaction_partner_chat),
375

TransactionPartnerFragment (class in
aiogram.types.transaction_partner_fragment),
376

TransactionPartnerOther (class in
aiogram.types.transaction_partner_other),
376

TransactionPartnerTelegramAds (class in
aiogram.types.transaction_partner_telegram_ads),
377

TransactionPartnerTelegramApi (class in

aiogram.types.transaction_partner_telegram_api),
377

TransactionPartnerType (class in
aiogram.enums.transaction_partner_type),
619

TransactionPartnerUser (class in
aiogram.types.transaction_partner_user),
378

TransactionPartnerUserTransactionTypeEnum
(class in aiogram.enums.transaction_partner_user_transaction_type_enum),
620

transactions (aiogram.types.star_transactions.StarTransactions
attribute), 373

transfer_star_count
(aiogram.types.owned_gift_unique.OwnedGiftUnique
attribute), 288

transfer_star_count
(aiogram.types.unique_gift_info.UniqueGiftInfo
attribute), 309

TransferBusinessAccountStars (class in
aiogram.methods.transfer_business_account_stars),
546

TransferGift (class in aiogram.methods.transfer_gift),
547

translation (aiogram.types.encrypted_passport_element.EncryptedPassportElement
attribute), 384

TRANSLATION_FILE (aiogram.enums.passport_element_error_type.PassportElementErrorType
attribute), 617

TRANSLATION_FILES (aiogram.enums.passport_element_error_type.PassportElementErrorType
attribute), 617

traveler (aiogram.types.proximity_alert_triggered.ProximityAlertTriggered
attribute), 293

TRY (aiogram.enums.currency.Currency attribute), 610
TTD (aiogram.enums.currency.Currency attribute), 610
TWD (aiogram.enums.currency.Currency attribute), 610
type (aiogram.methods.send_poll.SendPoll attribute),

512
type (aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient

attribute), 21
type (aiogram.types.background_fill_gradient.BackgroundFillGradient

attribute), 22
type (aiogram.types.background_fill_solid.BackgroundFillSolid

attribute), 22
type (aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme

attribute), 23
type (aiogram.types.background_type_fill.BackgroundTypeFill

attribute), 23
type (aiogram.types.background_type_pattern.BackgroundTypePattern

attribute), 24
type (aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper

attribute), 24
type (aiogram.types.bot_command_scope_all_chat_administrators.BotCommandScopeAllChatAdministrators

attribute), 26
type (aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats

Index 875

aiogram Documentation, Release 3.23.0

attribute), 26
type (aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats

attribute), 27
type (aiogram.types.bot_command_scope_chat.BotCommandScopeChat

attribute), 27
type (aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators

attribute), 27
type (aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember

attribute), 28
type (aiogram.types.bot_command_scope_default.BotCommandScopeDefault

attribute), 28
type (aiogram.types.chat.Chat attribute), 35
type (aiogram.types.chat_background.ChatBackground

attribute), 51
type (aiogram.types.chat_full_info.ChatFullInfo at-

tribute), 55
type (aiogram.types.encrypted_passport_element.EncryptedPassportElement

attribute), 383
type (aiogram.types.inline_query_result_article.InlineQueryResultArticle

attribute), 320
type (aiogram.types.inline_query_result_audio.InlineQueryResultAudio

attribute), 321
type (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio

attribute), 323
type (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

attribute), 326
type (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif

attribute), 327
type (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif

attribute), 330
type (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

attribute), 333
type (aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker

attribute), 335
type (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo

attribute), 337
type (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice

attribute), 338
type (aiogram.types.inline_query_result_contact.InlineQueryResultContact

attribute), 340
type (aiogram.types.inline_query_result_document.InlineQueryResultDocument

attribute), 341
type (aiogram.types.inline_query_result_game.InlineQueryResultGame

attribute), 342
type (aiogram.types.inline_query_result_gif.InlineQueryResultGif

attribute), 343
type (aiogram.types.inline_query_result_location.InlineQueryResultLocation

attribute), 345
type (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

attribute), 349
type (aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

attribute), 350
type (aiogram.types.inline_query_result_venue.InlineQueryResultVenue

attribute), 352

type (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 354

type (aiogram.types.inline_query_result_voice.InlineQueryResultVoice
attribute), 356

type (aiogram.types.input_media_animation.InputMediaAnimation
attribute), 202

type (aiogram.types.input_media_audio.InputMediaAudio
attribute), 203

type (aiogram.types.input_media_document.InputMediaDocument
attribute), 204

type (aiogram.types.input_media_photo.InputMediaPhoto
attribute), 205

type (aiogram.types.input_media_video.InputMediaVideo
attribute), 206

type (aiogram.types.input_paid_media_photo.InputPaidMediaPhoto
attribute), 207

type (aiogram.types.input_paid_media_video.InputPaidMediaVideo
attribute), 208

type (aiogram.types.input_profile_photo_animated.InputProfilePhotoAnimated
attribute), 209

type (aiogram.types.input_profile_photo_static.InputProfilePhotoStatic
attribute), 210

type (aiogram.types.input_story_content_photo.InputStoryContentPhoto
attribute), 210

type (aiogram.types.input_story_content_video.InputStoryContentVideo
attribute), 211

type (aiogram.types.keyboard_button_poll_type.KeyboardButtonPollType
attribute), 212

type (aiogram.types.menu_button.MenuButton at-
tribute), 218

type (aiogram.types.menu_button_commands.MenuButtonCommands
attribute), 219

type (aiogram.types.menu_button_default.MenuButtonDefault
attribute), 219

type (aiogram.types.menu_button_web_app.MenuButtonWebApp
attribute), 219

type (aiogram.types.message_entity.MessageEntity at-
tribute), 282

type (aiogram.types.message_origin_channel.MessageOriginChannel
attribute), 283

type (aiogram.types.message_origin_chat.MessageOriginChat
attribute), 284

type (aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser
attribute), 284

type (aiogram.types.message_origin_user.MessageOriginUser
attribute), 284

type (aiogram.types.owned_gift_regular.OwnedGiftRegular
attribute), 287

type (aiogram.types.owned_gift_unique.OwnedGiftUnique
attribute), 288

type (aiogram.types.paid_media_photo.PaidMediaPhoto
attribute), 290

type (aiogram.types.paid_media_preview.PaidMediaPreview
attribute), 290

876 Index

aiogram Documentation, Release 3.23.0

type (aiogram.types.paid_media_video.PaidMediaVideo
attribute), 290

type (aiogram.types.passport_element_error_data_field.PassportElementErrorDataField
attribute), 385

type (aiogram.types.passport_element_error_file.PassportElementErrorFile
attribute), 386

type (aiogram.types.passport_element_error_files.PassportElementErrorFiles
attribute), 386

type (aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide
attribute), 387

type (aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide
attribute), 388

type (aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie
attribute), 389

type (aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile
attribute), 389

type (aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles
attribute), 390

type (aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified
attribute), 391

type (aiogram.types.poll.Poll attribute), 292
type (aiogram.types.reaction_count.ReactionCount at-

tribute), 293
type (aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji

attribute), 294
type (aiogram.types.reaction_type_emoji.ReactionTypeEmoji

attribute), 294
type (aiogram.types.reaction_type_paid.ReactionTypePaid

attribute), 295
type (aiogram.types.revenue_withdrawal_state_failed.RevenueWithdrawalStateFailed

attribute), 368
type (aiogram.types.revenue_withdrawal_state_pending.RevenueWithdrawalStatePending

attribute), 369
type (aiogram.types.revenue_withdrawal_state_succeeded.RevenueWithdrawalStateSucceeded

attribute), 369
type (aiogram.types.sticker.Sticker attribute), 380
type (aiogram.types.story_area.StoryArea attribute), 298
type (aiogram.types.story_area_type_link.StoryAreaTypeLink

attribute), 299
type (aiogram.types.story_area_type_location.StoryAreaTypeLocation

attribute), 300
type (aiogram.types.story_area_type_suggested_reaction.StoryAreaTypeSuggestedReaction

attribute), 301
type (aiogram.types.story_area_type_unique_gift.StoryAreaTypeUniqueGift

attribute), 302
type (aiogram.types.story_area_type_weather.StoryAreaTypeWeather

attribute), 302
type (aiogram.types.transaction_partner_affiliate_program.TransactionPartnerAffiliateProgram

attribute), 375
type (aiogram.types.transaction_partner_chat.TransactionPartnerChat

attribute), 375
type (aiogram.types.transaction_partner_fragment.TransactionPartnerFragment

attribute), 376
type (aiogram.types.transaction_partner_other.TransactionPartnerOther

attribute), 376
type (aiogram.types.transaction_partner_telegram_ads.TransactionPartnerTelegramAds

attribute), 377
type (aiogram.types.transaction_partner_telegram_api.TransactionPartnerTelegramApi

attribute), 377
type (aiogram.types.transaction_partner_user.TransactionPartnerUser

attribute), 378
type (aiogram.utils.web_app.WebAppChat attribute),

720
TYPING (aiogram.enums.chat_action.ChatAction at-

tribute), 604
typing() (aiogram.utils.chat_action.ChatActionSender

class method), 716
TZS (aiogram.enums.currency.Currency attribute), 610

U
UAH (aiogram.enums.currency.Currency attribute), 610
UGX (aiogram.enums.currency.Currency attribute), 610
unban() (aiogram.types.chat.Chat method), 47
unban_sender_chat() (aiogram.types.chat.Chat

method), 39
UnbanChatMember (class in

aiogram.methods.unban_chat_member),
548

UnbanChatSenderChat (class in
aiogram.methods.unban_chat_sender_chat),
549

unclaimed_prize_count
(aiogram.types.giveaway_completed.GiveawayCompleted
attribute), 149

unclaimed_prize_count
(aiogram.types.giveaway_winners.GiveawayWinners
attribute), 150

UNDERLINE (aiogram.enums.message_entity_type.MessageEntityType
attribute), 615

Underline (class in aiogram.utils.formatting), 730
UnhideGeneralForumTopic (class in

aiogram.methods.unhide_general_forum_topic),
550

UNIQUE (aiogram.enums.owned_gift_type.OwnedGiftType
attribute), 616

UNIQUE_GIFT (aiogram.enums.content_type.ContentType
attribute), 607

UNIQUE_GIFT (aiogram.enums.story_area_type_type.StoryAreaTypeType
attribute), 619

unique_gift (aiogram.types.message.Message at-
tribute), 226

unique_gifts (aiogram.types.accepted_gift_types.AcceptedGiftTypes
attribute), 19

UniqueGift (class in aiogram.types.unique_gift), 307
UniqueGiftBackdrop (class in

aiogram.types.unique_gift_backdrop), 308
UniqueGiftBackdropColors (class in

aiogram.types.unique_gift_backdrop_colors),

Index 877

aiogram Documentation, Release 3.23.0

308
UniqueGiftInfo (class in

aiogram.types.unique_gift_info), 309
UniqueGiftModel (class in

aiogram.types.unique_gift_model), 309
UniqueGiftSymbol (class in

aiogram.types.unique_gift_symbol), 310
UNKNOWN (aiogram.enums.content_type.ContentType at-

tribute), 605
unlimited_gifts (aiogram.types.accepted_gift_types.AcceptedGiftTypes

attribute), 19
unpack() (aiogram.filters.callback_data.CallbackData

class method), 647
unpin() (aiogram.types.message.Message method), 278
unpin_all_general_forum_topic_messages()

(aiogram.types.chat.Chat method), 49
unpin_all_messages() (aiogram.types.chat.Chat

method), 44
unpin_message() (aiogram.types.chat.Chat method),

44
UnpinAllChatMessages (class in

aiogram.methods.unpin_all_chat_messages),
551

UnpinAllForumTopicMessages (class in
aiogram.methods.unpin_all_forum_topic_messages),
552

UnpinAllGeneralForumTopicMessages (class in
aiogram.methods.unpin_all_general_forum_topic_messages),
553

UnpinChatMessage (class in
aiogram.methods.unpin_chat_message), 554

unrestrict_boost_count (aiogram.types.chat.Chat
attribute), 38

unrestrict_boost_count
(aiogram.types.chat_full_info.ChatFullInfo
attribute), 57

UNSPECIFIED (aiogram.enums.passport_element_error_type.PassportElementErrorType
attribute), 617

UnsupportedKeywordArgument, 690
until_date (aiogram.methods.ban_chat_member.BanChatMember

attribute), 415
until_date (aiogram.methods.restrict_chat_member.RestrictChatMember

attribute), 477
until_date (aiogram.types.chat_member_banned.ChatMemberBanned

attribute), 109
until_date (aiogram.types.chat_member_member.ChatMemberMember

attribute), 109
until_date (aiogram.types.chat_member_restricted.ChatMemberRestricted

attribute), 111
update (aiogram.types.error_event.ErrorEvent at-

tribute), 689
Update (class in aiogram.types.update), 392
update_data() (aiogram.fsm.scene.SceneWizard

method), 683

update_data() (aiogram.fsm.storage.base.BaseStorage
method), 665

update_handler_flags() (aiogram.filters.base.Filter
method), 650

update_id (aiogram.types.update.Update attribute), 392
UpdateType (class in aiogram.enums.update_type), 620
UpdateTypeLookupError, 394
upgrade_star_count (aiogram.types.gift.Gift at-

tribute), 147
UpgradeGift (class in aiogram.methods.upgrade_gift),

555
UPLOAD_DOCUMENT (aiogram.enums.chat_action.ChatAction

attribute), 604
upload_document() (aiogram.utils.chat_action.ChatActionSender

class method), 716
UPLOAD_PHOTO (aiogram.enums.chat_action.ChatAction

attribute), 604
upload_photo() (aiogram.utils.chat_action.ChatActionSender

class method), 716
UPLOAD_VIDEO (aiogram.enums.chat_action.ChatAction

attribute), 604
upload_video() (aiogram.utils.chat_action.ChatActionSender

class method), 717
UPLOAD_VIDEO_NOTE (aiogram.enums.chat_action.ChatAction

attribute), 604
upload_video_note()

(aiogram.utils.chat_action.ChatActionSender
class method), 717

UPLOAD_VOICE (aiogram.enums.chat_action.ChatAction
attribute), 604

upload_voice() (aiogram.utils.chat_action.ChatActionSender
class method), 717

UploadStickerFile (class in
aiogram.methods.upload_sticker_file), 412

URL (aiogram.enums.message_entity_type.MessageEntityType
attribute), 615

url (aiogram.methods.answer_callback_query.AnswerCallbackQuery
attribute), 413

url (aiogram.methods.set_webhook.SetWebhook at-
tribute), 600

url (aiogram.types.inline_keyboard_button.InlineKeyboardButton
attribute), 198

url (aiogram.types.inline_query_result_article.InlineQueryResultArticle
attribute), 320

url (aiogram.types.link_preview_options.LinkPreviewOptions
attribute), 216

url (aiogram.types.login_url.LoginUrl attribute), 217
url (aiogram.types.message_entity.MessageEntity

attribute), 282
url (aiogram.types.revenue_withdrawal_state_succeeded.RevenueWithdrawalStateSucceeded

attribute), 370
url (aiogram.types.story_area_type_link.StoryAreaTypeLink

attribute), 300
url (aiogram.types.user.User property), 311

878 Index

aiogram Documentation, Release 3.23.0

url (aiogram.types.web_app_info.WebAppInfo attribute),
316

url (aiogram.types.webhook_info.WebhookInfo at-
tribute), 394

url (aiogram.utils.callback_answer.CallbackAnswer
property), 723

Url (class in aiogram.utils.formatting), 729
URLInputFile (class in aiogram.types.input_file), 201,

625
USD (aiogram.enums.currency.Currency attribute), 610
use_independent_chat_permissions

(aiogram.methods.restrict_chat_member.RestrictChatMember
attribute), 477

use_independent_chat_permissions
(aiogram.methods.set_chat_permissions.SetChatPermissions
attribute), 534

USER (aiogram.enums.message_origin_type.MessageOriginType
attribute), 615

USER (aiogram.enums.transaction_partner_type.TransactionPartnerType
attribute), 619

user (aiogram.types.business_connection.BusinessConnection
attribute), 30

user (aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode
attribute), 53

user (aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway
attribute), 54

user (aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium
attribute), 54

user (aiogram.types.chat_member_administrator.ChatMemberAdministrator
attribute), 107

user (aiogram.types.chat_member_banned.ChatMemberBanned
attribute), 109

user (aiogram.types.chat_member_left.ChatMemberLeft
attribute), 109

user (aiogram.types.chat_member_member.ChatMemberMember
attribute), 109

user (aiogram.types.chat_member_owner.ChatMemberOwner
attribute), 110

user (aiogram.types.chat_member_restricted.ChatMemberRestricted
attribute), 111

user (aiogram.types.direct_messages_topic.DirectMessagesTopic
attribute), 141

user (aiogram.types.game_high_score.GameHighScore
attribute), 396

user (aiogram.types.message_entity.MessageEntity at-
tribute), 282

user (aiogram.types.message_reaction_updated.MessageReactionUpdated
attribute), 286

user (aiogram.types.poll_answer.PollAnswer attribute),
293

user (aiogram.types.transaction_partner_user.TransactionPartnerUser
attribute), 378

user (aiogram.utils.web_app.WebAppInitData attribute),
719

User (class in aiogram.types.user), 310
user_administrator_rights

(aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat
attribute), 214

user_chat_id (aiogram.types.business_connection.BusinessConnection
attribute), 31

user_chat_id (aiogram.types.chat_join_request.ChatJoinRequest
attribute), 60

user_id (aiogram.methods.add_sticker_to_set.AddStickerToSet
attribute), 396

user_id (aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest
attribute), 414

user_id (aiogram.methods.ban_chat_member.BanChatMember
attribute), 415

user_id (aiogram.methods.create_new_sticker_set.CreateNewStickerSet
attribute), 397

user_id (aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest
attribute), 429

user_id (aiogram.methods.edit_user_star_subscription.EditUserStarSubscription
attribute), 590

user_id (aiogram.methods.get_chat_member.GetChatMember
attribute), 452

user_id (aiogram.methods.get_game_high_scores.GetGameHighScores
attribute), 581

user_id (aiogram.methods.get_user_chat_boosts.GetUserChatBoosts
attribute), 460

user_id (aiogram.methods.get_user_profile_photos.GetUserProfilePhotos
attribute), 461

user_id (aiogram.methods.gift_premium_subscription.GiftPremiumSubscription
attribute), 462

user_id (aiogram.methods.promote_chat_member.PromoteChatMember
attribute), 469

user_id (aiogram.methods.refund_star_payment.RefundStarPayment
attribute), 593

user_id (aiogram.methods.remove_user_verification.RemoveUserVerification
attribute), 474

user_id (aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet
attribute), 402

user_id (aiogram.methods.restrict_chat_member.RestrictChatMember
attribute), 477

user_id (aiogram.methods.save_prepared_inline_message.SavePreparedInlineMessage
attribute), 580

user_id (aiogram.methods.send_gift.SendGift attribute),
497

user_id (aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle
attribute), 531

user_id (aiogram.methods.set_game_score.SetGameScore
attribute), 584

user_id (aiogram.methods.set_passport_data_errors.SetPassportDataErrors
attribute), 602

user_id (aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail
attribute), 410

user_id (aiogram.methods.set_user_emoji_status.SetUserEmojiStatus
attribute), 545

Index 879

aiogram Documentation, Release 3.23.0

user_id (aiogram.methods.unban_chat_member.UnbanChatMember
attribute), 548

user_id (aiogram.methods.upload_sticker_file.UploadStickerFile
attribute), 412

user_id (aiogram.methods.verify_user.VerifyUser
attribute), 557

user_id (aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember
attribute), 28

user_id (aiogram.types.contact.Contact attribute), 140
user_id (aiogram.types.shared_user.SharedUser at-

tribute), 297
user_id (aiogram.types.user_shared.UserShared at-

tribute), 312
user_ids (aiogram.types.users_shared.UsersShared at-

tribute), 312
USER_IN_CHAT (aiogram.fsm.strategy.FSMStrategy at-

tribute), 665
USER_IN_TOPIC (aiogram.fsm.strategy.FSMStrategy at-

tribute), 666
user_is_bot (aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser

attribute), 214
user_is_bot (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers

attribute), 215
user_is_premium (aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser

attribute), 214
user_is_premium (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers

attribute), 215
USER_SHARED (aiogram.enums.content_type.ContentType

attribute), 608
user_shared (aiogram.types.message.Message at-

tribute), 228
UserChatBoosts (class in

aiogram.types.user_chat_boosts), 311
username (aiogram.methods.set_business_account_username.SetBusinessAccountUsername

attribute), 530
username (aiogram.types.chat.Chat attribute), 35
username (aiogram.types.chat_full_info.ChatFullInfo at-

tribute), 56
username (aiogram.types.chat_shared.ChatShared at-

tribute), 137
username (aiogram.types.shared_user.SharedUser

attribute), 298
username (aiogram.types.user.User attribute), 310
username (aiogram.utils.web_app.WebAppChat at-

tribute), 720
username (aiogram.utils.web_app.WebAppUser at-

tribute), 720
UserProfilePhotos (class in

aiogram.types.user_profile_photos), 312
users (aiogram.types.users_shared.UsersShared at-

tribute), 312
users (aiogram.types.video_chat_participants_invited.VideoChatParticipantsInvited

attribute), 314
USERS_SHARED (aiogram.enums.content_type.ContentType

attribute), 606
users_shared (aiogram.types.message.Message at-

tribute), 226
UserShared (class in aiogram.types.user_shared), 312
UsersShared (class in aiogram.types.users_shared), 312
UTILITY_BILL (aiogram.enums.encrypted_passport_element.EncryptedPassportElement

attribute), 611
UYU (aiogram.enums.currency.Currency attribute), 610
UZS (aiogram.enums.currency.Currency attribute), 610

V
value (aiogram.types.dice.Dice attribute), 140
vcard (aiogram.methods.send_contact.SendContact at-

tribute), 489
vcard (aiogram.types.contact.Contact attribute), 140
vcard (aiogram.types.inline_query_result_contact.InlineQueryResultContact

attribute), 340
vcard (aiogram.types.input_contact_message_content.InputContactMessageContent

attribute), 358
VENUE (aiogram.enums.content_type.ContentType at-

tribute), 606
VENUE (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
venue (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 144
venue (aiogram.types.message.Message attribute), 224
Venue (class in aiogram.types.venue), 313
VerifyChat (class in aiogram.methods.verify_chat), 556
VerifyUser (class in aiogram.methods.verify_user), 557
via_bot (aiogram.types.message.Message attribute), 223
via_chat_folder_invite_link

(aiogram.types.chat_member_updated.ChatMemberUpdated
attribute), 112

via_join_request (aiogram.types.chat_member_updated.ChatMemberUpdated
attribute), 112

VIDEO (aiogram.enums.content_type.ContentType at-
tribute), 606

VIDEO (aiogram.enums.inline_query_result_type.InlineQueryResultType
attribute), 612

VIDEO (aiogram.enums.input_media_type.InputMediaType
attribute), 612

VIDEO (aiogram.enums.input_paid_media_type.InputPaidMediaType
attribute), 613

VIDEO (aiogram.enums.input_story_content_type.InputStoryContentType
attribute), 613

VIDEO (aiogram.enums.paid_media_type.PaidMediaType
attribute), 616

VIDEO (aiogram.enums.sticker_format.StickerFormat at-
tribute), 618

video (aiogram.methods.send_video.SendVideo at-
tribute), 517

video (aiogram.types.external_reply_info.ExternalReplyInfo
attribute), 143

880 Index

aiogram Documentation, Release 3.23.0

video (aiogram.types.input_story_content_video.InputStoryContentVideo
attribute), 211

video (aiogram.types.message.Message attribute), 224
video (aiogram.types.paid_media_video.PaidMediaVideo

attribute), 290
Video (class in aiogram.types.video), 313
VIDEO_CHAT_ENDED (aiogram.enums.content_type.ContentType

attribute), 607
video_chat_ended (aiogram.types.message.Message

attribute), 227
VIDEO_CHAT_PARTICIPANTS_INVITED

(aiogram.enums.content_type.ContentType
attribute), 607

video_chat_participants_invited
(aiogram.types.message.Message attribute),
227

VIDEO_CHAT_SCHEDULED
(aiogram.enums.content_type.ContentType
attribute), 607

video_chat_scheduled
(aiogram.types.message.Message attribute),
227

VIDEO_CHAT_STARTED (aiogram.enums.content_type.ContentType
attribute), 607

video_chat_started (aiogram.types.message.Message
attribute), 227

video_duration (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

video_file_id (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo
attribute), 337

video_height (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

VIDEO_NOTE (aiogram.enums.content_type.ContentType
attribute), 606

video_note (aiogram.methods.send_video_note.SendVideoNote
attribute), 521

video_note (aiogram.types.external_reply_info.ExternalReplyInfo
attribute), 143

video_note (aiogram.types.message.Message attribute),
224

video_start_timestamp
(aiogram.methods.copy_message.CopyMessage
attribute), 422

video_start_timestamp
(aiogram.methods.forward_message.ForwardMessage
attribute), 443

video_url (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

video_width (aiogram.types.inline_query_result_video.InlineQueryResultVideo
attribute), 355

VideoChatEnded (class in
aiogram.types.video_chat_ended), 314

VideoChatParticipantsInvited (class in
aiogram.types.video_chat_participants_invited),

314
VideoChatScheduled (class in

aiogram.types.video_chat_scheduled), 315
VideoChatStarted (class in

aiogram.types.video_chat_started), 315
VideoNote (class in aiogram.types.video_note), 315
VIOLET (aiogram.enums.topic_icon_color.TopicIconColor

attribute), 619
VND (aiogram.enums.currency.Currency attribute), 610
VOICE (aiogram.enums.content_type.ContentType at-

tribute), 606
VOICE (aiogram.enums.inline_query_result_type.InlineQueryResultType

attribute), 612
voice (aiogram.methods.send_voice.SendVoice at-

tribute), 523
voice (aiogram.types.external_reply_info.ExternalReplyInfo

attribute), 143
voice (aiogram.types.message.Message attribute), 224
Voice (class in aiogram.types.voice), 316
voice_duration (aiogram.types.inline_query_result_voice.InlineQueryResultVoice

attribute), 356
voice_file_id (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice

attribute), 339
voice_url (aiogram.types.inline_query_result_voice.InlineQueryResultVoice

attribute), 356
voter_chat (aiogram.types.poll_answer.PollAnswer at-

tribute), 292
voter_count (aiogram.types.poll_option.PollOption at-

tribute), 293

W
was_refunded (aiogram.types.giveaway_winners.GiveawayWinners

attribute), 151
was_refunded (aiogram.types.owned_gift_regular.OwnedGiftRegular

attribute), 287
watcher (aiogram.types.proximity_alert_triggered.ProximityAlertTriggered

attribute), 293
WEATHER (aiogram.enums.story_area_type_type.StoryAreaTypeType

attribute), 619
WEB_APP (aiogram.enums.menu_button_type.MenuButtonType

attribute), 614
web_app (aiogram.types.inline_keyboard_button.InlineKeyboardButton

attribute), 198
web_app (aiogram.types.inline_query_results_button.InlineQueryResultsButton

attribute), 357
web_app (aiogram.types.keyboard_button.KeyboardButton

attribute), 212
web_app (aiogram.types.menu_button.MenuButton at-

tribute), 218
web_app (aiogram.types.menu_button_web_app.MenuButtonWebApp

attribute), 219
WEB_APP_DATA (aiogram.enums.content_type.ContentType

attribute), 607

Index 881

aiogram Documentation, Release 3.23.0

web_app_data (aiogram.types.message.Message at-
tribute), 227

web_app_name (aiogram.types.write_access_allowed.WriteAccessAllowed
attribute), 317

web_app_query_id (aiogram.methods.answer_web_app_query.AnswerWebAppQuery
attribute), 577

WebAppChat (class in aiogram.utils.web_app), 720
WebAppData (class in aiogram.types.web_app_data), 316
WebAppInfo (class in aiogram.types.web_app_info), 316
WebAppInitData (class in aiogram.utils.web_app), 719
WebAppUser (class in aiogram.utils.web_app), 720
WebhookInfo (class in aiogram.types.webhook_info),

394
width (aiogram.methods.send_animation.SendAnimation

attribute), 481
width (aiogram.methods.send_video.SendVideo at-

tribute), 518
width (aiogram.types.animation.Animation attribute), 20
width (aiogram.types.input_media_animation.InputMediaAnimation

attribute), 202
width (aiogram.types.input_media_video.InputMediaVideo

attribute), 207
width (aiogram.types.input_paid_media_video.InputPaidMediaVideo

attribute), 208
width (aiogram.types.paid_media_preview.PaidMediaPreview

attribute), 290
width (aiogram.types.photo_size.PhotoSize attribute),

291
width (aiogram.types.sticker.Sticker attribute), 380
width (aiogram.types.video.Video attribute), 313
width_percentage (aiogram.types.story_area_position.StoryAreaPosition

attribute), 299
winner_count (aiogram.types.giveaway.Giveaway at-

tribute), 148
winner_count (aiogram.types.giveaway_completed.GiveawayCompleted

attribute), 149
winner_count (aiogram.types.giveaway_winners.GiveawayWinners

attribute), 150
winners (aiogram.types.giveaway_winners.GiveawayWinners

attribute), 150
winners_selection_date

(aiogram.types.giveaway.Giveaway attribute),
148

winners_selection_date
(aiogram.types.giveaway_winners.GiveawayWinners
attribute), 150

withdrawal_state (aiogram.types.transaction_partner_fragment.TransactionPartnerFragment
attribute), 376

wrap_local_file (aiogram.client.telegram.TelegramAPIServer
attribute), 15

WRITE_ACCESS_ALLOWED
(aiogram.enums.content_type.ContentType
attribute), 607

write_access_allowed

(aiogram.types.message.Message attribute),
226

WriteAccessAllowed (class in
aiogram.types.write_access_allowed), 317

X
x_percentage (aiogram.types.story_area_position.StoryAreaPosition

attribute), 299
x_shift (aiogram.types.mask_position.MaskPosition at-

tribute), 379

Y
y_percentage (aiogram.types.story_area_position.StoryAreaPosition

attribute), 299
y_shift (aiogram.types.mask_position.MaskPosition at-

tribute), 379
year (aiogram.types.birthdate.Birthdate attribute), 25
YELLOW (aiogram.enums.topic_icon_color.TopicIconColor

attribute), 619
YER (aiogram.enums.currency.Currency attribute), 610

Z
ZAR (aiogram.enums.currency.Currency attribute), 610

882 Index

	Features
	Simple usage
	Usage without dispatcher

	Contents
	Installation
	From PyPI
	From Arch Linux Repository
	Development build

	From GitHub

	Migration FAQ (2.x -> 3.0)
	Dependencies
	Dispatcher
	Filtering events
	Bot API
	Middlewares
	Keyboard Markup
	Callbacks data
	Finite State machine
	Sending Files
	Webhook
	Telegram API Server
	Telegram objects transformation (to dict, to json, from json)
	ChatMember tools

	Bot API
	Bot
	Client session
	Use Custom API server
	Base
	aiohttp
	Usage example
	Proxy requests in AiohttpSession
	Authorization
	Proxy chains

	Client session middlewares
	How to register client session middleware?
	Register using register method
	Register using decorator

	Example
	Class based session middleware
	Function based session middleware

	Types
	Available types
	AcceptedGiftTypes
	Animation
	Audio
	BackgroundFill
	BackgroundFillFreeformGradient
	BackgroundFillGradient
	BackgroundFillSolid
	BackgroundType
	BackgroundTypeChatTheme
	BackgroundTypeFill
	BackgroundTypePattern
	BackgroundTypeWallpaper
	Birthdate
	BotCommand
	BotCommandScope
	BotCommandScopeAllChatAdministrators
	BotCommandScopeAllGroupChats
	BotCommandScopeAllPrivateChats
	BotCommandScopeChat
	BotCommandScopeChatAdministrators
	BotCommandScopeChatMember
	BotCommandScopeDefault
	BotDescription
	BotName
	BotShortDescription
	BusinessBotRights
	BusinessConnection
	BusinessIntro
	BusinessLocation
	BusinessMessagesDeleted
	BusinessOpeningHours
	BusinessOpeningHoursInterval
	CallbackQuery
	Chat
	ChatAdministratorRights
	ChatBackground
	ChatBoost
	ChatBoostAdded
	ChatBoostRemoved
	ChatBoostSource
	ChatBoostSourceGiftCode
	ChatBoostSourceGiveaway
	ChatBoostSourcePremium
	ChatBoostUpdated
	ChatFullInfo
	ChatInviteLink
	ChatJoinRequest
	ChatLocation
	ChatMember
	ChatMemberAdministrator
	ChatMemberBanned
	ChatMemberLeft
	ChatMemberMember
	ChatMemberOwner
	ChatMemberRestricted
	ChatMemberUpdated
	ChatPermissions
	ChatPhoto
	ChatShared
	Checklist
	ChecklistTask
	ChecklistTasksAdded
	ChecklistTasksDone
	Contact
	CopyTextButton
	Dice
	DirectMessagePriceChanged
	DirectMessagesTopic
	Document
	ExternalReplyInfo
	File
	ForceReply
	ForumTopic
	ForumTopicClosed
	ForumTopicCreated
	ForumTopicEdited
	ForumTopicReopened
	GeneralForumTopicHidden
	GeneralForumTopicUnhidden
	Gift
	GiftInfo
	Gifts
	Giveaway
	GiveawayCompleted
	GiveawayCreated
	GiveawayWinners
	InaccessibleMessage
	InlineKeyboardButton
	InlineKeyboardMarkup
	InputChecklist
	InputChecklistTask
	InputFile
	InputMedia
	InputMediaAnimation
	InputMediaAudio
	InputMediaDocument
	InputMediaPhoto
	InputMediaVideo
	InputPaidMedia
	InputPaidMediaPhoto
	InputPaidMediaVideo
	InputPollOption
	InputProfilePhoto
	InputProfilePhotoAnimated
	InputProfilePhotoStatic
	InputStoryContent
	InputStoryContentPhoto
	InputStoryContentVideo
	KeyboardButton
	KeyboardButtonPollType
	KeyboardButtonRequestChat
	KeyboardButtonRequestUser
	KeyboardButtonRequestUsers
	LinkPreviewOptions
	Location
	LocationAddress
	LoginUrl
	MaybeInaccessibleMessage
	MenuButton
	MenuButtonCommands
	MenuButtonDefault
	MenuButtonWebApp
	Message
	MessageAutoDeleteTimerChanged
	MessageEntity
	MessageId
	MessageOrigin
	MessageOriginChannel
	MessageOriginChat
	MessageOriginHiddenUser
	MessageOriginUser
	MessageReactionCountUpdated
	MessageReactionUpdated
	OwnedGift
	OwnedGiftRegular
	OwnedGiftUnique
	OwnedGifts
	PaidMedia
	PaidMediaInfo
	PaidMediaPhoto
	PaidMediaPreview
	PaidMediaVideo
	PaidMessagePriceChanged
	PhotoSize
	Poll
	PollAnswer
	PollOption
	ProximityAlertTriggered
	ReactionCount
	ReactionType
	ReactionTypeCustomEmoji
	ReactionTypeEmoji
	ReactionTypePaid
	ReplyKeyboardMarkup
	ReplyKeyboardRemove
	ReplyParameters
	ResponseParameters
	SharedUser
	StarAmount
	Story
	StoryArea
	StoryAreaPosition
	StoryAreaType
	StoryAreaTypeLink
	StoryAreaTypeLocation
	StoryAreaTypeSuggestedReaction
	StoryAreaTypeUniqueGift
	StoryAreaTypeWeather
	SuggestedPostApprovalFailed
	SuggestedPostApproved
	SuggestedPostDeclined
	SuggestedPostInfo
	SuggestedPostPaid
	SuggestedPostParameters
	SuggestedPostPrice
	SuggestedPostRefunded
	SwitchInlineQueryChosenChat
	TextQuote
	UniqueGift
	UniqueGiftBackdrop
	UniqueGiftBackdropColors
	UniqueGiftInfo
	UniqueGiftModel
	UniqueGiftSymbol
	User
	UserChatBoosts
	UserProfilePhotos
	UserShared
	UsersShared
	Venue
	Video
	VideoChatEnded
	VideoChatParticipantsInvited
	VideoChatScheduled
	VideoChatStarted
	VideoNote
	Voice
	WebAppData
	WebAppInfo
	WriteAccessAllowed

	Inline mode
	ChosenInlineResult
	InlineQuery
	InlineQueryResult
	InlineQueryResultArticle
	InlineQueryResultAudio
	InlineQueryResultCachedAudio
	InlineQueryResultCachedDocument
	InlineQueryResultCachedGif
	InlineQueryResultCachedMpeg4Gif
	InlineQueryResultCachedPhoto
	InlineQueryResultCachedSticker
	InlineQueryResultCachedVideo
	InlineQueryResultCachedVoice
	InlineQueryResultContact
	InlineQueryResultDocument
	InlineQueryResultGame
	InlineQueryResultGif
	InlineQueryResultLocation
	InlineQueryResultMpeg4Gif
	InlineQueryResultPhoto
	InlineQueryResultVenue
	InlineQueryResultVideo
	InlineQueryResultVoice
	InlineQueryResultsButton
	InputContactMessageContent
	InputInvoiceMessageContent
	InputLocationMessageContent
	InputMessageContent
	InputTextMessageContent
	InputVenueMessageContent
	PreparedInlineMessage
	SentWebAppMessage

	Payments
	AffiliateInfo
	Invoice
	LabeledPrice
	OrderInfo
	PaidMediaPurchased
	PreCheckoutQuery
	RefundedPayment
	RevenueWithdrawalState
	RevenueWithdrawalStateFailed
	RevenueWithdrawalStatePending
	RevenueWithdrawalStateSucceeded
	ShippingAddress
	ShippingOption
	ShippingQuery
	StarTransaction
	StarTransactions
	SuccessfulPayment
	TransactionPartner
	TransactionPartnerAffiliateProgram
	TransactionPartnerChat
	TransactionPartnerFragment
	TransactionPartnerOther
	TransactionPartnerTelegramAds
	TransactionPartnerTelegramApi
	TransactionPartnerUser

	Stickers
	InputSticker
	MaskPosition
	Sticker
	StickerSet

	Telegram Passport
	EncryptedCredentials
	EncryptedPassportElement
	PassportData
	PassportElementError
	PassportElementErrorDataField
	PassportElementErrorFile
	PassportElementErrorFiles
	PassportElementErrorFrontSide
	PassportElementErrorReverseSide
	PassportElementErrorSelfie
	PassportElementErrorTranslationFile
	PassportElementErrorTranslationFiles
	PassportElementErrorUnspecified
	PassportFile

	Getting updates
	Update
	WebhookInfo

	Games
	CallbackGame
	Game
	GameHighScore

	Methods
	Stickers
	addStickerToSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	createNewStickerSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	deleteStickerFromSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	deleteStickerSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	getCustomEmojiStickers
	Usage
	As bot method
	Method as object
	With specific bot

	getStickerSet
	Usage
	As bot method
	Method as object
	With specific bot

	replaceStickerInSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	sendSticker
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setCustomEmojiStickerSetThumbnail
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setStickerEmojiList
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setStickerKeywords
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setStickerMaskPosition
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setStickerPositionInSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setStickerSetThumbnail
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setStickerSetTitle
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	uploadStickerFile
	Usage
	As bot method
	Method as object
	With specific bot

	Available methods
	answerCallbackQuery
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	approveChatJoinRequest
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	banChatMember
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	banChatSenderChat
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	close
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	closeForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	closeGeneralForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	convertGiftToStars
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	copyMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	copyMessages
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	createChatInviteLink
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	createChatSubscriptionInviteLink
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	createForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	declineChatJoinRequest
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	deleteBusinessMessages
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	deleteChatPhoto
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	deleteChatStickerSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	deleteForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	deleteMyCommands
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	deleteStory
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	editChatInviteLink
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	editChatSubscriptionInviteLink
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	editForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	editGeneralForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	editStory
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	exportChatInviteLink
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	forwardMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	forwardMessages
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	getAvailableGifts
	Usage
	As bot method
	Method as object
	With specific bot

	getBusinessAccountGifts
	Usage
	As bot method
	Method as object
	With specific bot

	getBusinessAccountStarBalance
	Usage
	As bot method
	Method as object
	With specific bot

	getBusinessConnection
	Usage
	As bot method
	Method as object
	With specific bot

	getChat
	Usage
	As bot method
	Method as object
	With specific bot

	getChatAdministrators
	Usage
	As bot method
	Method as object
	With specific bot
	As shortcut from received object

	getChatMember
	Usage
	As bot method
	Method as object
	With specific bot
	As shortcut from received object

	getChatMemberCount
	Usage
	As bot method
	Method as object
	With specific bot
	As shortcut from received object

	getChatMenuButton
	Usage
	As bot method
	Method as object
	With specific bot

	getFile
	Usage
	As bot method
	Method as object
	With specific bot

	getForumTopicIconStickers
	Usage
	As bot method
	Method as object
	With specific bot

	getMe
	Usage
	As bot method
	Method as object
	With specific bot

	getMyCommands
	Usage
	As bot method
	Method as object
	With specific bot

	getMyDefaultAdministratorRights
	Usage
	As bot method
	Method as object
	With specific bot

	getMyDescription
	Usage
	As bot method
	Method as object
	With specific bot

	getMyName
	Usage
	As bot method
	Method as object
	With specific bot

	getMyShortDescription
	Usage
	As bot method
	Method as object
	With specific bot

	getUserChatBoosts
	Usage
	As bot method
	Method as object
	With specific bot

	getUserProfilePhotos
	Usage
	As bot method
	Method as object
	With specific bot
	As shortcut from received object

	giftPremiumSubscription
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	hideGeneralForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	leaveChat
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	logOut
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	pinChatMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	postStory
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	promoteChatMember
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	readBusinessMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	removeBusinessAccountProfilePhoto
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	removeChatVerification
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	removeUserVerification
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	reopenForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	reopenGeneralForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	restrictChatMember
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	revokeChatInviteLink
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendAnimation
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendAudio
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendChatAction
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendChecklist
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	sendContact
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendDice
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendDocument
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendGift
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	sendLocation
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendMediaGroup
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendPaidMedia
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendPhoto
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendPoll
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendVenue
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendVideo
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendVideoNote
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	sendVoice
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setBusinessAccountBio
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setBusinessAccountGiftSettings
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setBusinessAccountName
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setBusinessAccountProfilePhoto
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setBusinessAccountUsername
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setChatAdministratorCustomTitle
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setChatDescription
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setChatMenuButton
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setChatPermissions
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setChatPhoto
	Usage
	As bot method
	Method as object
	With specific bot
	As shortcut from received object

	setChatStickerSet
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setChatTitle
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setMessageReaction
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setMyCommands
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setMyDefaultAdministratorRights
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setMyDescription
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setMyName
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setMyShortDescription
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	setUserEmojiStatus
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	transferBusinessAccountStars
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	transferGift
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	unbanChatMember
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	unbanChatSenderChat
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	unhideGeneralForumTopic
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	unpinAllChatMessages
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	unpinAllForumTopicMessages
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	unpinAllGeneralForumTopicMessages
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	unpinChatMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	upgradeGift
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	verifyChat
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	verifyUser
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	Updating messages
	approveSuggestedPost
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	declineSuggestedPost
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	deleteMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	deleteMessages
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	editMessageCaption
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	editMessageChecklist
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	editMessageLiveLocation
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	editMessageMedia
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	editMessageReplyMarkup
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	editMessageText
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	stopMessageLiveLocation
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	stopPoll
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	Inline mode
	answerInlineQuery
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	answerWebAppQuery
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	savePreparedInlineMessage
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	Games
	getGameHighScores
	Usage
	As bot method
	Method as object
	With specific bot

	sendGame
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	setGameScore
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	Payments
	answerPreCheckoutQuery
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	answerShippingQuery
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	createInvoiceLink
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	editUserStarSubscription
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	getMyStarBalance
	Usage
	As bot method
	Method as object
	With specific bot

	getStarTransactions
	Usage
	As bot method
	Method as object
	With specific bot

	refundStarPayment
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	sendInvoice
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler
	As shortcut from received object

	Getting updates
	deleteWebhook
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	getUpdates
	Usage
	As bot method
	Method as object
	With specific bot

	getWebhookInfo
	Usage
	As bot method
	Method as object
	With specific bot

	setWebhook
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	Telegram Passport
	setPassportDataErrors
	Usage
	As bot method
	Method as object
	With specific bot
	As reply into Webhook in handler

	Enums
	BotCommandScopeType
	ChatAction
	ChatBoostSourceType
	ChatMemberStatus
	ChatType
	ContentType
	Currency
	DiceEmoji
	EncryptedPassportElement
	InlineQueryResultType
	InputMediaType
	InputPaidMediaType
	InputProfilePhotoType
	InputStoryContentType
	KeyboardButtonPollTypeType
	MaskPositionPoint
	MenuButtonType
	MessageEntityType
	MessageOriginType
	OwnedGiftType
	PaidMediaType
	ParseMode
	PassportElementErrorType
	PollType
	ReactionTypeType
	RevenueWithdrawalStateType
	StickerFormat
	StickerType
	StoryAreaTypeType
	TopicIconColor
	TransactionPartnerType
	TransactionPartnerUserTransactionTypeEnum
	UpdateType

	How to download file?
	Download file manually
	download_file(…)
	Download file to disk
	Download file to binary I/O object

	Download file in short way
	download(…)

	How to upload file?
	Upload from file system
	Upload from buffer
	Upload from url

	Global defaults
	Example

	Handling events
	Router
	Event observers
	Message
	Edited message
	Channel post
	Edited channel post
	Inline query
	Chosen inline query
	Callback query
	Shipping query
	Pre checkout query
	Poll
	Poll answer
	My chat member
	Chat member
	Chat join request
	Message reaction
	Message reaction count
	Chat boost
	Remove chat boost
	Errors

	Nested routers
	Update
	How it works?

	Dispatcher
	Simple usage
	Handling updates

	Dependency injection
	How it works in aiogram
	Injecting own dependencies
	Using type hints
	Available context data type helpers

	Filtering events
	Builtin filters
	Command
	Usage
	Allowed handlers

	ChatMemberUpdated
	Usage
	Explanation
	Statuses
	Status groups
	Transitions
	Allowed handlers

	Magic filters
	Usage
	Possible actions
	Exists or not None
	Equals
	Is one of
	Contains
	String startswith/endswith
	Regexp
	Custom function
	Inverting result
	Combining
	Attribute modifiers - string manipulations
	Get filter result as handler argument
	Usage in aiogram

	MagicData
	Usage
	Explanation
	Allowed handlers

	Callback Data Factory & Filter
	Usage
	Known limitations

	Exceptions
	Allowed handlers

	Writing own filters
	Base class for own filters
	Own filter example

	Combining Filters
	Recommended way
	Another possible way

	Long-polling
	Example

	Finite State Machine
	Usage example
	Step by step
	Complete example
	Changing state for another user

	Read more
	Storages
	Storages out of the box
	MemoryStorage
	RedisStorage
	MongoStorage
	KeyBuilder
	Writing own storages

	Strategy
	Scenes Wizard
	Understanding Scenes
	Scene Lifecycle
	Scene Listeners
	Scene Interactions
	Scene Benefits
	How to use Scenes
	Components
	Markers
	How to enter the scene

	Middlewares
	Base theory
	Basics
	Arguments specification
	Examples
	Class-based
	Function-based

	Facts

	Errors
	Handling errors
	ErrorEvent
	Error types

	Flags
	Via decorators
	Via handler registration method
	Via filters
	Use in middlewares
	Example in middlewares

	Use in utilities

	Webhook
	aiohttp integration
	Security
	Using a secret token
	Using IP filtering

	Examples
	Behind reverse proxy
	Without reverse proxy (not recommended)

	With using other web framework

	Class based handlers
	BaseHandler
	Example

	CallbackQueryHandler
	ChosenInlineResultHandler
	Simple usage
	Extension

	ErrorHandler
	Simple usage
	Extension

	InlineQueryHandler
	Simple usage
	Extension

	MessageHandler
	Simple usage
	Extension

	PollHandler
	Simple usage
	Extension

	PreCheckoutQueryHandler
	Simple usage
	Extension

	ShippingQueryHandler
	Simple usage
	Extension

	ChatMemberHandler
	Simple usage
	Extension

	Utils
	Keyboard builder
	Usage example
	Inline Keyboard
	Reply Keyboard

	Translation
	Installation
	Make messages translatable
	Configuring engine
	SimpleI18nMiddleware
	ConstI18nMiddleware
	FSMI18nMiddleware
	I18nMiddleware

	Deal with Babel
	Step 1 Extract messages
	Step 2: Init language
	Step 3: Translate texts
	Step 4: Compile translations
	Step 5: Updating messages

	Chat action sender
	Sender
	Usage

	Middleware
	Usage

	WebApp
	Usage
	Functions
	Types

	Callback answer
	Simple usage
	Advanced usage
	Global defaults
	Handler specific
	A special case
	Combine that all at once

	Description of objects

	Formatting
	Usage
	Basic scenario
	Advanced scenario

	Available methods
	Available elements

	Media group builder
	Usage
	References

	Deep Linking
	Examples
	Basic link example
	Encoded link
	Decode it back

	References

	Telegram object serialization
	Serialization
	Deserialization

	Changelog
	3.23.0 (2025-12-07)
	Features
	Deprecations and Removals
	Misc

	3.22.0 (2025-08-17)
	Features
	Bugfixes
	Misc

	3.21.0 (2025-07-05)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.20.0 (2025-04-14)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.19.0 (2025-03-19)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.18.0 (2025-02-16)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.17.0 (2025-01-02)
	Features

	3.16.0 (2024-12-21)
	Features
	Bugfixes
	Misc

	3.15.0 (2024-11-17)
	Features

	3.14.0 (2024-11-02)
	Misc
	Features
	Bugfixes
	Improved Documentation

	3.13.1 (2024-09-18)
	Misc
	Bugfixes

	3.13.0 (2024-09-08)
	Features
	Bugfixes

	3.12.0 (2024-08-16)
	Features
	Misc

	3.11.0 (2024-08-09)
	Features
	Bugfixes
	Misc

	3.10.0 (2024-07-07)
	Features

	3.9.0 (2024-07-06)
	Features
	Bugfixes

	3.8.0 (2024-06-19)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.7.0 (2024-05-31)
	Features
	Bugfixes
	Deprecations and Removals
	Misc

	3.6.0 (2024-05-06)
	Features
	Improved Documentation

	3.5.0 (2024-04-23)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.4.1 (2024-02-17)
	Bugfixes

	3.4.0 (2024-02-16)
	Features
	Bugfixes
	Improved Documentation

	3.3.0 (2023-12-31)
	Features

	3.2.0 (2023-11-24)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.1.1 (2023-09-25)
	Bugfixes

	3.1.0 (2023-09-22)
	Features
	Bugfixes

	3.0.0 (2023-09-01)
	Bugfixes

	3.0.0rc2 (2023-08-18)
	Bugfixes
	Improved Documentation
	Misc

	3.0.0rc1 (2023-08-06)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.0.0b9 (2023-07-30)
	Features
	Bugfixes
	Improved Documentation
	Deprecations and Removals

	3.0.0b8 (2023-07-17)
	Features
	Bugfixes
	Improved Documentation
	Deprecations and Removals
	Misc

	3.0.0b7 (2023-02-18)
	Features
	Bugfixes
	Misc

	3.0.0b6 (2022-11-18)
	Features
	Bugfixes
	Improved Documentation
	Misc

	3.0.0b5 (2022-10-02)
	Features
	Bugfixes
	Improved Documentation
	Deprecations and Removals
	Misc

	3.0.0b4 (2022-08-14)
	Features
	Bugfixes
	Misc

	3.0.0b3 (2022-04-19)
	Features
	Bugfixes
	Misc

	3.0.0b2 (2022-02-19)
	Features
	Bugfixes
	Misc

	3.0.0b1 (2021-12-12)
	Features
	Bugfixes
	Misc

	3.0.0a18 (2021-11-10)
	Features
	Bugfixes
	Misc

	3.0.0a17 (2021-09-24)
	Misc

	3.0.0a16 (2021-09-22)
	Features
	Misc

	3.0.0a15 (2021-09-10)
	Features
	Bugfixes
	Misc

	3.0.0a14 (2021-08-17)
	Features
	Bugfixes
	Improved Documentation
	Misc

	2.14.3 (2021-07-21)
	2.14.2 (2021-07-26)
	2.14 (2021-07-27)
	2.13 (2021-04-28)
	2.12.1 (2021-03-22)
	2.12 (2021-03-14)
	2.11.2 (2021-11-10)
	2.11.1 (2021-11-10)
	2.11 (2021-11-08)
	2.10.1 (2021-09-14)
	2.10 (2021-09-13)
	2.9.2 (2021-06-13)
	2.9 (2021-06-08)
	2.8 (2021-04-26)
	2.7 (2021-04-07)
	2.6.1 (2021-01-25)
	2.6 (2021-01-23)
	2.5.3 (2021-01-05)
	2.5.2 (2021-01-01)
	2.5.1 (2021-01-01)
	2.5 (2021-01-01)
	2.4 (2021-10-29)
	2.3 (2021-08-16)
	2.2 (2021-06-09)
	2.1 (2021-04-18)
	2.0.1 (2021-12-31)
	2.0 (2021-10-28)
	1.4 (2021-08-03)
	1.3.3 (2021-07-16)
	1.3.2 (2021-05-27)
	1.3.1 (2018-05-27)
	1.3 (2021-04-22)
	1.2.3 (2018-04-14)
	1.2.2 (2018-04-08)
	1.2.1 (2018-03-25)
	1.2 (2018-02-23)
	1.1 (2018-01-27)
	1.0.4 (2018-01-10)
	1.0.3 (2018-01-07)
	1.0.2 (2017-11-29)
	1.0.1 (2017-11-21)
	1.0 (2017-11-19)
	0.4.1 (2017-08-03)
	0.4 (2017-08-05)
	0.3.4 (2017-08-04)
	0.3.3 (2017-07-05)
	0.3.2 (2017-07-04)
	0.3.1 (2017-07-04)
	0.2b1 (2017-06-00)
	0.1 (2017-06-03)

	Contributing
	Developing
	Use virtualenv
	Activate the environment
	Setup project
	Making changes in code
	Format the code (code-style)
	Run tests
	Docs
	Docs translations
	Describe changes
	Complete

	Star on GitHub
	Guides
	Take answers
	Funding

	Python Module Index
	Index

